1
|
He Y, Luscombe CK. Quantitative comparison of the copolymerisation kinetics in catalyst-transfer copolymerisation to synthesise polythiophenes. Polym Chem 2024; 15:2598-2605. [PMID: 38933685 PMCID: PMC11197037 DOI: 10.1039/d4py00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024]
Abstract
Polythiophenes are one of the most widely studied conjugated polymers. With the discovery of the chain mechanism of Kumada catalyst-transfer polymerisation (KCTP), various polythiophene copolymer structures, such as random, block, and gradient copolymers, have been synthesized via batch or semi-batch (sequential addition) methods. However, the lack of quantitative kinetic data for thiophene monomers brings challenges to experimental design and structure prediction when synthesizing the copolymers. In this study, the reactivity ratios and the polymerisation rate constants of 3-hexylthiophene with 4 thiophene comonomers in KCTP are measured by adapting the Mayo-Lewis equation and the first-order kinetic behaviour of chain polymerisation. The obtained kinetic information highlights the impact of the monomer structure on the reactivity in the copolymerisations. The kinetic data are used to predict the copolymer structure of equimolar batch copolymerisations of the 4 thiophene derivatives with 3-hexylthiophene, with the experimental data agreeing well with the predictions. 3-Dodecylthiophene and 3-(6-bromo)hexylthiophene, which have higher structural similarity to 3-hexylthiophene, show nearly equivalent reactivity to 3-hexylthiophene and give random copolymers in the batch copolymerisation. 3-(2-Ethylhexyl)thiophene with a branched side chain is less reactive compared to 3-hexylthiophene and failed to homopolymerize at room temperature, but produced gradient copolymers with 3-hexylthiophene. Finally, the bulkiest 3-(4-octylphenyl)thiophene, despite its ability to homopolymerize, failed to maintain chain polymerisation in the copolymerisation with 3-hexylthiophene, possibly due to the large steric hindrance caused by the phenyl ring directly attached to the thiophene center. This study highlights the importance of monomer structures in copolymerisations and the need for accurate kinetic data.
Collapse
Affiliation(s)
- Yifei He
- Department of Materials Science and Engineering, University of Washington Seattle USA
| | - Christine K Luscombe
- Pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology Okinawa Japan
| |
Collapse
|
2
|
Chi S, Yu Y, Zhang M. Theoretical Insights into Midchain Radicals and Branching Characteristics in Solution Copolymerization of Ethylene and Vinyl Acetate. J Phys Chem B 2023; 127:8268-8281. [PMID: 37715720 DOI: 10.1021/acs.jpcb.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The kinetics of intermolecular chain transfer to polymer (CTP) and chain transfer to monomer (CTM), as well as backbiting in solution copolymerization of ethylene and vinyl acetate (VAc), are calculated by density functional theory. An intrinsic rate coefficient for each reaction type, whose Arrhenius parameters are expressed as functions of unreacted monomer composition, is extracted from calculated elementary reactions, and hence it applies to a wide range of fragment compositions of EVA. Backbiting controls the generation of midchain radicals (MCRs) on the backbone, and its rate maximizes at a medium fraction of VAc in the unreacted monomers. CTP plays an insignificant role in MCR generation even at high conversion rates due to its low pre-exponential factor. The concentration of MCRs is quantified and is close to that of ECRs at high conversions and high fractions of VAc in monomers. Additionally, branching characteristics are explored; concentrations of short-chain branching (SCB) and long-chain branching (LCB) are about 0.7-2.5 and 0.1-0.4%, respectively, and drop with VAc fraction rapidly. The role of the migration of MCRs is highlighted, which transforms about 10% of SCB points into LCB points. Disagreeing with insights from laboratory experiments, it is the migration, rather than CTP, which increases the LCB concentration at high conversions.
Collapse
Affiliation(s)
- Suocheng Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
| | - Yingzhe Yu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
| | - Minhua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
3
|
Kamble YL, Walsh DJ, Guironnet D. Precision of Architecture-Controlled Bottlebrush Polymer Synthesis: A Monte Carlo Analysis. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Yash Laxman Kamble
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Dylan J. Walsh
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| | - Damien Guironnet
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois61801, United States
| |
Collapse
|
4
|
Rao Z, Takayanagi M, Nagaoka M. Verification for Temperature Dependence of Tacticity in Polystyrene Radical Polymerization with the Combination of Reaction Pathway Analysis and Red Moon Methodology. J Phys Chem B 2022; 126:5343-5350. [PMID: 35793271 DOI: 10.1021/acs.jpcb.2c02767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical polymerization is an economic and practical polymerization method over ionic and coordination polymerizations and is widely used for polymer production. Although many efforts have been made to improve the convenience and controllability of radical polymerization, it is still a challenge to directly observe the microbehaviors of propagation, which may provide inspiration for the development of polymerization processes. In this study, we focused on the tacticity of polystyrene produced by bulk radical polymerization since there is a debate over the temperature dependence. The propagation process is simulated via Red Moon methodology, which is a cost-effective method for handling complex chemical reaction systems. By the multiple pathway analysis for the propagation reaction model composed of the dimer radical and the monomer using density functional theory, we obtained the relative energies in multiple transition states, whose energy differences are partly explained by the π-π stacking interactions. Via performing Red Moon simulations from 30 to 190 °C, we confirmed that meso contents moderately increase as the temperature increases, which is explained by the influence of temperature on the probability density of the reaction conformations of each pathway. The successful prediction and explanation for tacticity demonstrate the potential of Red Moon methodology in unveiling the microbehaviors of propagation.
