1
|
Enhanced bioremediation of oil-contaminated soil in a slurry bioreactor by H 2O 2-stimulation of oil-degrading/biosurfactant-generating bacteria: performance optimization and bacterial metagenomics. Biodegradation 2023; 34:83-101. [PMID: 36592294 DOI: 10.1007/s10532-022-10008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Oil-contaminated soil is the main challenge for oil-rich countries, and this study aimed to investigate the performance of the H2O2-stimulated slurry bioreactor for the bioremediation of real oil-contaminated soil. The effect of biomass concentration, soil to water (S/W) ratio, slurry temperature, pH, and H2O2 concentration were optimized for the removal of total petroleum hydrocarbons (TPH) from oil-contaminated soil. TPH removal efficiency, biosurfactants production, and peroxidase and dehydrogenase activities were measured. The optimum conditions for the complete biodegradation of 32 [Formula: see text] in the slurry bioreactor during 6 days were biomass of 2250 mg/L, S/W ratio of 20%, the temperature of 30 °C, pH of 7, and an H2O2 concentration of 120 mg/L. The highest peroxidase, dehydrogenase, surfactin, and rhamnolipid formation were also obtained under optimum conditions. The results pointed out that complete biodegradation of 32 g/kg of TPH in oil-contaminated soil at a short reaction time of 6 days is achievable in the developed process operated under optimum conditions. The GC/FID analysis of solid and liquid phases showed that the bioprocess completely biodegraded the different TPH fractions. H2O2 efficiently stimulated the biosurfactant-generating bacteria to produce peroxidase and thereby accelerating the bioremediation rate. Accordingly, an H2O2-mediated slurry bioreactor inoculated with biosurfactant/peroxidase-generating bacteria is a promising technique for cleaning up oil-contaminated soils.
Collapse
|
2
|
Wawrzkiewicz M, Wołowicz A, Hubicki Z. Strongly Basic Anion Exchange Resin Based on a Cross-Linked Polyacrylate for Simultaneous C.I. Acid Green 16, Zn(II), Cu(II), Ni(II) and Phenol Removal. Molecules 2022; 27:2096. [PMID: 35408494 PMCID: PMC9000238 DOI: 10.3390/molecules27072096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/10/2022] Open
Abstract
The adsorption ability of Lewatit S5528 (S5528) resin for C.I. Acid Green 16 (AG16), heavy metals (Zn(II), Cu(II) and Ni(II)) and phenol removal from single-component aqueous solutions is presented in this study to assess its suitability for wastewater treatment. Kinetic and equilibrium studies were carried out in order to determine adsorption capacities, taking into account phase contact time, adsorbates’ initial concentration, and auxiliary presence (NaCl, Na2SO4, anionic (SDS) and non-ionic (Triton X100) surfactants). The pseudo-second-order kinetic model described experimental data better than pseudo-first-order or intraparticle diffusion models. The adsorption of AG16 (538 mg/g), phenol (14.5 mg/g) and Cu(II) (5.8 mg/g) followed the Langmuir isotherm equation, while the uptake of Zn(II) (0.179 mg1−1/nL1/n/g) and Ni(II) (0.048 mg1−1/nL1/n/g) was better described by the Freundlich model. The auxiliary’s presence significantly reduced AG16 removal efficiency, whereas in the case of heavy metals the changes were negligible. The column studies proved the good adsorption ability of Lewatit S5528 towards AG16 and Zn(II). The desorption was the most effective for AG16 (>90% of dye was eluted using 1 mol/L HCl + 50% v/v MeOH and 1 mol/L NaCl + 50% v/v MeOH solutions).
