1
|
Zhu H, Shen F, Liao T, Qian H, Liu Y. Sporidiobolus pararoseus polysaccharides relieve rheumatoid arthritis by regulating arachidonic acid metabolism and bone remodeling signaling pathway. Int J Biol Macromol 2024; 281:136272. [PMID: 39366615 DOI: 10.1016/j.ijbiomac.2024.136272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune-mediated disease with the highest disability rate. Sporidiobolus pararoseus polysaccharides (SPP) have been demonstrated to have anti-rheumatoid and microbiota-modulatory effects; however, the underlying mechanisms remain unclear. This study employed collagen-induced arthritis (CIA) mice to explore the metabolic and genetic pathways. The results revealed SPP intervention significantly reduced the serum levels of rheumatoid and pro-inflammatory complement factors. SPP promoted the transition of macrophages of CIA mice toward the M2 phenotype (F4/80+/CD206+) from an inflammatory phenotype (F4/80+/CD86+) using flow cytometry analysis. A total of 44 metabolites were upregulated, and 110 metabolites were significantly downregulated by SPP compared to those in RA group. The decreased metabolites, 12(S)-HPETE, prostaglandin H2, 15-HETE, hepoxilin B3, and 15-keto-prostaglandin F2a, were mostly enriched in arachidonic acid metabolism (enrichment = 11.4 %), which was highly correlated with the anti-rheumatic activity of SPP. Gene expression analysis revealed that SPP significantly regulated OPG/RANKL/TRAF6 signaling pathway, stimulating osteogenic remodeling. Furthermore, arachidonic acid metabolism was identified as the critical metabolic driver of RA phenotypes and osteoclast differentiation, potentially associated with SPP-reshaped intestinal microbiota (i.e., Rikenellaceae_RC9_gut_group, Bacteroides, and Parabacteroides). Collectively, this study utilized an integrated approach of metabolomics and gene expression analysis to investigate the regulatory role of SPP in RA progression.
Collapse
Affiliation(s)
- Hongkang Zhu
- Wuxi 9(th) People's Hospital Affiliated to Soochow University, Wuxi 214062, China; Jiangnan University, Wuxi 214122, China
| | | | | | - He Qian
- Jiangnan University, Wuxi 214122, China.
| | - Yu Liu
- Wuxi 9(th) People's Hospital Affiliated to Soochow University, Wuxi 214062, China.
| |
Collapse
|
2
|
Zhao S, Guo T, Yao Y, Dong B, Zhao G. Research advancements in the maintenance mechanism of Sporidiobolus pararoseus enhancing the quality of soy sauce during fermentation. Int J Food Microbiol 2024; 417:110690. [PMID: 38581832 DOI: 10.1016/j.ijfoodmicro.2024.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Soy sauce is a traditional condiment that undergoes microbial fermentation of various ingredients to achieve its desired color, scent, and flavor. Sporidiobolus pararoseus, which is a type of Rhodocerevisiae, shows promising potential as a source of lipids, carotenoids, and enzymes that can enrich the taste and color of soy sauce. However, there is currently a lack of systematic and comprehensive studies on the functions and mechanisms of action of S. pararoseus during soy sauce fermentation. In this review, it is well established that S. pararoseus produces lipids that are abundant in unsaturated fatty acids, particularly oleic acid, as well as various carotenoids, such as β-carotene, torulene, and torularhodin. These pigments are synthesized through the mevalonic acid pathway and possess remarkable antioxidant properties, acting as natural colorants. The synthesis of carotenoids is stimulated by high salt concentrations, which induces oxidative stress caused by NaCl. This stress further activates crucial enzymes involved in carotenoid production, ultimately leading to pigment formation. Moreover, S. pararoseus can produce high-quality enzymes that aid in the efficient utilization of soy sauce substrates during fermentation. Furthermore, this review focused on the impact of S. pararoseus on the color and quality of soy sauce and comprehensively analyzed its characteristics and ingredients. Thus, this review serves as a basis for screening high-quality oleaginous red yeast strains and improving the quality of industrial soy sauce production through the wide application of S. pararoseus.