Collapse
Affiliation(s)
- Zizhen Rao
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8641, Japan
| | - Masayoshi Takayanagi
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan.,The Center for Data Science Education and Research, Shiga University, Banba, Hikone 522-8522, Japan.,RIKEN Center for Advanced Intelligence Project, Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.,School of Statistical Thinking, The Institute of the Statistical Mathematics, Midori-cho, Tachikawa, Tokyo 190-8562, Japan
| | - Masataka Nagaoka
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8641, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan.,Future Value Creation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
5
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Pablo‐Morales Á, Treviño ME, Saldívar‐Guerra E. Towards Bio‐Sourced Elastomers with Reactive/Polar Groups. Myrcene – Glycidyl Methacrylate Copolymerization: Reactivity Ratios, Properties and Preliminary RAFT Emulsion Polymerization. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ángel Pablo‐Morales
- Centro de Investigación en Química Aplicada Blvd. Enrique Reyna 140, Saltillo Coahuila, CP 25 294 México
| | - María Esther Treviño
- Centro de Investigación en Química Aplicada Blvd. Enrique Reyna 140, Saltillo Coahuila, CP 25 294 México
| | - Enrique Saldívar‐Guerra
- Centro de Investigación en Química Aplicada Blvd. Enrique Reyna 140, Saltillo Coahuila, CP 25 294 México
| |
Collapse
|
7
|
Yang Y, Zhou Y, Ouyang B, Wu Y, Zhang X, Luo Z. Influence of Thermal Runaway in
Styrene‐Acrylonitrile
Bulk Copolymerization Revealed by Computational Fluid Dynamics Modeling. AIChE J 2022. [DOI: 10.1002/aic.17645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ya‐Nan Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| | - Bo Ouyang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| | - Yi‐Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| | - Xi‐Bao Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
8
|
Steube M, Johann T, Barent RD, Müller AH, Frey H. Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Conka R, Marien Y, Van Steenberge P, Hoogenboom R, D'hooge DR. A unified kinetic Monte Carlo approach to evaluate (a)symmetric block and gradient copolymers with linear and branched chains illustrated for poly(2-oxazoline)s. Polym Chem 2022. [DOI: 10.1039/d1py01391b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined gradient, block-gradient and di-block copolymers with both asymmetric and symmetric compositions considering hydrophilic and hydrophobic monomer units is relevant for application fields, such as drug/gene delivery...
Collapse
|
10
|
Wu Y, Figueira FL, Edeleva M, Van Steenberge PHM, D'hooge DR, Zhou Y, Luo Z. Cost‐efficient modeling of distributed molar mass and topological variations in graft copolymer synthesis by upgrading the method of moments. AIChE J 2021. [DOI: 10.1002/aic.17559] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| | | | - Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Ghent Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Ghent Belgium
- Centre for Textiles Science and Engineering (CTSE) Ghent University Ghent Belgium
| | - Yin‐Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| | - Zheng‐Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai People's Republic of China
| |
Collapse
|
11
|
Deglmann P, Hungenberg KD, Vale HM. Dependence of Copolymer Composition in Radical Polymerization on Solution Properties: a Quantitative Thermodynamic Interpretation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Pirman T, Ocepek M, Likozar B. Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Pirman
- Helios TBLUS d.o.o., Količevo 65, 1230 Domžale, Slovenia
| | - M. Ocepek
- Helios TBLUS d.o.o., Količevo 65, 1230 Domžale, Slovenia
| | - B. Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Edeleva M, Marien YW, D'hooge DR, Van Steenberge PHM. Exploiting (Multicomponent) Semibatch and Jacket Temperature Procedures to Safely Tune Molecular Properties for Solution Free Radical Polymerization of
n
‐Butyl Acrylate. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mariya Edeleva
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Ghent 9052 Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Ghent 9052 Belgium
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT) Ghent University Technologiepark 125 Ghent 9052 Belgium
- Centre for Textile Science and Engineering (CTSE) Ghent University Technologiepark 70A Ghent 9052 Belgium
| | | |
Collapse
|
14
|
Figueira FL, Wu YY, Zhou YN, Luo ZH, Van Steenberge PHM, D'hooge DR. Coupled matrix kinetic Monte Carlo simulations applied for advanced understanding of polymer grafting kinetics. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00407c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An innovative coupled matrix-based Monte Carlo (CMMC) concept has been applied to successfully assess the detailed description of the molecular build-up of linear and non-linear chains in the free-radical induced grafting of linear precursors chains.
