1
|
Gasser E, Su E, Vaidžiulytė K, Abbade N, Cognart H, Manneville JB, Viovy JL, Piel M, Pierga JY, Terao K, Villard C. Deformation under flow and morphological recovery of cancer cells. LAB ON A CHIP 2024; 24:3930-3944. [PMID: 38993177 PMCID: PMC11302772 DOI: 10.1039/d4lc00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
The metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines - namely MCF-7, SK-BR3 and MDA-MB231 - as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.
Collapse
Affiliation(s)
- Emile Gasser
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| | - Emilie Su
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Kotryna Vaidžiulytė
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Nassiba Abbade
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Hamizah Cognart
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Jean-Baptiste Manneville
- Laboratoire Matière et Systèmes Complexes (MSC), CNRS UMR 7057, Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, F-75013 Paris, France
| | - Jean-Louis Viovy
- Institut Curie and Institut Pierre Gilles de Gennes, Physique des Cellules et Cancer, CNRS UMR168, Université PSL, F-75005 Paris, France.
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, CNRS UMR144, Université PSL, F-75005 Paris, France
| | - Jean-Yves Pierga
- Département d'Oncologie Médicale de l'Institut Curie et Université Paris Cité, France
| | - Kyohei Terao
- Nano-Micro Structure Device Integrated Research Center, Kagawa University, 2217-20 Hayashi-cho, Takamatsu 761-0396, Japan.
| | - Catherine Villard
- Laboratoire Interdisciplinaire des Energies de Demain, CNRS UMR 8236, Université Paris Cité, F-75013, Paris, France.
| |
Collapse
|
2
|
Hua H, Zou S, Ma Z, Guo W, Fong CY, Khoo BL. A deformability-based biochip for precise label-free stratification of metastatic subtypes using deep learning. MICROSYSTEMS & NANOENGINEERING 2023; 9:120. [PMID: 37780810 PMCID: PMC10539402 DOI: 10.1038/s41378-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 10/03/2023]
Abstract
Cellular deformability is a promising biomarker for evaluating the physiological state of cells in medical applications. Microfluidics has emerged as a powerful technique for measuring cellular deformability. However, existing microfluidic-based assays for measuring cellular deformability rely heavily on image analysis, which can limit their scalability for high-throughput applications. Here, we develop a parallel constriction-based microfluidic flow cytometry device and an integrated computational framework (ATMQcD). The ATMQcD framework includes automatic training set generation, multiple object tracking, segmentation, and cellular deformability quantification. The system was validated using cancer cell lines of varying metastatic potential, achieving a classification accuracy of 92.4% for invasiveness assessment and stratifying cancer cells before and after hypoxia treatment. The ATMQcD system also demonstrated excellent performance in distinguishing cancer cells from leukocytes (accuracy = 89.5%). We developed a mechanical model based on power-law rheology to quantify stiffness, which was fitted with measured data directly. The model evaluated metastatic potentials for multiple cancer types and mixed cell populations, even under real-world clinical conditions. Our study presents a highly robust and transferable computational framework for multiobject tracking and deformation measurement tasks in microfluidics. We believe that this platform has the potential to pave the way for high-throughput analysis in clinical applications, providing a powerful tool for evaluating cellular deformability and assessing the physiological state of cells.
Collapse
Affiliation(s)
- Haojun Hua
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Shangjie Zou
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Zhiqiang Ma
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Wang Guo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Ching Yin Fong
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Bee Luan Khoo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
- City University of Hong Kong Futian-Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
3
|
Uddin MM, Vanapalli SA. Microfluidic tapered aspirators for mechanical characterization of microgel beads. SOFT MATTER 2023; 19:6641-6651. [PMID: 37401354 DOI: 10.1039/d2sm01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
In this study, we report a microfluidic approach for the measurement of mechanical properties of spherical microgel beads. This technique is analogous to tapered micropipette aspiration, while harnessing the benefits of microfluidics. We fabricate alginate-based microbeads and determine their mechanical properties using the microfluidic tapered aspirators. Individual microgel beads are aspirated and trapped in tapered channels, the deformed equilibrium shape is measured, and a stress balance is used to determine the Young's modulus. We investigate the effect of surface coating, taper angle, and bead diameter and find that the measured modulus is largely insensitive to these parameters. We show that the bead modulus increases with alginate concentration and follows a trend similar to that of the modulus measured using standard uniaxial compression. The critical pressure to squeeze out the beads from the tapered aspirators was found to depend on both the modulus and the bead diameter. Finally, we demonstrate how temporal changes in bead moduli due to enzymatic degradation of the hydrogel could be quantitatively determined. The results from this study highlight that the microfluidic tapered aspirators are a useful tool to measure hydrogel bead mechanics and have the potential to characterize dynamic changes in mechanical properties.