Collapse
Affiliation(s)
- Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland; (A.W.); (Z.H.)
| | | | | |
Collapse
|
3
|
Sun Y, Ali A, Zheng Z, Su J, Zhang S, Min Y, Liu Y. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio. BIORESOURCE TECHNOLOGY 2022; 347:126369. [PMID: 34838633 DOI: 10.1016/j.biortech.2021.126369] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study integrated spores and magnetite (Fe3O4) to form magnetic mycelium pellets (MMP) as bio-carriers immobilized with denitrifying bacteria in a bioreactor. Different carbon-to-nitrogen (C/N) ratios and hydraulic retention time (HRT) were established for investigating the performance of the bioreactor. The nitrate removal efficiency was 98.14% at C/N = 2.0 and HRT = 6 h. Gas chromatography (GC) results indicated that the main component of the produced gas was N2. Fe3O4 was well-integrated into MMP according to X-ray diffraction (XRD) results and infrared spectrometer (FTIR) analysis. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that bacteria were successfully immobilized on MMP. Fluorescence excitation-emission matrix (EEM) indicated that functional bacteria GF2 might enhance the metabolic activity of the microbial community in the bioreactor and microbial activity was highest at C/N = 2.0. Pseudomonas stutzeri sp. GF2 might be immobilized and had a major role in the bioreactor according to high throughput sequencing results.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Zoroufchi Benis K, Behnami A, Aghayani E, Farabi S, Pourakbar M. Water recovery and on-site reuse of laundry wastewater by a facile and cost-effective system: Combined biological and advanced oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148068. [PMID: 34323830 DOI: 10.1016/j.scitotenv.2021.148068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
Combined biological and physicochemical process was selected for treatment of laundry wastewater. The results show that after microbial adaptation, almost 91% of COD was removed at food to microorganism (F/M) ratio of 0.12 gBOD/gMLSS·d. Dehydrogenase activity of the biomass showed an increasing trend and finally reached 3.8 μgTFgbiomass.d corresponding to the highest process performance. 16SrRNA fragment and phylogenetic analysis identified Pseudomonas pharmacofabricae and Bacillus spp. as the dominant bacteria. The effluent of the biological process was then injected into the UV/O3 process for complete removal of residual COD and detergent. Finally, microfiltration and ultrafiltration were used to remove any remaining suspended solids. The operating cost analysis showed that 0.65 €/m3 treated wastewater is required for treatment of the laundry wastewater. Accordingly, the suggested combination of the biological and physicochemical process could be a promising and highly efficient process for treatment and reuse of laundry wastewater.
Collapse
Affiliation(s)
- Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran
| | | | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
5
|
Abdelaziz HA, Fouad M, Mossad M. Upgrading sequencing batch reactor using attached biofilm. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1700-1713. [PMID: 33720481 DOI: 10.1002/wer.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
A conventional sequencing batch reactor (SBR) was upgraded using fixed biofilm carriers with a specific surface area around 18 m2 m-3 . The upgraded SBR was investigated to remove phenol from high strength wastewater operated under various operational conditions. The operational conditions used were variable volume exchange ratio (VER) up to 75%, hydraulic retention time (HRT) from (10.7-21.3 hr), aeration time (from 2 to 8 hr), and initial phenol concentration up to 600 mg L-1 . It was found that the upgraded SBR increased the removal efficiencies of biological oxygen demand (BOD5 ), chemical oxygen demand (COD), and total suspended solids (TSS) by about 10% using high strength wastewater without phenol compared to SBR. Furthermore, the removal rate of phenol for the upgraded SBR was higher than conventional SBR by about 18% at 600 mg L- of initial phenol concentration under the same operational conditions. Compared to the conventional SBR, the upgraded version reduced the aeration step by 25% and achieved higher removal efficiency of phenol. Moreover, it reduced the excess sludge by about 23% and enhanced its properties by lowering the sludge volume index (SVI) by about 33%. PRACTITIONER POINTS: Upgrading conventional SBR by adding biofilm carriers is necessary for wastewater treatment with high strength wastewater. The upgraded SBR has a higher resistance toward phenol compound due to the presence of the attached biofilm. The upgraded SBR enhances sludge settling properties, decreases the amount of excess sludge, and also reduces the start-up period. The number of cycles per day by upgraded SBR was more than the conventional SBR by 15%. The upgraded SBR is an effective system and has good operational stability.