Collapse
Affiliation(s)
- Shuoshuo Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bin Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Liao T, Shen F, Zhu H, Mu W, Qian H, Liu Y. Extracellular polysaccharides from Sporidiobolus pararoseus alleviates rheumatoid through ameliorating gut barrier function and gut microbiota. Int J Biol Macromol 2024; 260:129436. [PMID: 38228197 DOI: 10.1016/j.ijbiomac.2024.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Rheumatoid arthritis (RA) is becoming a prevalent autoimmune disease affecting people worldwide, necessitating the exploration of novel therapeutic approaches due to the associated adverse effects of conventional therapeutic drugs. Sporidiobolus pararoseus polysaccharide (SPP) has been shown to exhibit significant immune stimulation and antioxidant activities. In this study, we constructed a mouse model of type II collagen-induced arthritis (CIA) to investigate the effects and potential mechanisms of SPP intervention on RA. Results showed that SPP intervention alleviated the degree of ankle swelling, joint histopathologic changes, joint pathological score and the expression of serum-associated inflammatory mediators (such as IL-1β and IL-6). 16S rRNA sequencing results indicated that SPP intervention significantly remodeled the intestinal microbiota composition. In particular, SPP intervention significantly increased the relative abundance of beneficial bacteria (Parabacteroides, Bacteroides and Rikenellaceae_RC9_gut_group) with the potential to degrade fungal polysaccharides or produce short-chain fatty acids (SCFAs). The production of SCFAs (especially acetic acid, propionic acid and butyric acid) indeed increased significantly. These SCFAs played an important role in maintaining intestinal barrier function and regulating immune homeostasis, which helped reduce inflammatory responses and alleviate the symptoms of RA.
Collapse
Affiliation(s)
- Tingting Liao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Fanglin Shen
- Wuxi University, Wuxi, Jiangsu Province 214126, PR China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Wenlida Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Yu Liu
- Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province 214062, PR China.
| |
Collapse
|
4
|
Villegas-Méndez MÁ, Montañez J, Contreras-Esquivel JC, Salmerón I, Koutinas AA, Morales-Oyervides L. Scale-up and fed-batch cultivation strategy for the enhanced co-production of microbial lipids and carotenoids using renewable waste feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117866. [PMID: 37030236 DOI: 10.1016/j.jenvman.2023.117866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.
Collapse
Affiliation(s)
- Miguel Ángel Villegas-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | | | - Iván Salmerón
- School of Chemical Science, Autonomous University of Chihuahua, Circuit 1, New University Campus, Chihuahua, Chihuahua, 31125, Mexico
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico.
| |
Collapse
|
5
|
Rusinova-Videva S, Ognyanov M, Georgiev Y, Petrova A, Dimitrova P, Kambourova M. Chemical characterization and biological effect of exopolysaccharides synthesized by Antarctic yeasts Cystobasidium ongulense AL 101 and Leucosporidium yakuticum AL 102 on murine innate immune cells. World J Microbiol Biotechnol 2022; 39:39. [PMID: 36512173 DOI: 10.1007/s11274-022-03477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
The current study aimed to investigate exopolysaccharides (EPSs) produced by two Antarctic yeasts isolated from soil and penguin feathers samples collected on Livingston Island (Antarctica). The strains were identified as belonging to the species Leucosporidium yakuticum (LY) and Cystobasidium ongulense (CO) based on molecular genetic analysis. The EPS production was investigated using submerged cultivation. Different chemical, chromatographic, and spectral analyses were employed to characterize EPSs. LY accumulated 5.5 g/L biomass and 4.0 g/L EPS after 120 h of cultivation, while CO synthesized 2.1 g/L EPS at the end of cultivation, and the biomass amount reached 5.5 g/L. LY-EPS was characterized by a higher total carbohydrate content (80%) and a lower protein content (18%) by comparison with CO-EPS (62%, 30%). The LY-EPS mainly consisted of mannose (90 mol%), whereas CO-EPS had also glucose, galactose, and small amounts of uronic acids (8-5 mol%). Spectral analyses (FT-IR and 1D, 2D NMR) revealed that LY-EPS comprised a typical β-(1 → 4)-mannan. Branched (hetero)mannan, together with β/α-glucans constituted the majority of CO-EPS. Unlike LY-EPS, which had a high percentage of high molecular weight populations, CO-EPS displayed a large quantity of lower molecular weight fractions and a higher degree of heterogeneity. LY-EPS (100 ng/mL) elevated significantly interferon gamma (IFN-γ) production in splenic murine macrophages and natural killer (NK) cells. The results indicated that newly identified EPSs might affect IFN-γ signaling and in turn, might enhance anti-infectious responses. The data obtained also revealed the potential of EPSs and yeasts for practical application in biochemical engineering and biotechnology.