Collapse
Affiliation(s)
- Md Mezbah Uddin
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA.
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
4
|
Saffari H, Hajiaghalou S, Hajari MA, Gourabi H, Fathi D, Fathi R. Design and fabrication of aspiration microfluidic channel for oocyte characterization. Talanta 2023; 254:124098. [PMID: 36462279 DOI: 10.1016/j.talanta.2022.124098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
The development potential for oocytes can be predicted by their mechanical properties. One important parameter that is measured to calculate oocyte hardness is Cortical Tension (CT). In this work, for the first time, we present the design, simulation, and fabrication of a new aspiration microfluidic chip to measure the CT of oocytes and then predict their maturation capability in the Germinal Vesicle (GV) stage. This high-performance technique facilitates oocyte characterization and is a promising alternative to traditional methods such as MicroPipette Aspiration (MPA). The proposed technique involves considerably simpler operation, less specialized equipment, and less technical skill than MPA. The proposed microfluidic channel also promises faster measurements. It is shown that in order to completely continue the growth process of oocytes in GV stage, the CT should be in a certain range: very low or very high CTs lead to unsuccessful growth. The obtained results show that 79% of oocytes with the CT between 1.5 and 3 nN/μm reach the Metaphase II (MII) stage, whereas the growth for 78% of oocytes with the CT less than 1.5 nN/μm or higher than 3 nN/μm stops at the GV or Germinal Vesicle Break Down (GVBD) stages. Another property, kvis, that points to the viscous behavior of oocytes is also measured. It is seen that 80% of GV oocytes with the kvis values between 15 and 30 k Pa s/m reach the MII stage.
Collapse
Affiliation(s)
- H Saffari
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran
| | - S Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - M A Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - H Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - D Fathi
- Department of Electrical and Computer Engineering, Tarbiat Modares University (TMU), Tehran, Iran.
| | - R Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
6
|
Li X, Jin Y, Shi J, Sun X, Ouyang Q, Luo C. A high throughput microfluidic system with large ranges of applied pressures for measuring the mechanical properties of single fixed cells and differentiated cells. BIOMICROFLUIDICS 2022; 16:034102. [PMID: 35547183 PMCID: PMC9075862 DOI: 10.1063/5.0085876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 05/05/2023]
Abstract
The mechanical properties of cells are of great significance to their normal physiological activities. The current methods used for the measurement of a cell's mechanical properties have the problems of complicated operation, low throughput, and limited measuring range. Based on micropipette technology, we designed a double-layer micro-valve-controlled microfluidic chip with a series of micropipette arrays. The chip has adjustment pressure ranges of 0.03-1 and 0.3-10 kPa and has a pressure stabilization design, which can achieve a robust measurement of a single cell's mechanical properties under a wide pressure range and is simple to operate. Using this chip, we measured the mechanical properties of the cells treated with different concentrations of paraformaldehyde (PFA) and observed that the viscoelasticity of the cells gradually increased as the PFA concentration increased. Then, this method was also used to characterize the changes in the mechanical properties of the differentiation pathways of stem cells from the apical papilla to osteogenesis.