Collapse
Affiliation(s)
| | - Moharram Fouad
- Public Works Department, Faculty of engineering, Mansoura University, Mansoura, Egypt
| | - Mohamed Mossad
- Public Works Department, Faculty of engineering, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Nogueira DE, Cabral JM, Rodrigues CA. Single-Use Bioreactors for Human Pluripotent and Adult Stem Cells: Towards Regenerative Medicine Applications. Bioengineering (Basel) 2021; 8:68. [PMID: 34067549 PMCID: PMC8156863 DOI: 10.3390/bioengineering8050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Research on human stem cells, such as pluripotent stem cells and mesenchymal stromal cells, has shown much promise in their use for regenerative medicine approaches. However, their use in patients requires large-scale expansion systems while maintaining the quality of the cells. Due to their characteristics, bioreactors have been regarded as ideal platforms to harbour stem cell biomanufacturing at a large scale. Specifically, single-use bioreactors have been recommended by regulatory agencies due to reducing the risk of product contamination, and many different systems have already been developed. This review describes single-use bioreactor platforms which have been used for human stem cell expansion and differentiation, along with their comparison with reusable systems in the development of a stem cell bioprocess for clinical applications.
Collapse
Affiliation(s)
- Diogo E.S. Nogueira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (D.E.S.N.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Khmelevtsova LE, Sazykin IS, Azhogina TN, Sazykina MA. Prokaryotic Peroxidases and Their Application in Biotechnology (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820030059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Pourakbar M, Behnami A, Mahdavianpour M, Dariyan FS, Aghayani E. Developing a method for measurement of dehydrogenase activity in biological wastewater treatment processes applied for toxic compounds degradation. MethodsX 2020; 7:100970. [PMID: 32637340 PMCID: PMC7327838 DOI: 10.1016/j.mex.2020.100970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022] Open
Abstract
Biological wastewater treatment processes are among the environmentally friendly techniques for degradation of organic compounds. They are also preferred to the physical and chemical processes which are due to the ability of biological processes to treat wide range of organic compounds with lower operational costs. However, biological processes are usually affected by variation in the inlet wastewater quality and quantity. In order to investigate the performance of the wastewater treatment plant, various parameters in case of effluent quality such as COD, BOD, TSS, TDS etc. are required to be measured. Microorganisms in bioreactors use various enzymes to degrade the organic contaminants. Higher toxic organic load on the biological process may lead to the deterioration of the process performance which is due to the reduction in microbial activity of the biomass. Dehydrogenase enzyme produced in biological processes could be used as an indicator for the biological wastewater treatment. Present study introduces a simple and modified method for evaluation of biological wastewater treatment process measuring dehydrogenase activity. In the present study, the effective parameters such as incubation time and types of solvent were investigated and the best procedure is developed for measuring the dehydrogenase activity in biological wastewater treatment process.