Collapse
Affiliation(s)
- Snezhana Rusinova-Videva
- Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria.
| | - Manol Ognyanov
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Yordan Georgiev
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Ani Petrova
- Laboratory of Biologically Active Substances, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Petya Dimitrova
- Department of Immunology, Laboratory of Experimental Immunotherapy, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| | - Margarita Kambourova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev Str., 1113, Sofia, Bulgaria
| |
Collapse
|
6
|
Liu Z, Pei F, Zhu J, Xue D, Liu Y, Liu D, Li H. Production, characterization and antioxidant activity of exopolysaccharide from Sporidiobolus pararoseus PFY-Z1. World J Microbiol Biotechnol 2022; 39:10. [PMID: 36369391 DOI: 10.1007/s11274-022-03453-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
At present, the study on exopolysaccharid is mainly focused on lactic acid bacteria, and the research on exopolysaccharide produced by yeast, especially Sporidiobolus pararoseus, is relatively few. Therefore, the aim of this study was to explore the characterization and antioxidant activities of a novel neutral exopolysaccharide SPZ, which was isolated and purified from S. pararoseus PFY-Z1. The results showed that SPZ was mainly composed of mannose, followed by glucose, with a molecular weight was 24.98 kDa, had O-glycosidic bonds, no crystalline, and no triple helix structure. Based on fourier transform-infrared, high-performance liquid chromatography and nuclear magnetic resonance analyses, SPZ was identified to be a exopolysaccharide with some side chains, presence of α-, β-pyranose ring and nine sugar residues. Furthermore, the morphology features of SPZ have performed a relatively rough and uneven surface, covered with small pores and fissures. Moreover, SPZ had higher antioxidant activities and the maximum scavenging abilities of ⋅OH, NO2- and reducing power were 28.05 ± 0.73%, 92.76 ± 1.86% and 0.345 ± 0.024, respectively. Hence, SPZ could be used as a potential antioxidant application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhenyan Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Fangyi Pei
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China.
| | - Jinfeng Zhu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Di Xue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yuchao Liu
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| | - Deshui Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, 161006, China
| | - Hui Li
- Office of Academic Research, Qiqihar Medical University, Qiqihar, 161006, China
| |
Collapse
|
7
|
Liu C, Hua H, Guo Y, Qian H, Liu J, Cheng Y. Study on the hepatoprotective effect of Sporidiobolus pararoseus polysaccharides under the “gut microbiome-amino acids metabolism” network. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Controlling the Formation of Foams in Broth to Promote the Co-Production of Microbial Oil and Exopolysaccharide in Fed-Batch Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A large amount of foam is generated in the production of microbial oil and exopolysaccharide (EPS) by Sporidiobolus pararoseus JD-2, which causes low efficiency in fermentation. In this study, we aimed to reduce the negative effects of foams on the co-production of oil and EPS by controlling the formation of foams in broth. As we have found, the formation of foams is positively associated with cell growth state, air entrapment, and properties of broth. The efficient foam-control method of adding 0.03% (v/v) of the emulsified polyoxyethylene polyoxypropylene pentaerythritol ether (PPE) and feeding corn steep liquor (CSL) at 8–24 h with speed of 0.02 L/h considerably improved the fermentation performance of S. pararoseus JD-2, and significantly increased the oil and EPS concentrations by 8.7% and 12.9%, respectively. The biomass, oil, and EPS concentrations were further increased using a foam backflow device combined with adding 0.03% (v/v) of the emulsified PPE and feeding CSL at 8–24 h, which reached to 62.3 ± 1.8 g/L, 31.2 ± 0.8 g/L, and 10.9 ± 0.4 g/L, respectively. The effective strategy for controlling the formation of foams in fermentation broth reported here could be used as a technical reference for producing frothing products in fed-batch fermentation.
