1
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
2
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
3
|
Yue H, He F, Zhao Z, Duan Y. Plasma-based ambient mass spectrometry: Recent progress and applications. MASS SPECTROMETRY REVIEWS 2023; 42:95-130. [PMID: 34128567 DOI: 10.1002/mas.21712] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 06/12/2023]
Abstract
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time. This review first provides a comprehensive overview of the established plasma-based AMS techniques from their ion source configurations, mechanisms, and developments. Then, the progress of the representative applications in various scientific fields in the past 4 years (January 2017 to January 2021) has been summarized. Finally, we discuss the current challenges and propose the future directions of plasma-based AMS from our perspective.
Collapse
Affiliation(s)
- Hanlu Yue
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Feiyao He
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yixiang Duan
- College of Life Sciences, Sichuan University, Chengdu, China
- School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Kwon HJ, Oh JY, Lee KS, Lim HK, Lee J, Yoon HR, Jung J. Lipid Profiles Obtained from MALDI Mass Spectrometric Imaging in Liver Cancer Metastasis Model. Int J Anal Chem 2022; 2022:6007158. [PMID: 36337119 PMCID: PMC9633205 DOI: 10.1155/2022/6007158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2024] Open
Abstract
Liver cancer metastasis is known to be a poor prognosis and a leading cause of mortality. To overcome low therapeutic efficacy, understanding the physiological properties of liver cancer metastasis is required. However, the metastatic lesion is heterogeneous and complex. We investigate the distribution of lipids using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in an experimental metastasis model. We obtained the differentially expressed mass peaks in comparison between normal sites and metastatic lesions. The relationship of mass to charge ratio (m/z) and intensity were measured, m/z-indicated species were analyzed by MALDI-MS/MS analysis, and identification of these mass species was confirmed using the METASPACEannotation platform and Lipid Maps®. MALDI-MSI at m/z 725.6, 734.6, 735.6, 741.6, 742.6, 744.6, 756.6, and 772.6 showed significantly higher intensity, consistent with the metastatic lesions in hematoxylin-stained tissues. Sphingomyelin SM [d18:0/16:1], phosphatidylcholine (PC) [32:0], PC [31:0], PC [31:1], and PE [36:2] were highly expressed in metastatic lesions. Our results could provide information for understanding metastatic lesions. It suggests that the found lipids could be a biomarker for the diagnosis of metastatic lesions.
Collapse
Affiliation(s)
- Hee Jung Kwon
- Department of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Joo Yeon Oh
- ASTA, Inc., Gyeonggi-do 16229, Republic of Korea
| | | | - Hyun Kyung Lim
- Department of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jisun Lee
- Department of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye-Ran Yoon
- Department of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Joohee Jung
- Department of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
5
|
Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021; 11:metabo11110780. [PMID: 34822438 PMCID: PMC8625079 DOI: 10.3390/metabo11110780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Ambient mass spectrometry imaging (AMSI) has attracted much attention in recent years. As a kind of unlabeled molecular imaging technique, AMSI can enable in situ visualization of a large number of compounds in biological tissue sections in ambient conditions. In this review, the developments of various AMSI techniques are discussed according to one-step and two-step ionization strategies. In addition, recent applications of AMSI for lipid and metabolite analysis (from 2016 to 2021) in disease diagnosis, animal model research, plant science, drug metabolism and toxicology research, etc., are summarized. Finally, further perspectives of AMSI in spatial resolution, sensitivity, quantitative ability, convenience and software development are proposed.
Collapse
|
6
|
Miao M, Zhao G, Cheng P, Li J, Zhang J, Pan H. Rapid Analysis of Trace Phthalates by Spray-Inlet Microwave Plasma Torch Ionization-Tandem Mass Spectrometry in Commercial Perfumes. J AOAC Int 2021; 105:54-61. [PMID: 34636904 DOI: 10.1093/jaoacint/qsab133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND The less volatile fraction of perfumes can be easily contaminated by phthalates esters (PAEs) which are endocrine-disrupting chemicals during the production, bottling and transportation processes. It is necessary to establish an innovative and rapid method to determine the trace PAEs in commercial perfumes. OBJECTIVE Hence, self-built spray-inlet microwave plasma torch ionization coupled with a quadrupole time-of-flight tandem mass spectrometer (QTOF-MS) was developed for direct analysis of PAEs in perfumes with no sample pretreatment. METHODS Perfumes were sprayed to the MPT's flame directly by sampling pump in 10 µL/min and the ions produced by MPT were introduced into QTOF-MS, the MPT worked at 2450 MHz and 40 W in the 800 ml/min flow rate of argon. RESULTS For the developed method, excellent linearities were obtained and the correlation coefficient of Di-n-pentyl Phthalate was 0.9799 and the rest were larger than 0.99. The LODs and LOQs were obtained in the ranges of 1.452-18.96 ng/g and 4.839-63.19 ng/g, respectively. The spiked recoveries of PAEs were in the range of 100.1-105.2% with satisfied intra-day RSDs and inter-day RSDs ranging from 1.51-4.34% and 3.45-5.65%, respectively. PAEs in commercial perfumes were successfully detected by spray-inlet MPT-MS2 with low concentrations from 0.036-1.352 µg/g. CONCLUSIONS The method is a promising tool in field analysis of PAEs in cosmetic solutions where rapid qualitative and quantitative analysis in needed. HIGHLIGHTS The method was satisfactorily applied to the analysis of commercial perfume samples within 30 s, and earned merits such as simplicity, sensitivity, environmental friendliness and ease operation.