Collapse
Affiliation(s)
| | - Yi-Yang Wu
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- Belgium
- Centre for Textile Science and Engineering (CTSE)
- Ghent University
| |
Collapse
|
15
|
Mineeva KO, Osipova NI, Zaitsev SD, Plutalova AV, Medentseva EI, Serkhacheva NS, Lysenko EA, Chernikova EV. Synthesis of Amphiphilic Copolymers of Acrylic Acid and Styrene with the Desired Microstructure and Their Properties. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420060081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Jung F, Ksiazkiewicz A, Mhamdi A, Pich A, Mitsos A. Model-Based Optimization of Microgel Synthesis in the μm Size Range. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Falco Jung
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Adel Mhamdi
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrij Pich
- DWI Leibniz Institute for Interactive Materials e.V., 52074 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Alexander Mitsos
- Aachener Verfahrenstechnik-Process Systems Engineering, RWTH Aachen University, 52074 Aachen, Germany
- JARA-SOFT, 52056 Aachen, Germany
| |
Collapse
|
17
|
Trigilio AD, Marien YW, Van Steenberge PHM, D’hooge DR. Gillespie-Driven kinetic Monte Carlo Algorithms to Model Events for Bulk or Solution (Bio)Chemical Systems Containing Elemental and Distributed Species. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03888] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandro D. Trigilio
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
| | | | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70a, 9052 Gent, Belgium
| |
Collapse
|
18
|
Keating JJ, Plawsky JL. Radical Lifetimes in Atom Transfer Radical Polymerization: A Monte Carlo and Deterministic Investigation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John J. Keating
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Joel L. Plawsky
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
19
|
Progress in Reaction Mechanisms and Reactor Technologies for Thermochemical Recycling of Poly(methyl methacrylate). Polymers (Basel) 2020; 12:polym12081667. [PMID: 32727004 PMCID: PMC7464549 DOI: 10.3390/polym12081667] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 11/22/2022] Open
Abstract
Chemical or feedstock recycling of poly(methyl methacrylate) (PMMA) by thermal degradation is an important societal challenge to enable polymer circularity. The annual PMMA world production capacity is over 2.4 × 106 tons, but currently only 3.0 × 104 tons are collected and recycled in Europe each year. Despite the rather simple chemical structure of MMA, a debate still exists on the possible PMMA degradation mechanisms and only basic batch and continuous reactor technologies have been developed, without significant knowledge of the decomposition chemistry or the multiphase nature of the reaction mixture. It is demonstrated in this review that it is essential to link PMMA thermochemical recycling with the PMMA synthesis as certain structural defects from the synthesis step are affecting the nature and relevance of the subsequent degradation reaction mechanisms. Here, random fission plays a key role, specifically for PMMA made by anionic polymerization. It is further highlighted that kinetic modeling tools are useful to further unravel the dominant PMMA degradation mechanisms. A novel distinction is made between global conversion or average chain length models, on the one hand, and elementary reaction step-based models on the other hand. It is put forward that only by the dedicated development of the latter models, the temporal evolution of degradation product spectra under specific chemical recycling conditions will become possible, making reactor design no longer an art but a science.