Collapse
Affiliation(s)
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Xiaoqiang Sun
- The Department of Endodontics, School of Stomatology, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
7
|
Ren J, Liu Y, Huang W, Lam RHW. A Narrow Straight Microchannel Array for Analysis of Transiting Speed of Floating Cancer Cells. MICROMACHINES 2022; 13:183. [PMID: 35208307 PMCID: PMC8877651 DOI: 10.3390/mi13020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Investigating floating cells along a narrow microchannel (e.g., a blood vessel) for their transiting speeds and the corresponding roles of cell physical properties can deepen our understanding of circulating tumor cells (CTCs) metastasis via blood vessels. Many existing studies focus on the cell transiting process in blood vessel-like microchannels; further analytical studies are desired to summarize behaviors of the floating cell movement under different conditions. In this work, we perform a theoretical analysis to establish a relation between the transiting speed and key cell physical properties. We also conduct computational fluid dynamics simulation and microfluidic experiments to verify the theoretical model. This work reveals key cell physical properties and the channel configurations determining the transiting speed. The reported model can be applied to other works with various dimensions of microchannels as a more general way to evaluate the cancer cell metastasis ability with microfluidics.
Collapse
Affiliation(s)
- Jifeng Ren
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Wei Huang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China; (Y.L.); (W.H.)
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
8
|
Ujihara Y, Ono D, Nishitsuji K, Ito M, Sugita S, Nakamura M. B16 Melanoma Cancer Cells with Higher Metastatic Potential are More Deformable at a Whole-Cell Level. Cell Mol Bioeng 2021; 14:309-320. [PMID: 34295442 PMCID: PMC8280262 DOI: 10.1007/s12195-021-00677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Metastasis is a process in which cancer cells spread from the primary focus site to various other organ sites. Many studies have suggested that reduced stiffness would facilitate passing through extracellular matrix when cancer cells instigate a metastatic process. Here we investigated the compressive properties of melanoma cancer cells with different metastatic potentials at the whole-cell level. Differences in their compressive properties were analyzed by examining actin filament structure and actin-related gene expression. METHODS Compressive tests were carried out for two metastatic B16 melanoma variants (B16-F1 and B16-F10) to characterize global compressive properties of cancer cells. RNA-seq analysis and fluorescence microscopic imaging were performed to clarify contribution of actin filaments to the global compressive properties. RESULTS RNA-seq analysis and fluorescence microscopic imaging revealed the undeveloped structure of actin filaments in B16-F10 cells. The Young's modulus of B16-F10 cells was significantly lower than that of B16-F1 cells. Disruption of the actin filaments in B16-F1 cells reduced the Young's modulus to the same level as that of B16-F10 cells, while the Young's modulus in B16-F10 cells remained the same regardless of the disruption. CONCLUSIONS In B16 melanoma cancer cell lines, cells with higher metastatic potential were more deformable at the whole-cell level with undeveloped actin filament structure, even when highly deformed. These results imply that invasive cancer cells may gain the ability to inhibit actin filament development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (10.1007/s12195-021-00677-w).
Collapse
Affiliation(s)
- Yoshihiro Ujihara
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
| | - Daichi Ono
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology, 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495 Japan
| | - Megumi Ito
- Creative Engineering Program, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
| | - Shukei Sugita
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 Japan
| |
Collapse
|
9
|
Liao J, Ren J, Wei H, Lam RHW, Chua SL, Khoo BL. Label-free biosensor of phagocytosis for diagnosing bacterial infections. Biosens Bioelectron 2021; 191:113412. [PMID: 34153636 DOI: 10.1016/j.bios.2021.113412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Phagocytic cells recognize and phagocytose invading microbes for destruction. However, bacterial pathogens can remain hidden at low levels from conventional detection or replicate intracellularly after being phagocytosed by immune cells. Current phagocytosis-detection approaches involve flow cytometry or microscopic search for rare bacteria-internalized phagocytes among large populations of uninfected cells, which poses significant challenges in research and clinical settings. Hence it is imperative to develop a rapid, non-disruptive, and label-free phagocytosis detection approach. Using deformability assays and microscopic imaging, we have demonstrated for the first time that the presence of intracellular bacteria in phagocytic blood cells led to aberrant physical properties. Specifically, human monocytes with internalized bacteria of various species were stiffer and larger compared with uninfected monocytes. Taking advantage of these physical differences, a novel microfluidics-based biosensor platform was developed to passively sort, concentrate and quantify rare monocytes with internalized pathogens (MIP) from uninfected monocyte populations for phagocytosis detection. The clinical utility of the MIP platform was demonstrated by enriching and detecting bacteria-internalized monocytes from spiked human blood samples within 1.5 h. Patient-derived clinical isolates were used to validate the utility of the MIP platform further. This proof-of-concept presents a phagocytosis detection platform that could be used to rapidly diagnose microbial infections, especially in bloodstream infections (BSIs), thereby improving the clinical outcomes for point-of-care management.
