1
|
Wenig M, Khare R, Jentys A, Lercher JA. Hydrothermal Stability of Active Sites in Cu-Exchanged Small-Pore Zeolites for the Selective Catalytic Reduction of NO x. Angew Chem Int Ed Engl 2025; 64:e202416954. [PMID: 39576757 DOI: 10.1002/anie.202416954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
Combining operando X-ray absorption spectroscopy (XAS) and computational modelling shows unequivocally the distribution of active species in fresh and hydrothermally aged Cu-CHA and Cu-AEI zeolites during NH3-assisted selective catalytic reduction of NOx. Four principal species co-exist: (i) CuI cations coordinated to NH3, (ii) CuI cations coordinated to the zeolite framework, (iii) solvated CuII cations, and (iv) framework-coordinated CuII species (CuII st) formed upon hydrothermal ageing of the zeolite sample. The CuII st species were only observed in the hydrothermally aged zeolite samples and are formed upon the interaction of hydrated CuII cations with extra-framework Al (EFAl) generated during the hydrothermal treatment. These sites are inactive for NOx reduction, leading to a decrease in the catalytic performance of the hydrothermally aged zeolites. CuII st formation was higher in Cu-CHA (~46 %) than in Cu-AEI (~28 %). The better hydrothermal stability of Cu in the AEI framework is attributed to the tortuous channel structure of AEI that hinders the migration of hydrated CuII cations during hydrothermal ageing.
Collapse
Affiliation(s)
- Mirjam Wenig
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA
| |
Collapse
|
2
|
Wen M, Liu Z, Liu C, Zhuang W. A Computational Mechanistic Study on Copper Autoreduction in Cu-CHA Zeolite Catalysts. Chem Asian J 2025; 20:e202400973. [PMID: 39497549 DOI: 10.1002/asia.202400973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
The activation of Cu-zeolite catalysts is accompanied by an autoreduction reaction, in which a part of Cu(II) species is spontaneously reduced to Cu(I) species. The stoichiometry of autoreduction in which the release of one O2 is accompanied by the reduction of four Cu(II) to Cu(I) has been proposed, but the detailed mechanism of this autoreduction remains unclear. In this work, we used DFT calculations to study the autoreduction mechanism in Cu-CHA zeolites. The two reduction mechanisms of [CuOH]+ to Cu+ in CHA-type zeolite were systematically studied. In Mechanism I, two [CuOH]+ react via dehydration to form [Cu-O-Cu]2+, and the further reaction of two [Cu-O-Cu]2+ to produce O2 is the most critical step, which requires four charge-compensating framework Al in close proximity. In Mechanism II, the production of O2 occurs via [CuO]+ intermediates, and the generation of possible [CuO]+ is the most critical step. The exploration of autoreduction reactions in a variety of Cu-CHA models with different Al sittings shows that the O-O distances between two intermediate precursors, i. e., two [Cu-O-Cu]2+ in Mechanism I, or two [CuO]+ in Mechanism II, are key factors determining the activation barriers of O2 production during autoreduction.
Collapse
Affiliation(s)
- Miao Wen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Zhuyang Liu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Chong Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| |
Collapse
|
3
|
Rajeev A, Mohammed TP, George A, Sankaralingam M. Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies. CHEM REC 2025; 25:e202400186. [PMID: 39817884 PMCID: PMC11811604 DOI: 10.1002/tcr.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Indexed: 01/18/2025]
Abstract
Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts. In this review, we outline the methane metabolism performed by methanotrophs and detail the latest advancements in the active site structures and catalytic mechanisms of both types of MMOs. Also, recent progress in the bioinspired approaches using various heterogeneous catalysts, especially first-row transition metal zeolites and the mechanistic insights are discussed. In addition, studies using molecular complexes such as "Periana catalyst" for methane to methanol conversion through methyl ester formation in the presence of strong acids are also detailed. Compared to the progress noted in the metal zeolites-mediated methane activation field, the utilisation of molecular catalysts or MMOs for this application is still in its nascent phase and further research is required to overcome the limitations of these methods effectively.