Collapse
|
20
|
Arraez FJ, Van Steenberge PHM, D’hooge DR. Conformational Distributions near and on the Substrate during Surface-Initiated Living Polymerization: A Lattice-Based Kinetic Monte Carlo Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00585] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
21
|
Gleede T, Markwart JC, Huber N, Rieger E, Wurm FR. Competitive Copolymerization: Access to Aziridine Copolymers with Adjustable Gradient Strengths. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tassilo Gleede
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Jens C. Markwart
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Niklas Huber
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Elisabeth Rieger
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung (MPI-P), Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
22
|
Van Steenberge PHM, Sedlacek O, Hernández-Ortiz JC, Verbraeken B, Reyniers MF, Hoogenboom R, D'hooge DR. Visualization and design of the functional group distribution during statistical copolymerization. Nat Commun 2019; 10:3641. [PMID: 31409782 PMCID: PMC6692376 DOI: 10.1038/s41467-019-11368-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Even though functional copolymers with a low percentage of functional comonomer units (up to 20 mol%) are widely used, for instance for the development of polymer therapeutics and hydrogels, insights in the functional group distribution over the actual chains are lacking and the average composition is conventionally used to describe the functionalization degree. Here we report the visualization of the monomer distribution over the different polymer chains by a synergetic combination of experimental and theoretical analysis aiming at the construction of functionality-chain length distributions (FUNC-CLDs). A successful design of the chemical structure of the comonomer pair, the initial functional comonomer amount (13 mol%), and the temperature (100 °C) is performed to tune the FUNC-CLD of copoly(2-oxazoline)s toward high functionalization degree for both low (100) and high (400) target degrees of polymerization. The proposed research strategy is generic and extendable to a broad range of copolymerization chemistries, including reversible deactivation radical polymerization.
Collapse
Affiliation(s)
- Paul H M Van Steenberge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Ondrej Sedlacek
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Julio C Hernández-Ortiz
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Bart Verbraeken
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium
| | - Marie-Françoise Reyniers
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium
| | - Richard Hoogenboom
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4, 9000, Gent, Belgium.
| | - Dagmar R D'hooge
- Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052, Gent, Belgium. .,Ghent University, Centre for Textile Science and Engineering, Technologiepark 70a, B-9052, Gent, Belgium.
| |
Collapse
|
23
|
Lena JB, Van Herk AM. Toward Biodegradable Chain-Growth Polymers and Polymer Particles: Re-Evaluation of Reactivity Ratios in Copolymerization of Vinyl Monomers with Cyclic Ketene Acetal Using Nonlinear Regression with Proper Error Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02375] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jean-Baptiste Lena
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore
| | - Alexander M. Van Herk
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore
| |
Collapse
|
24
|
Arraez FJ, Xu X, Van Steenberge PHM, Jerca VV, Hoogenboom R, D’hooge DR. Macropropagation Rate Coefficients and Branching Levels in Cationic Ring-Opening Polymerization of 2-Ethyl-2-oxazoline through Prediction of Size Exclusion Chromatography Data. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Xiaowen Xu
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Paul H. M. Van Steenberge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
| | - Valentin-Victor Jerca
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy, Spl. Independentei 202B, 060023 Bucharest, Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology (LCT), Ghent University, Technologiepark 125, B-9052 Ghent, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, B-9052 Ghent, Belgium
| |
Collapse
|
25
|
Boulding NA, Millican JM, Hutchings LR. Understanding copolymerisation kinetics for the design of functional copolymers via free radical polymerisation. Polym Chem 2019. [DOI: 10.1039/c9py01294j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the free radical copolymerisation kinetics and co-monomer sequence distribution for a series of functional copolymers based on MMA.
Collapse
|
26
|
Marien YW, Van Steenberge PHM, Pich A, D'hooge DR. Coupled stochastic simulation of the chain length and particle size distribution in miniemulsion radical copolymerization of styrene and N-vinylcaprolactam. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kinetic Monte Carlo modeling is applied for the coupled simulation of the chain length and particle size distribution in isothermal batch miniemulsion copolymerization of styrene and N-vinylcaprolactam.
Collapse
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- DWI – Leibniz Institute for Interactive Materials e.V
| | | | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials e.V
- 52074 Aachen
- Germany
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
27
|
Rosales-Guzmán M, Pérez-Camacho O, Torres-Lubián R, Harrisson S, Schubert US, Guerrero-Sánchez C, Saldívar-Guerra E. Kinetic and Copolymer Composition Investigations of the Free Radical Copolymerization of 1-Octene with Glycidyl Methacrylate. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Miguel Rosales-Guzmán
- Departamento de Procesos de Polimerización; Centro de Investigación en Química Aplicada (CIQA); Boulevard Enrique Reyna No. 140 25294 Saltillo México
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Odilia Pérez-Camacho
- Departamento de Procesos de Polimerización; Centro de Investigación en Química Aplicada (CIQA); Boulevard Enrique Reyna No. 140 25294 Saltillo México
| | - Román Torres-Lubián
- Departamento de Procesos de Polimerización; Centro de Investigación en Química Aplicada (CIQA); Boulevard Enrique Reyna No. 140 25294 Saltillo México
| | - Simon Harrisson
- Laboratoire des IMRCP; Université de Toulouse; CNRS UMR 5623; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Enrique Saldívar-Guerra
- Departamento de Procesos de Polimerización; Centro de Investigación en Química Aplicada (CIQA); Boulevard Enrique Reyna No. 140 25294 Saltillo México
| |
Collapse
|