Collapse
Affiliation(s)
- Junchen Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China; School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Huang Wei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; Centre for Robotics and Automation, City University of Hong Kong, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China; Shenzhen Key Laboratory of Food Biological Safety Control, China.
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Li Z, Yang X, Zhang Q, Yang W, Zhang H, Liu L, Liang W. Non-invasive acquisition of mechanical properties of cells via passive microfluidic mechanisms: A review. BIOMICROFLUIDICS 2021; 15:031501. [PMID: 34178202 PMCID: PMC8205512 DOI: 10.1063/5.0052185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
The demand to understand the mechanical properties of cells from biomedical, bioengineering, and clinical diagnostic fields has given rise to a variety of research studies. In this context, how to use lab-on-a-chip devices to achieve accurate, high-throughput, and non-invasive acquisition of the mechanical properties of cells has become the focus of many studies. Accordingly, we present a comprehensive review of the development of the measurement of mechanical properties of cells using passive microfluidic mechanisms, including constriction channel-based, fluid-induced, and micropipette aspiration-based mechanisms. This review discusses how these mechanisms work to determine the mechanical properties of the cell as well as their advantages and disadvantages. A detailed discussion is also presented on a series of typical applications of these three mechanisms to measure the mechanical properties of cells. At the end of this article, the current challenges and future prospects of these mechanisms are demonstrated, which will help guide researchers who are interested to get into this area of research. Our conclusion is that these passive microfluidic mechanisms will offer more preferences for the development of lab-on-a-chip technologies and hold great potential for advancing biomedical and bioengineering research studies.
Collapse
Affiliation(s)
- Zhenghua Li
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Xieliu Yang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Qi Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Hemin Zhang
- Department of Neurology, The People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenfeng Liang
- School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
11
|
Reynolds N, McEvoy E, Ghosh S, Panadero Pérez JA, Neu CP, McGarry P. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity. Biophys J 2021; 120:1323-1332. [PMID: 33675762 PMCID: PMC8105730 DOI: 10.1016/j.bpj.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Beyond the critical role of cell nuclei in gene expression and DNA replication, they also have a significant influence on cell mechanosensation and migration. Nuclear stiffness can impact force transmission and, furthermore, act as a physical barrier to translocation across tight spaces. As such, it is of wide interest to accurately characterize nucleus mechanical behavior. In this study, we present a computational investigation of the in situ deformation of a heterogeneous chondrocyte nucleus. A methodology is developed to accurately reconstruct a three-dimensional finite-element model of a cell nucleus from confocal microscopy. By incorporating the reconstructed nucleus into a chondrocyte model embedded in pericellular and extracellular matrix, we explore the relationship between spatially heterogeneous nuclear DNA content, shear stiffness, and resultant shear strain. We simulate an externally applied extracellular matrix shear deformation and compute intranuclear strain distributions, which are directly compared with corresponding experimentally measured distributions. Simulations suggest that the mechanical behavior of the nucleus is highly heterogeneous, with a nonlinear relationship between experimentally measured grayscale values and corresponding local shear moduli (μn). Three distinct phases are identified within the nucleus: a low-stiffness mRNA-rich interchromatin phase (0.17 kPa ≤ μn ≤ 0.63 kPa), an intermediate-stiffness euchromatin phase (1.48 kPa ≤ μn ≤ 2.7 kPa), and a high-stiffness heterochromatin phase (3.58 kPa ≤ μn ≤ 4.0 kPa). Our simulations also indicate that disruption of the nuclear envelope associated with lamin A/C depletion significantly increases nuclear strain in regions of low DNA concentration. We further investigate a phenotypic shift of chondrocytes to fibroblast-like cells, a signature for osteoarthritic cartilage, by increasing the contractility of the actin cytoskeleton to a level associated with fibroblasts. Peak nucleus strains increase by 35% compared to control, with the nucleus becoming more ellipsoidal. Our findings may have broad implications for current understanding of how local DNA concentrations and associated strain amplification can impact cell mechanotransduction and drive cell behavior in development, migration, and tumorigenesis.