Collapse
Affiliation(s)
- Meng Miao
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Gaosheng Zhao
- Zhejiang University, College of Control Science and Engineering, Hangzhou, 310000 China
| | - Ping Cheng
- Shanghai University, School of Environmental and Chemical Engineering, Shanghai, 200444 China
| | - Jia Li
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Jingyi Zhang
- Shanghai University of Medicine & Health Sciences, School of Medical Technology, Shanghai, 201318 China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Collaborative Research Center, Shanghai, 200120 China
| |
Collapse
|
7
|
Tu A, Said N, Muddiman DC. Spatially resolved metabolomic characterization of muscle invasive bladder cancer by mass spectrometry imaging. Metabolomics 2021; 17:70. [PMID: 34287708 PMCID: PMC8893274 DOI: 10.1007/s11306-021-01819-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Muscle invasive bladder cancer (MIBC) is an advanced stage of bladder cancer which poses a severe threat to life. Cancer development is usually accompanied by remarkable alterations in cell metabolism, and hence deep insights into MIBC at the metabolomic level can facilitate the understanding of the biochemical mechanisms involved in the cancer development and progression. METHODS In this proof-of-concept study, the optimal cutting temperature (OCT)-embedded MIBC samples were first washed with pure water to remove the polymer compounds which could cause severe signal suppression during mass spectrometry. Further, the tissue sections were analyzed by infrared matrix-assisted laser desorption electrospray ionization mass spectrometry imaging (IR-MALDESI MSI), providing an overview on the spatially resolved metabolomic profiles. RESULTS The MSI data enabled the discrimination between not only the cancerous and normal tissues, but also the subregions within a tissue section associated with different disease states. Using t-Distributed Stochastic Neighbor Embedding (t-SNE), the hyperdimensional MSI data was mapped into a two-dimensional space to visualize the spectral similarity, providing evidence that metabolomic alterations might have occurred outside the histopathological tumor border. Least absolute shrinkage and selection operator (LASSO) was further employed to classify sample pathology in a pixel-wise manner, yielding excellent prediction sensitivity and specificity up to 96% based on the statistically characteristic spectral features. CONCLUSION The results demonstrate great promise of IR-MALDESI MSI to identify molecular changes derived from cancer and unveil tumor heterogeneity, which can potentially promote the discovery of clinically relevant biomarkers and allow for applications in precision medicine.
