1
|
Muhamad NAS, Mohd Mokhtar N, Naim R, Lau WJ, Ismail NH. Treatment of wastewater from oil palm industry in Malaysia using polyvinylidene fluoride-bentonite hollow fiber membranes via membrane distillation system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124739. [PMID: 39168437 DOI: 10.1016/j.envpol.2024.124739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Membrane distillation (MD) is gaining increasing recognition within membrane-based processes for palm oil mill effluent (POME) treatment. This study aims to alter the physicochemical characteristics of polyvinylidene fluoride (PVDF) membranes through the incorporation of bentonite (B) at varying weight concentrations (ranging from 0.25 wt% to 1.0 wt%). Characterization was conducted to evaluate changes in morphology, thermal stability, surface characteristics and wetting properties of the resulting membranes. The resulting membranes were also tested using direct contact membrane distillation (DCMD) with POME as the feed solution, aiming to generate high-purity water. Results indicated that the PVDF-0.3B and PVDF-0.5B membranes achieved the highest water vapor flux. The finger-like structure and macrovoids present in these membranes aid in minimizing mass resistance during vapor transport and enhancing permeate flux. All membranes demonstrated exceptional performance in removing contaminants, eliminating total dissolved solids (TDS) and achieving over 99% rejection of chemical oxygen demand (COD), nitrate nitrogen (NN), color, and turbidity from the feed solution. The permeate water analysis showed that the PVDF-0.3B membrane had superior removal efficiency and met the standards set by the local Department of Environment (DOE). The PVDF-0.3B membrane was chosen as the preferred option because of its consistent flux and high removal efficiency. This study demonstrated that incorporating bentonite into PVDF membranes significantly enhanced their properties and performance for POME treatment.
Collapse
Affiliation(s)
- Nor Amirah Safiah Muhamad
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Nadzirah Mohd Mokhtar
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia; Bioaromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia.
| | - Rosmawati Naim
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300, Kuantan, Pahang, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nor Hafiza Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
2
|
Avornyo AK, Hasan SW, Banat F, Chrysikopoulos CV. Preparation, characterization, and applications of kaolin/kaolin-based composite membranes in oily wastewater treatment: Recent developments, challenges, and opportunities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122800. [PMID: 39396489 DOI: 10.1016/j.jenvman.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Rapid industrialization and the accompanying generation of significant amounts of oily wastewater pose major environmental challenges, which necessitate efficient treatment technologies. Kaolin-based membranes have emerged as a promising option due to their availability, affordability, and effective filtration performance. This review comprehensively analyzes the potential of kaolin for the treatment of oily wastewater. The focus is on the main manufacturing methods such as uniaxial pressing, slip casting, tape casting, phase inversion, and extrusion, as well as modifications that improve the structural integrity of the membrane, and its surface wettability to enhance separation performance. In addition, characterization techniques to evaluate membrane properties such as mechanical strength, thermal and chemical stability, antifouling behavior etc. are discussed. Basically, kaolin can be used as a supporting substrate, as a primary separation layer or as an additive in non-kaolin membranes. In evaluating the oil-water separation performance of kaolin-based membranes, this review highlights important metrics such as oil separation rate, flux, flux recovery, antifouling behavior, and resistance to harsh physical and chemical environments. Articles selected for the review were retrieved from major databases such as EBSCOhost, Scopus, ScienceDirect, Web of Science, and Google Scholar using relevant keywords. Based on the data from these studies, the main advances, challenges, and prospects are highlighted. Although still in the early stages of commercial application, kaolin membranes show significant potential to improve filtration efficiency, mechanical and chemical resistance, and reduce operating costs in industrial oily wastewater treatment systems.
Collapse
Affiliation(s)
- Amos K Avornyo
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Constantinos V Chrysikopoulos
- Department of Civil and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece.
| |
Collapse
|
3
|
Naseri M, Omidkhah M, Mousavi SF. A study on the efficient separation of oily water using mullite whiskers membrane through combined filtration and electrofiltration. RSC Adv 2024; 14:30245-30259. [PMID: 39318468 PMCID: PMC11420780 DOI: 10.1039/d4ra05193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
This study explores the efficacy of a ceramic membrane combining filtration, electrofiltration, and backwashing for oily water treatment. A secondary mullite membrane was synthesized, showcasing high permeate flux (534 LMH), biaxial flexural strength (75.21 MPa), and cost-effectiveness. Operational parameters, set at 2 bar pressure and 0.727 m s-1 cross-flow velocity, were optimized for desirable permeate flux and oil removal rates. Critical electric field intensity (E crit) ranged from 50 to 55 V, guiding optimal voltage selection for electrofiltration. Electrokinetic phenomena, such as electrophoresis and electroosmosis, addressed fouling issues. Higher salt concentrations exacerbated fouling and reduced electric field efficiency. Energy analysis revealed potential savings, dropping from 3.88 kW h m3 without voltage to 2.71 kW h m3 at 65 V for salt-free solutions. However, higher salt concentrations increased fouling, elevating energy consumption. These findings affirm the value of affordable ceramic membranes for oily water treatment, stressing the need for parameter optimization to enhance performance and energy efficiency.