Collapse
Affiliation(s)
- Noel Reynolds
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Eoin McEvoy
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | - Soham Ghosh
- Mechanical Engineering, Colorado State University, Fort Collins, Colorado
| | | | - Corey P Neu
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado
| | - Patrick McGarry
- Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
12
|
Hashemi Shahraki Z, Navidbakhsh M, Taylor RA. Inertial cell sorting of microparticle-laden flows: An innovative OpenFOAM-based arbitrary Lagrangian-Eulerian numerical approach. BIOMICROFLUIDICS 2021; 15:014111. [PMID: 33643513 PMCID: PMC7896837 DOI: 10.1063/5.0035352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
The need for cell and particle sorting in human health care and biotechnology applications is undeniable. Inertial microfluidics has proven to be an effective cell and particle sorting technology in many of these applications. Still, only a limited understanding of the underlying physics of particle migration is currently available due to the complex inertial and impact forces arising from particle-particle and particle-wall interactions. Thus, even though it would likely enable significant advances in the field, very few studies have tried to simulate particle-laden flows in inertial microfluidic devices. To address this, this study proposes new codes (solved in OpenFOAM software) that capture all the salient inertial forces, including the four-way coupling between the conveying fluid and the suspended particles traveling a spiral microchannel. Additionally, these simulations are relatively (computationally) inexpensive since the arbitrary Lagrangian-Eulerian formulation allows the fluid elements to be much larger than the particles. In this study, simulations were conducted for two different spiral microchannel cross sections (e.g., rectangular and trapezoidal) for comparison against previously published experimental results. The results indicate good agreement with experiments in terms of (monodisperse) particle focusing positions, and the codes can readily be extended to simulate two different particle types. This new numerical approach is significant because it opens the door to rapid geometric and flow rate optimization in order to improve the efficiency and purity of cell and particle sorting in biotechnology applications.
Collapse
Affiliation(s)
| | - Mahdi Navidbakhsh
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846, Iran
| | - Robert A Taylor
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
13
|
Ren J, Li Y, Hu S, Liu Y, Tsao SW, Lau D, Luo G, Tsang CM, Lam RHW. Nondestructive quantification of single-cell nuclear and cytoplasmic mechanical properties based on large whole-cell deformation. LAB ON A CHIP 2020; 20:4175-4185. [PMID: 33030494 DOI: 10.1039/d0lc00725k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The mechanical properties of cell nuclei have been recognized to reflect and modulate important cell behaviors such as migration and cancer cell malignant tendency. However, these nuclear properties are difficult to characterize accurately using conventional measurement methods, which are often based on probing or deforming local sites over a nuclear region. The corresponding results are sensitive to the measurement position, and they are not decoupled from the cytoplasmic properties. Microfluidics is widely recognized as a promising technique for bioassay and phenotyping. In this report, we develop a simple and nondestructive approach for the single-cell quantification of nuclear elasticity based on microfluidics by considering different deformation levels of a live cell captured along a confining microchannel. We apply two inlet pressure levels to drive the flow of human nasopharyngeal epithelial cells (NP460) and human nasopharyngeal cancerous cells (NPC43) into the microchannels. A model considering the essential intracellular components (cytoplasm and nucleus) for describing the mechanics of a cell deforming along the confining microchannel is used to back-calculate the cytoplasmic and nuclear properties. On the other hand, we also apply a widely used chemical nucleus extraction technique to examine its possible effects (e.g., reduced nuclear modulus and reduced lamin A/C expression). To determine if the decoupled nuclear properties are representative of cancer-related attributes, we classify the NP460 and NPC43 cells using the decoupled physical properties as classification factors, resulting in an accuracy of 79.1% and a cell-type specificity exceeding 74%. It should be mentioned that the cells can be recollected at the device outlet after the nondestructive measurement. Hence, the reported cell elasticity measurement can be combined with downstream genetic and biochemical assays for general cell research and cancer diagnostic applications.