Collapse
|
9
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
10
|
Hu B, Jiang W, Yang Y, Xu W, Liu C, Zhang S, Qian H, Zhang W. Gut-Liver Axis reveals the protective effect of exopolysaccharides isolated from Sporidiobolus pararoseus on alcohol-induced liver injury. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Hu B, Liu C, Jiang W, Zhu H, Zhang H, Qian H, Zhang W. Chronic in vitro fermentation and in vivo metabolism: Extracellular polysaccharides from Sporidiobolus pararoseus regulate the intestinal microbiome of humans and mice. Int J Biol Macromol 2021; 192:398-406. [PMID: 34571128 DOI: 10.1016/j.ijbiomac.2021.09.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/04/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022]
Abstract
The fungus Sporidiobolus pararoseus not only produces carotenoids, but also produces bioactive extracellular polysaccharides (SPP). However, the relationship between SPP and the metabolism of gut microbiome is unclear. The aim of this study was to investigate the mechanism of SPP regulating intestinal health in vivo and in vitro. Results showed that SPP are nondigestible polysaccharides after the digestion with simulated stomach and small intestinal juice in vitro. After SPP was cultured in an in vitro intestinal simulation system for seven days, the concentration of short-chain fatty acids (SCFAs) increased; the microbial diversity changed; the relative abundance of Bifidobacterium and Streptococcus increased; and that of Escherichia Shigella and Lachnospiraceae NK4A136 decreased. In addition, metabolism of SPP by the mice colonic microbiome showed SPP decreased the relative abundance of Firmicutes and Bacteroidota, while the relative abundance of Verrucomicrobiota, Desulfobacterota, and Actinobacteriota increased. Finally, predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism results also showed that SPP can enhance the metabolism of cofactors, vitamins, amino acids, starch, and sucrose. In conclusion, SPP can multiply the intestinal beneficial bacteria of humans and mice, promote the production of SCFAs and metabolism of amino acids, and promote intestinal health.
Collapse
Affiliation(s)
- Bin Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenhao Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hui Zhang
- China Certification & Inspection Group Shanghai Co., Ltd, Shanghai 200120, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
|
13
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
14
|
Vargas-Sinisterra AF, Ramírez-Castrillón M. Yeast carotenoids: production and activity as antimicrobial biomolecule. Arch Microbiol 2020; 203:873-888. [PMID: 33151382 DOI: 10.1007/s00203-020-02111-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Carotenoids are a large group of organic, pigmented, isoprenoid-type compounds that play biological activities in plants and microorganisms (yeasts, bacteria, and microalgae). Literature reported it as vitamin A precursors and antioxidant activity. Carotenoids also can act as antimicrobial agents and few reports showed quantitative measurements of Minimal Inhibitory Concentrations against different pathogens. In this sense, some carotenoids were added to medical-surgical materials. The demand for scale-up of different naturally obtained carotenoids has increased due to the concern about the detrimental health effects caused by synthetic molecules and antimicrobial resistance. In this review, we reported the variability in pigment production and culture conditions, extraction methods used in laboratory, and we discussed the antimicrobial activity carried out by these molecules and the promising acting as new molecules to be scaled-up to industry.
Collapse
Affiliation(s)
- Andrés Felipe Vargas-Sinisterra
- Maestría en Ciencias Biomédicas, Grupo de Investigación BIOSALUD, Facultad de Ciencias para la salud, Universidad de Caldas, Calle 65 # 26-10, Manizales, Colombia.,Grupo de Investigación iCUBO, Facultad de Ingeniería, Departamento de Ingeniería Bioquímica, Universidad Icesi, Calle 18 # 122-135, Cali, Colombia
| | - Mauricio Ramírez-Castrillón
- Research Group in Mycology (GIM/CICBA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00, Cali, Colombia.