Collapse
Affiliation(s)
- Masoumeh Naseri
- Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University Tehran Iran +98-21-82-88-3334
| | - Mohammadreza Omidkhah
- Process Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University Tehran Iran +98-21-82-88-3334
| | - Seyed Foad Mousavi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology Tehran Iran
| |
Collapse
|
4
|
Novel ceramic hollow fibre membranes contactor derived from kaolin and zirconia for ammonia removal and recovery from synthetic ammonia. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zhang H, Zhen Q, Cui JQ, Liu RT, Zhang YF, Qian XM, Liu Y. Groove-shaped polypropylene/polyester micro/nanofibrous nonwoven with enhanced oil wetting capability for high oil/water separation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Abdullayev A, Bekheet MF, Hanaor DAH, Gurlo A. Materials and Applications for Low-Cost Ceramic Membranes. MEMBRANES 2019; 9:E105. [PMID: 31438552 PMCID: PMC6780182 DOI: 10.3390/membranes9090105] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 01/18/2023]
Abstract
In water treatment applications, the use of ceramic membranes is associated with numerous advantages relative to polymer-based filtration systems. High-temperature stability, fouling resistance, and low maintenance requirements contribute to lower lifecycle costs in such systems. However, the high production costs of most commercially available ceramic membranes, stemming from raw materials and processing, are uneconomical for such systems in most water treatment applications. For this reason, there is a growing demand for new ceramic membranes based on low-cost raw materials and processes. The use of unrefined mineral feedstocks, clays, cement, sands, and ash as the basis for the fabrication of ceramic membranes offers a promising pathway towards the obtainment of effective filtration systems that can be economically implemented in large volumes. The design of effective ceramic filtration membranes based on low-cost raw materials and energy-efficient processes requires a balance of pore structure, mass flow, and robustness, all of which are highly dependent on the composition of materials used, the inclusion of various pore-forming and binding additives, and the thermal treatments to which membranes are subjected. In this review, we present recent developments in materials and processes for the fabrication of low-cost membranes from unrefined raw materials, including clays, zeolites, apatite, waste products, including fly ash and rice husk ash, and cement. We examine multiple aspects of materials design and address the challenges relating to their further development.
Collapse
Affiliation(s)
- Amanmyrat Abdullayev
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institute of Materials Science and Technology, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Maged F Bekheet
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institute of Materials Science and Technology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Dorian A H Hanaor
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institute of Materials Science and Technology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Aleksander Gurlo
- Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institute of Materials Science and Technology, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
7
|
Zhang Y, Wang X, Wang C, Liu J, Zhai H, Liu B, Zhao X, Fang D. Facile fabrication of zinc oxide coated superhydrophobic and superoleophilic meshes for efficient oil/water separation. RSC Adv 2018; 8:35150-35156. [PMID: 35547068 PMCID: PMC9087884 DOI: 10.1039/c8ra06059b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/05/2018] [Indexed: 11/22/2022] Open
Abstract
Zinc oxide (ZnO) coated superhydrophobic and superoleophilic stainless steel meshes are facilely fabricated via chemical immersion growth and subsequent surface modification. The as-prepared meshes show good mechanical durability, chemical stability and corrosion-resistant properties due to a combination of the hierarchical ZnO structure and the low surface energy modification. More importantly, the as-prepared meshes are used for highly efficient separation of various oil/water mixtures. Meanwhile, a new oil skimmer based on the as-prepared mesh is proposed to spontaneously collect floating oil with high separation efficiency and desirable durability. Zinc oxide coated superhydrophobic and superoleophilic stainless steel mesh was fabricated by a simple and inexpensive approach for efficient oil/water separation.![]()
Collapse
Affiliation(s)
- Yuezhong Zhang
- College of Chemical and Biological Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Xiaoyu Wang
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Chunhui Wang
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Jiangjiang Liu
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Hongbiao Zhai
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Baosheng Liu
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Xudong Zhao
- College of Chemical and Biological Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| | - Daqing Fang
- College of Materials Science and Engineering
- Taiyuan University of Science and Technology
- Taiyuan
- China
| |
Collapse
|