Collapse
Affiliation(s)
- Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yongshu Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.
| | - Shuhuan Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China. and BGI-Shenzhen, Shenzhen 518083, Guangdong, China and Guangdong High-Throughput Sequencing Research Center, Shenzhen, Guangdong, China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Sai Wah Tsao
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Guannan Luo
- Department of Economics and Finance, City University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China.
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen, China and Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Zhao J, Manuchehrfar F, Liang J. Cell-substrate mechanics guide collective cell migration through intercellular adhesion: a dynamic finite element cellular model. Biomech Model Mechanobiol 2020; 19:1781-1796. [PMID: 32108272 PMCID: PMC7990038 DOI: 10.1007/s10237-020-01308-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 01/23/2023]
Abstract
During the process of tissue formation and regeneration, cells migrate collectively while remaining connected through intercellular adhesions. However, the roles of cell-substrate and cell-cell mechanical interactions in regulating collective cell migration are still unclear. In this study, we employ a newly developed finite element cellular model to study collective cell migration by exploring the effects of mechanical feedback between cell and substrate and mechanical signal transmission between adjacent cells. Our viscoelastic model of cells consists many triangular elements and is of high resolution. Cadherin adhesion between cells is modeled explicitly as linear springs at subcellular level. In addition, we incorporate a mechano-chemical feedback loop between cell-substrate mechanics and Rac-mediated cell protrusion. Our model can reproduce a number of experimentally observed patterns of collective cell migration during wound healing, including cell migration persistence, separation distance between cell pairs and migration direction. Moreover, we demonstrate that cell protrusion determined by the cell-substrate mechanics plays an important role in guiding persistent and oriented collective cell migration. Furthermore, this guidance cue can be maintained and transmitted to submarginal cells of long distance through intercellular adhesions. Our study illustrates that our finite element cellular model can be employed to study broad problems of complex tissue in dynamic changes at subcellular level.
Collapse
Affiliation(s)
- Jieling Zhao
- INRIA de Paris and Sorbonne Universités UPMC, LJLL Team Mamba, Paris, France.
| | - Farid Manuchehrfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
15
|
Mondadori C, Crippa M, Moretti M, Candrian C, Lopa S, Arrigoni C. Advanced Microfluidic Models of Cancer and Immune Cell Extravasation: A Systematic Review of the Literature. Front Bioeng Biotechnol 2020; 8:907. [PMID: 32984267 PMCID: PMC7479057 DOI: 10.3389/fbioe.2020.00907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Extravasation is a multi-step process implicated in many physiological and pathological events. This process is essential to get leukocytes to the site of injury or infection but is also one of the main steps in the metastatic cascade in which cancer cells leave the primary tumor and migrate to target sites through the vascular route. In this perspective, extravasation is a double-edged sword. This systematic review analyzes microfluidic 3D models that have been designed to investigate the extravasation of cancer and immune cells. The purpose of this systematic review is to provide an exhaustive summary of the advanced microfluidic 3D models that have been designed to study the extravasation of cancer and immune cells, offering a perspective on the current state-of-the-art. To this end, we set the literature search cross-examining PUBMED and EMBASE databases up to January 2020 and further included non-indexed references reported in relevant reviews. The inclusion criteria were defined in agreement between all the investigators, aimed at identifying studies which investigate the extravasation process of cancer cells and/or leukocytes in microfluidic platforms. Twenty seven studies among 174 examined each step of the extravasation process exploiting 3D microfluidic devices and hence were included in our review. The analysis of the results obtained with the use of microfluidic models allowed highlighting shared features and differences in the extravasation of immune and cancer cells, in view of the setup of a common framework, that could be beneficial for the development of therapeutic approaches fostering or hindering the extravasation process.