| |
Collapse
|
15
|
Zeng J, Liao S, Qiu M, Chen M, Ye J, Zeng J, Wang A. Effects of carbon sources on the removal of ammonium, nitrite and nitrate nitrogen by the red yeast Sporidiobolus pararoseus Y1. BIORESOURCE TECHNOLOGY 2020; 312:123593. [PMID: 32526666 DOI: 10.1016/j.biortech.2020.123593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Heterotrophic nitrification and aerobic denitrification (HN-AD), which is primarily performed by bacteria rather than fungi, is an attractive approach for nitrogen removal. In this study, a red yeast, Sporidiobolus pararoseus Y1, was isolated and shown to exhibit optimal growth and nitrogen removal efficiency on glucose, followed by citrate, sucrose, acetate and starch. The nitrogen removal efficiency increased with increasing initial concentrations of NH4+-N, NO2--N and NO3--N from 14 to 140 mg·L-1. At an initial nitrogen concentration of 140 mg·L-1, the maximum removal efficiencies of NH4+-N, NO2--N and NO3--N were 98.67%, 97.13% and 83.51% after 72 h incubation, while those of corresponding total nitrogen were 88.89%, 81.31% and 70.18%, respectively. The nitrification (amoA) and denitrification genes (nirK and napA) were amplified from Y1. These results suggest that yeast are also capable of HN-AD, which can be used to remove nitrogen in wastewater systems.
Collapse
Affiliation(s)
- Jiaying Zeng
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Shaoan Liao
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China.
| | - Ming Qiu
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Mingfeng Chen
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jianmin Ye
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jiayi Zeng
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| |
Collapse
|
16
|
Wang H, Hu B, Liu J, Qian H, Xu J, Zhang W. Co-production of lipid, exopolysaccharide and single-cell protein by Sporidiobolus pararoseus under ammonia nitrogen-limited conditions. Bioprocess Biosyst Eng 2020; 43:1403-1414. [DOI: 10.1007/s00449-020-02335-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
17
|
Li CJ, Zhao D, Li BX, Zhang N, Yan JY, Zou HT. Whole genome sequencing and comparative genomic analysis of oleaginous red yeast Sporobolomyces pararoseus NGR identifies candidate genes for biotechnological potential and ballistospores-shooting. BMC Genomics 2020; 21:181. [PMID: 32093624 PMCID: PMC7041287 DOI: 10.1186/s12864-020-6593-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Sporobolomyces pararoseus is regarded as an oleaginous red yeast, which synthesizes numerous valuable compounds with wide industrial usages. This species hold biotechnological interests in biodiesel, food and cosmetics industries. Moreover, the ballistospores-shooting promotes the colonizing of S. pararoseus in most terrestrial and marine ecosystems. However, very little is known about the basic genomic features of S. pararoseus. To assess the biotechnological potential and ballistospores-shooting mechanism of S. pararoseus on genome-scale, the whole genome sequencing was performed by next-generation sequencing technology. RESULTS Here, we used Illumina Hiseq platform to firstly assemble S. pararoseus genome into 20.9 Mb containing 54 scaffolds and 5963 predicted genes with a N50 length of 2,038,020 bp and GC content of 47.59%. Genome completeness (BUSCO alignment: 95.4%) and RNA-seq analysis (expressed genes: 98.68%) indicated the high-quality features of the current genome. Through the annotation information of the genome, we screened many key genes involved in carotenoids, lipids, carbohydrate metabolism and signal transduction pathways. A phylogenetic assessment suggested that the evolutionary trajectory of the order Sporidiobolales species was evolved from genus Sporobolomyces to Rhodotorula through the mediator Rhodosporidiobolus. Compared to the lacking ballistospores Rhodotorula toruloides and Saccharomyces cerevisiae, we found genes enriched for spore germination and sugar metabolism. These genes might be responsible for the ballistospores-shooting in S. pararoseus NGR. CONCLUSION These results greatly advance our understanding of S. pararoseus NGR in biotechnological potential and ballistospores-shooting, which help further research of genetic manipulation, metabolic engineering as well as its evolutionary direction.
Collapse
Affiliation(s)
- Chun-Ji Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, People's Republic of China
| | - Die Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bing-Xue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Ning Zhang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jian-Yu Yan
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hong-Tao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| |
Collapse
|
18
|
Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. A Glacier Bacterium Produces High Yield of Cryoprotective Exopolysaccharide. Front Microbiol 2020; 10:3096. [PMID: 32117080 PMCID: PMC7026135 DOI: 10.3389/fmicb.2019.03096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35°C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15°C, pH 6, NaCl (10 g L-1), glucose as carbon source (100 g L-1), yeast extract as nitrogen source (10 g L-1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L-1, which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Collapse
Affiliation(s)
- Pervaiz Ali
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Munich, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|