Collapse
Affiliation(s)
- Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Mostafa Mahdavianpour
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | - Fatemeh Shokri Dariyan
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
9
|
Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms 2020; 8:E652. [PMID: 32365784 PMCID: PMC7285258 DOI: 10.3390/microorganisms8050652] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro Soares-Castro
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Tanel Ilmjärv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro M. Santos
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Atya Kapley
- Director’s Research Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India;
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| |
Collapse
|
10
|
Xiong W, Cui W, Li R, Feng C, Liu Y, Ma N, Deng J, Xing L, Gao Y, Chen N. Mineralization of phenol by ozone combined with activated carbon: Performance and mechanism under different pH levels. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2019; 1:100005. [PMCID: PMC9488009 DOI: 10.1016/j.ese.2019.100005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The degradation of phenol using ozone with activated carbon (O3/AC system) was investigated in this study. The O3/AC system was also compared with the single O3 and AC systems. The total organic carbon (TOC) removal efficiency in the O3/AC system was roughly 26% and 30% higher than the single AC and O3 systems, respectively. It was demonstrated that the phenol degradation rate and TOC removal efficiency were significantly affected by the ozone concentration, AC dosage, and solution pH. The pseudo-first-order and pseudo-second-order kinetic models were fitted to identify the mechanisms of the phenol removal process. The results of Scanning Electron Microscopy, Brunauer-Emmett-Teller, and Fourier-transform infrared spectroscopy of raw and used AC indicated that the surface morphology, microstructure, and functional group properties had been changed during the reaction process. The possible O3/AC system mineralization mechanism for phenol removal was tentatively proposed using scavenging active species such as ·OH, O2⋅−, and H2O2. The transformation byproducts generated during the application of the O3/AC system were identified by High Performance Liquid Chromatography and Gas Chromatography–Mass Spectrometry analyses. Therefore, the mineralization pathway of phenol in detail was proposed in acidic (pH 3.0) and alkaline (pH 11.0) conditions. This study provided a more systematic explanation of the mineralization mechanism for phenol in the O3/AC system. The reaction mechanism of O3/AC system is determined under different pH levels. Free radicals (·OH, O2⋅−) are more easily generated in alkaline conditions. Intermediate products are identified, and phenol degradation pathway is proposed. The accumulation regularity of the intermediate products is demonstrated and oxalic acid is difficult to degraded.
Collapse
Affiliation(s)
- Wei Xiong
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Weihua Cui
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
- Corresponding author.
| | - Rui Li
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- Corresponding author.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yang Liu
- Beijing BHZQ Environmental Engineering Technology. Co., LTD, Beijing, 100176, China
| | - Ningping Ma
- Beijing BHZQ Environmental Engineering Technology. Co., LTD, Beijing, 100176, China
| | - Jian Deng
- Beijing BHZQ Environmental Engineering Technology. Co., LTD, Beijing, 100176, China
| | - Linlin Xing
- Beijing BHZQ Environmental Engineering Technology. Co., LTD, Beijing, 100176, China
| | - Yu Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
11
|
Moghiseh Z, Rezaee A, Dehghani S, Esrafili A. Microbial electrochemical system for the phenol degradation using alternating current: Metabolic pathway study. Bioelectrochemistry 2019; 130:107230. [DOI: 10.1016/j.bioelechem.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
12
|
Aghayani E, Moussavi G, Naddafi K. Improved peroxidase-mediated biodegradation of toluene vapors in the moving-bed activated sludge diffusion (MASD) process using biosurfactant-generating biomass stimulated with H 2O 2. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:259-266. [PMID: 30199825 DOI: 10.1016/j.jhazmat.2018.08.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Two strategies were attempted to improve the biodegradation and mineralization of toluene vapors in the activated sludge diffusion (ASD) process using biosurfactant-generating Pseudomonas spp. and Bacillus spp. mixture. Different operational parameters including toluene concentration, superficial air velocity, biomass concentration, moving-media insertion and H2O2 were evaluated on toluene removal in the ASD process within 550 days of operation. It was found that complete biodegradation and 79.8% mineralization of toluene vapors at inlet loading rate of 144 g/m3.h could be achieved in the ASD process by inserting moving media (MASD) at a volume ratio of 20% along with stimulation of bacteria with H2O2. The concentration of biosurfactant and peroxidase generated in the integrated process (H2O2-stimulated MASD reactor) was 3.7 and 2.5 times of that in the conventional ASD process. The maximum toluene elimination capacity obtained in the H2O2- stimulated MASD process was 285 g/m3.h at an inlet loading rate of around 430 g/m3.h. Accordingly, H2O2-mediated MASD process could be a promising technique for efficient biodegradation and mineralization of aromatic hydrocarbons in the contaminated air streams.
Collapse
Affiliation(s)
- Ehsan Aghayani
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|