Collapse
Affiliation(s)
- Carlotta Mondadori
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Martina Crippa
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Christian Candrian
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Chiara Arrigoni
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| |
Collapse
|
16
|
Wu X, Bai Z, Wang L, Cui G, Yang M, Yang Q, Ma B, Song Q, Tian D, Ceyssens F, Puers R, Kraft M, Zhao W, Wen L. Magnetic Cell Centrifuge Platform Performance Study with Different Microsieve Pore Geometries. SENSORS (BASEL, SWITZERLAND) 2019; 20:E48. [PMID: 31861791 PMCID: PMC6983067 DOI: 10.3390/s20010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022]
Abstract
The detection and analysis of circulating tumor cells (CTCs) plays a crucial role in clinical practice. However, the heterogeneity and rarity of CTCs make their capture and separation from peripheral blood very difficult while maintaining their structural integrity and viability. We previously demonstrated the effectiveness of the Magnetic Cell Centrifuge Platform (MCCP), which combined the magnetic-labeling cell separation mechanism with the size-based method. In this paper, a comparison of the effectiveness of different microsieve pore geometries toward MCCP is demonstrated to improve the yield of the target cell capture. Firstly, models of a trapped cell with rectangular and circular pore geometries are presented to compare the contact force using finite element numerical simulations. The device performance is then evaluated with both constant pressure and constant flow rate experimental conditions. In addition, the efficient isolation of magnetically labeled Hela cells with red fluorescent proteins (target cells) from Hela cells with green fluorescent protein (background cells) is validated. The experimental results show that the circular sieves yield 97% purity of the target cells from the sample with a throughput of up to 2 μL/s and 66-fold sample enrichment. This finding will pave the way for the design of a higher efficient MCCP systems.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Zhongyang Bai
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Lin Wang
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Guangchao Cui
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Mengzheng Yang
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Qing Yang
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Bo Ma
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qinglin Song
- Qingdao Goertek Microelectronics Research Institute Co., Ltd., Qingdao 266104, China
| | - Dewen Tian
- Qingdao Goertek Microelectronics Research Institute Co., Ltd., Qingdao 266104, China
| | - Frederik Ceyssens
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Robert Puers
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Michael Kraft
- ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium
| | - Weisheng Zhao
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| | - Lianggong Wen
- School of Microelectronics, Beihang University, Beijing 100191, China; (X.W.)
- Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266104, China
| |
Collapse
|
17
|
Shiomi A, Nagao K, Kasai H, Hara Y, Umeda M. Changes in the physicochemical properties of fish cell membranes during cellular senescence. Biosci Biotechnol Biochem 2019; 84:583-593. [PMID: 31760866 DOI: 10.1080/09168451.2019.1695576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fish cell lines are widely used for the studies of developmental biology, virology, biology of aging, and nutrition physiology. However, little is known about their physicochemical properties. Here, we report the phospholipid compositions and mechanical properties of cell membranes derived from freshwater, anadromous and marine fish species. Biophysical analyses revealed that fish cell lines have highly deformable cell membranes with significantly low membrane tensions and Young's moduli compared with those of mammalian cell lines. The induction of cellular senescence by DNA demethylation using 5-Aza-2'-deoxycytidine significantly reduced the deformability of fish cell membrane, but hydrogen peroxide-induced oxidative stress did not affect the deformability. Mass spectrometry analysis of phospholipids revealed that the level of phosphatidylethanolamine molecules containing polyunsaturated fatty acids significantly increased during the 5-Aza-2'-deoxycytidine-induced cellular senescence. Fish cell lines provide a useful model system for studying the changes in the physicochemical properties of cell membranes during cellular senescence.Abbreviations: 2D-TLC: two-dimensional thin layer chromatography; 5-Aza-dC: 5-Aza-2'-deoxycytidine; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; FBS: fetal bovine serum; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PS: phosphatidylserine; PUFA: polyunsaturated fatty acid; SA-β-gal: senescence-associated beta-galactosidase; SM: sphingomyelin.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hisae Kasai
- Laboratory of Marine Biotechnology and Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Ren J, Li J, Li Y, Xiao P, Liu Y, Tsang CM, Tsao SW, Lau D, Chan KWY, Lam RHW. Elasticity-Modulated Microbeads for Classification of Floating Normal and Cancer Cells Using Confining Microchannels. ACS Biomater Sci Eng 2019; 5:3889-3898. [DOI: 10.1021/acsbiomaterials.8b01273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yongshu Li
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Yi Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Chi Man Tsang
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Sai Wah Tsao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Denvid Lau
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| | - Raymond H. W. Lam
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen 518057, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, Special Administrative Region of the People’s Republic of China
| |
Collapse
|