Collapse
Affiliation(s)
- Anqi Tu
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Neveen Said
- Departments of Cancer Biology, Pathology, and Urology, Wake Forest University School of Medicine, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, 27157, USA
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
8
|
Lu H, Zhang H, Wei Y, Chen H. Ambient mass spectrometry for the molecular diagnosis of lung cancer. Analyst 2020; 145:313-320. [PMID: 31872201 DOI: 10.1039/c9an01365b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung cancer is one of the most common malignancies and the leading cause of cancer-related death worldwide. Among the technologies suitable for the rapid and accurate molecular diagnosis of lung cancer, ambient mass spectrometry (AMS) has gained increasing interest as it allows the direct profiling of molecular information from various biological samples (e.g., tissue, serum, urine and sputum) in real-time and with minimal or no sample pretreatment. This minireview summarizes the applications of AMS in lung cancer studies (including tissue molecular identification, the discovery of potential biomarkers, and surgical margin assessment), and discusses the challenges and perspectives of AMS in the clinical precision molecular diagnosis of lung cancer.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | |
Collapse
|
9
|
Desorption atmospheric pressure chemical ionization: A review. Anal Chim Acta 2020; 1130:146-154. [DOI: 10.1016/j.aca.2020.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
|
10
|
Lu H, Zhang H, Xiao Y, Chingin K, Dai C, Wei F, Wang N, Frankevich V, Chagovets V, Zhou F, Chen H. Comparative study of alterations in phospholipid profiles upon liver cancer in humans and mice. Analyst 2020; 145:6470-6477. [PMID: 32856629 DOI: 10.1039/d0an01080d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Comparative studies of molecular alterations upon cancer between mice and humans are of great importance in order to determine the relevance of research involving mouse cancer models to the development of diagnostic and therapeutic approaches in clinical practice as well as for the mechanistic studies of pathology in humans. Herein, using molecular fingerprinting by internal extractive electrospray ionization mass spectrometry (iEESI-MS), we identified 50 differential signals in mouse liver tissue and 62 differential signals in human liver tissue that undergo significant intensity alterations (variable importance in the project (VIP) >1.0) upon liver cancer, out of which only 27 were common in both mouse and human tissues. Out of the 27 common differential signals, six types of phospholipids were also identified to undergo significant alterations in human serum upon liver cancer, including PC(34:2), PC(36:4), PC(38:6), PC(36:2), PC(38:4) and PC(42:9). Statistical analysis of the relative intensity distribution of these six identified phospholipids in serum allowed confident determination of liver cancer in humans (sensitivity 91.0%, specificity 88.0%, and accuracy 90.0%). Our results indicate that, despite the significant difference in the overall alterations of phospholipid profiles upon liver cancer between humans and mice, the six identified 'core' differential phospholipids of liver cancer found in the liver tissues of both humans and mice as well as in human serum show high potential as a minimal panel for the rapid targeted diagnosis of liver cancer with high accuracy, sensitivity and specificity using direct mass spectrometry (MS) analysis.
Collapse
Affiliation(s)
- Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li N, Nie H, Jiang L, Ruan G, Du F, Liu H. Recent advances of ambient ionization mass spectrometry imaging in clinical research. J Sep Sci 2020; 43:3146-3163. [PMID: 32573988 DOI: 10.1002/jssc.202000273] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The structural information and spatial distribution of molecules in biological tissues are closely related to the potential molecular mechanisms of disease origin, transfer, and classification. Ambient ionization mass spectrometry imaging is an effective tool that provides molecular images while describing in situ information of biomolecules in complex samples, in which ionization occurs at atmospheric pressure with the samples being analyzed in the native state. Ambient ionization mass spectrometry imaging can directly analyze tissue samples at a fairly high resolution to obtain molecules in situ information on the tissue surface to identify pathological features associated with a disease, resulting in the wide applications in pharmacy, food science, botanical research, and especially clinical research. Herein, novel ambient ionization techniques, such as techniques based on spray and solid-liquid extraction, techniques based on plasma desorption, techniques based on laser desorption ablation, and techniques based on acoustic desorption were introduced, and the data processing of ambient ionization mass spectrometry imaging was briefly reviewed. Besides, we also highlight recent applications of this imaging technology in clinical researches and discuss the challenges in this imaging technology and the perspectives on the future of the clinical research.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Honggang Nie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Liping Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Huwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
12
|
Smith BL, Boisdon C, Young IS, Praneenararat T, Vilaivan T, Maher S. Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS). Anal Chem 2020; 92:9104-9112. [PMID: 32479060 PMCID: PMC7467419 DOI: 10.1021/acs.analchem.0c01357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
This paper describes,
in detail, the development of a novel, low-cost,
and flexible drift tube (DT) along with an associated ion mobility
spectrometer system. The DT is constructed from a flexible printed
circuit board (PCB), with a bespoke “dog-leg” track
design, that can be rolled up for ease of assembly. This approach
incorporates a shielding layer, as part of the flexible PCB design,
and represents the minimum dimensional footprint conceivable for a
DT. The low thermal mass of the polyimide substrate and overlapping
electrodes, as afforded by the dog-leg design, allow for efficient
heat management and high field linearity within the tube–achieved
from a single PCB. This is further enhanced by a novel double-glazing
configuration which provides a simple and effective means for gas
management, minimizing thermal variation within the assembly. Herein,
we provide a full experimental characterization of the flexible DT
ion mobility spectrometer (Flex-DT-IMS) with corresponding electrodynamic
(Simion 8.1) and fluid dynamic (SolidWorks) simulations. The Flex-DT-IMS
is shown to have a resolution >80 and a detection limit of low
nanograms
for the analysis of common explosives (RDX, PETN, HMX, and TNT).
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Cedric Boisdon
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, U.K
| | - Thanit Praneenararat
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, U.K
| |
Collapse
|
13
|
|
14
|
Zecchi R, Franceschi P, Tigli L, Ricci F, Boscaro F, Pioselli B, Mileo V, Murgia X, Bianco F, Salomone F, Schmidt AF, Hillman NH, Kemp MW, Jobe AH. Mass spectrometry imaging as a tool for evaluating the pulmonary distribution of exogenous surfactant in premature lambs. Respir Res 2019; 20:175. [PMID: 31382955 PMCID: PMC6683365 DOI: 10.1186/s12931-019-1144-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/24/2019] [Indexed: 01/29/2023] Open
Abstract
Background The amount of surfactant deposited in the lungs and its overall pulmonary distribution determine the therapeutic outcome of surfactant replacement therapy. Most of the currently available methods to determine the intrapulmonary distribution of surfactant are time-consuming and require surfactant labelling. Our aim was to assess the potential of Mass Spectrometry Imaging (MSI) as a label-free technique to qualitatively and quantitatively evaluate the distribution of surfactant to the premature lamb. Methods Twelve preterm lambs (gestational age 126-127d, term ~150d) were allocated in two experimental groups. Seven lambs were treated with an intratracheal bolus of the synthetic surfactant CHF5633 (200 mg/kg) and 5 lambs were managed with mechanical ventilation for 120 min, as controls. The right lung lobes of all lambs were gradually frozen while inflated to 20 cmH2O pressure for lung cryo-sections for MSI analysis. The intensity signals of SP-C analog and SP-B analog, the two synthetic peptides contained in the CHF5633 surfactant, were used to locate, map and quantify the intrapulmonary exogenous surfactant. Results Surfactant treatment was associated with a significant improvement of the mean arterial oxygenation and lung compliance (p < 0.05). Nevertheless, the physiological response to surfactant treatment was not uniform across all animals. SP-C analog and SP-B analog were successfully imaged and quantified by means of MSI in the peripheral lungs of all surfactant-treated animals. The intensity of the signal was remarkably low in untreated lambs, corresponding to background noise. The signal intensity of SP-B analog in each surfactant-treated animal, which represents the surfactant distributed to the peripheral right lung, correlated well with the physiologic response as assessed by the area under the curves of the individual arterial partial oxygen pressure and dynamic lung compliance curves of the lambs. Conclusions Applying MSI, we were able to detect, locate and quantify the amount of exogenous surfactant distributed to the lower right lung of surfactant-treated lambs. The distribution pattern of SP-B analog correlated well with the pulmonary physiological outcomes of the animals. MSI is a valuable label-free technique which is able to simultaneously evaluate qualitative and quantitative drug distribution in the lung. Electronic supplementary material The online version of this article (10.1186/s12931-019-1144-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Zecchi
- Mass Spectrometry Service Center (CISM), University of Florence, Florence, Italy
| | - Pietro Franceschi
- Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, TN, Italy
| | - Laura Tigli
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy
| | - Francesca Ricci
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy
| | - Francesca Boscaro
- Mass Spectrometry Service Center (CISM), University of Florence, Florence, Italy
| | - Barbara Pioselli
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy
| | - Valentina Mileo
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy
| | | | - Federico Bianco
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy
| | - Fabrizio Salomone
- Preclinical R&D, Chiesi Farmaceutici, Largo Francesco Belloli, 11/A, 43122, Parma, Italy.
| | - Augusto F Schmidt
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, USA
| | - Noah H Hillman
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, USA
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia, Perth, WA, Australia
| | - Alan H Jobe
- Division of Neonatology, Cardinal Glennon Children's Hospital, Saint Louis University, Saint Louis, USA.,Division of Obstetrics and Gynecology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Perez CJ, Bagga AK, Prova SS, Yousefi Taemeh M, Ifa DR. Review and perspectives on the applications of mass spectrometry imaging under ambient conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 3:27-53. [PMID: 29698560 DOI: 10.1002/rcm.8145] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 05/18/2023]
Abstract
Ambient mass spectrometry (AMS)-based techniques are performed under ambient conditions in which the ionization and desorption occur in the open environment allowing the direct analysis of molecules with minimal or no sample preparation. A selected group of AMS techniques demonstrate imaging capabilities that can provide information about the localization of molecules on complex sample surfaces such as biological tissues. 2D, 3D, and multimodal imaging have unlocked an array of applications to systematically address complex problems in many areas of research such as drug monitoring, natural products, forensics, and cancer diagnostics. In the present review, we summarize recent advances in the field with respect to the implementation of new ambient ionization techniques and current applications in the last 5 years. In more detail, we mainly focus on imaging applications in topics related to animal whole bodies and tissues, single cells, cancer diagnostics and biomarkers, microbial cultures and co-cultures, plant and natural product metabolomics, and forensic applications. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.
Collapse
Affiliation(s)
- Consuelo J Perez
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Aafreen K Bagga
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Shamina S Prova
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Maryam Yousefi Taemeh
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Demian R Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
16
|
Smith BL, Hughes DM, Badu-Tawiah AK, Eccles R, Goodall I, Maher S. Rapid Scotch Whisky Analysis and Authentication using Desorption Atmospheric Pressure Chemical Ionisation Mass Spectrometry. Sci Rep 2019; 9:7994. [PMID: 31142757 PMCID: PMC6541643 DOI: 10.1038/s41598-019-44456-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
Whisky, as a high value product, is often adulterated, with adverse economic effects for both producers and consumers as well as potential public health impacts. Here we report the use of DAPCI-MS to analyse and chemically profile both genuine and counterfeit whisky samples employing a novel 'direct from the bottle' methodology with zero sample pre-treatment, zero solvent requirement and almost no sample usage. 25 samples have been analysed from a collection of blended Scotch whisky (n = 15) and known counterfeit whisky products (n = 10). Principal component analysis has been applied to dimensionally reduce the data and discriminate between sample groups. Additional chemometric modelling, a partial least squares regression, has correctly classified samples with 92% success rate. DAPCI-MS shows promise for simple, fast and accurate counterfeit detection with potential for generic aroma profiling and process quality monitoring applications.
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | - David M Hughes
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | | - Rebecca Eccles
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Ian Goodall
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
17
|
Feider CL, Krieger A, DeHoog RJ, Eberlin LS. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal Chem 2019; 91:4266-4290. [PMID: 30790515 PMCID: PMC7444024 DOI: 10.1021/acs.analchem.9b00807] [Citation(s) in RCA: 278] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara L. Feider
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anna Krieger
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rachel J. DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Akbari Lakeh M, Tu A, Muddiman DC, Abdollahi H. Discriminating normal regions within cancerous hen ovarian tissue using multivariate hyperspectral image analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:381-391. [PMID: 30468547 DOI: 10.1002/rcm.8362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Identification of subregions under different pathological conditions on cancerous tissue is of great significance for understanding cancer progression and metastasis. Infrared matrix-assisted laser desorption electrospray ionization mass spectrometry (IR-MALDESI-MS) can be potentially used for diagnostic purposes since it can monitor spatial distribution and abundance of metabolites and lipids in biological tissues. However, the large size and high dimensionality of hyperspectral data make analysis and interpretation challenging. To overcome these barriers, multivariate methods were applied to IR-MALDESI data for the first time, aiming at efficiently resolving mass spectral images, from which these results were then used to identify normal regions within cancerous tissue. METHODS Molecular profiles of healthy and cancerous hen ovary tissues were generated by IR-MALDESI-MS. Principal component analysis (PCA) combined with color-coding built a single tissue image which summarizes the high-dimensional data features. Pixels with similar color indicated similar composition. PCA results from healthy tissue were further used to test each pixel in cancerous tissue to determine if it is healthy. Multivariate curve resolution-alternating least squares (MCR-ALS) was used to obtain major spatial features existing in ovary tissues, and group molecules with the same distribution patterns simultaneously. RESULTS PCA as the predominating dimensionality reduction approach captured over 90% spectral variances by the first three PCs. The PCA images show the cancerous tissue is more chemically heterogeneous than healthy tissue, where at least four regions with different m/z profiles can be differentiated. PCA modeling assigns top regions of cancerous tissue as healthy-like. MCR-ALS extracted three and four major compounds from healthy and cancerous tissue, respectively. Evaluating similarities of resolved spectra uncovered the chemical components that were distinct in some regions on cancerous tissue, serving as a supplementary way to differentiate healthy and cancerous regions. CONCLUSIONS Two unsupervised chemometric methods including PCA and MCR-ALS were applied for resolving and visualizing IR-MALDESI-MS data acquired from hen ovary tissues, improving the interpretation of mass spectrometry imaging results. Then possible normal regions were differentiated from cancerous tissue sections. No prior knowledge is required using either chemometric method, so our approach is readily suitable for unstained tissue samples, which allows one to reveal the molecular events happening during disease progression.
Collapse
Affiliation(s)
- Mahsa Akbari Lakeh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Anqi Tu
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology, and Research Innovation Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
19
|
A high-performance bio-tissue imaging method using air flow-assisted desorption electrospray ionization coupled with a high-resolution mass spectrometer. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|