Collapse
Affiliation(s)
- Anjana Rajeev
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry LaboratoryDepartment of ChemistryNational Institute of Technology CalicutKozhikode, Kerala673601India
| |
Collapse
|
4
|
Liu Y, Su X, Ding J, Zhou J, Liu Z, Wei X, Yang HB, Liu B. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem Soc Rev 2024; 53:11850-11887. [PMID: 39434695 DOI: 10.1039/d3cs00967j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Single-atom catalysts (SACs) represent the ultimate size limit of nanoscale catalysts, combining the advantages of homogeneous and heterogeneous catalysts. SACs have isolated single-atom active sites that exhibit high atomic utilization efficiency, unique catalytic activity, and selectivity. Over the past few decades, synchrotron radiation techniques have played a crucial role in studying single-atom catalysis by identifying catalyst structures and enabling the understanding of reaction mechanisms. The profound comprehension of spectroscopic techniques and characteristics pertaining to SACs is important for exploring their catalytic activity origins and devising high-performance and stable SACs for industrial applications. In this review, we provide a comprehensive overview of the recent advances in X-ray based synchrotron radiation techniques for structural characterization and in situ/operando observation of SACs under reaction conditions. We emphasize the correlation between spectral fine features and structural characteristics of SACs, along with their analytical limitations. The development of IMST with spatial and temporal resolution is also discussed along with their significance in revealing the structural characteristics and reaction mechanisms of SACs. Additionally, this review explores the study of active center states using spectral fine characteristics combined with theoretical simulations, as well as spectroscopic analysis strategies utilizing machine learning methods to address challenges posed by atomic distribution inhomogeneity in SACs while envisaging potential applications integrating artificial intelligence seamlessly with experiments for real-time monitoring of single-atom catalytic processes.
Collapse
Affiliation(s)
- Yuhang Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jing Zhou
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
| | - Zhen Liu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Xiangjun Wei
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
6
|
Murphy E, Sun B, Rüscher M, Liu Y, Zang W, Guo S, Chen YH, Hejral U, Huang Y, Ly A, Zenyuk IV, Pan X, Timoshenko J, Cuenya BR, Spoerke ED, Atanassov P. Synergizing Fe 2O 3 Nanoparticles on Single Atom Fe-N-C for Nitrate Reduction to Ammonia at Industrial Current Densities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401133. [PMID: 38619914 DOI: 10.1002/adma.202401133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The electrochemical reduction of nitrates (NO3 -) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3 synthesis cost-competitive with current technologies, high NH3 partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with Fe2O3 nanoparticles supported on atomically dispersed Fe-N-C. The optimized 3×Fe2O3/Fe-N-C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3 of 1.95 A cm-2 at a Faradaic efficiency (FE) for NH3 of 100% and an NH3 yield rate over 9 mmol hr-1 cm-2. Operando XANES and post-mortem XPS reveal the importance of a pre-reduction activation step, reducing the surface Fe2O3 (Fe3+) to highly active Fe0 sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3 particles and Fe-Nx sites at highly cathodic potentials, maintaining a current of -1.3 A cm-2 over 24 hours. This work exhibits an effective and durable active particle-active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.
Collapse
Affiliation(s)
- Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Baiyu Sun
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Martina Rüscher
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Yuanchao Liu
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Wenjie Zang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Shengyuan Guo
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Yu-Han Chen
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Uta Hejral
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Ying Huang
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Alvin Ly
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Janis Timoshenko
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195, Berlin, Germany
| | - Erik D Spoerke
- Sandia National Laboratories, Energy Storage Technologies & Systems, Albuquerque, NM, 87185, USA
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
7
|
Zhao Y, Yi X, Dou B, Kang R, Bin F. Improving Copper Active Site Speciation on Cu-Ce/SSZ-13 for Ammonia Oxidation via Si/Al Ratio Modulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26088-26098. [PMID: 38717977 DOI: 10.1021/acsami.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Catalytic oxidation is a promising purification technique for ammonia (NH3) emission. However, high ignition temperatures and NOx peroxide generation limit its effectiveness due to a lack of active sites. Herein, the effects of Si/Al ratio (SAR) modulation on the speciation of copper active sites and the reaction mechanism at different acidic sites were investigated by loading CuO-CeO2 onto SSZ-13 with different SARs (Cu-Ce/SAR15, 20, and 30). Among them, Cu-Ce/SAR20 exhibits the lowest induction temperature (T20 = 180 °C) and the highest nitrogen selectivity (above 95%), attributing to a higher number of Cu2+ exchange sites. In situ IR spectroscopy and isotopic (18O2) transient response experiments indicate that more active Cu2+ in Cu-Ce/SAR20 provides sufficient Lewis acidic sites for NH3 adsorption and favors the stability of Si-OH-Al structures (Brønsted acid sites). NH3 adsorbed at Lewis acidic sites tends to form peroxide byproducts (NOx), while the NH4+ adsorbed at Brønsted acidic sites generates the key intermediate NH4NO2, which decomposes to N2 at high temperatures, thus enhancing nitrogen selectivity. The whole process mainly follows the Mars-van Krevelen (M-K) mechanism, with the Langmuir-Hinshelwood (L-H) mechanism playing a supporting role. Z2Cu2+ coordinates with adjacent Al atoms within the six-membered ring (6MR) and undergoes a slight deformation at high temperatures, facilitating the migration of the lattice oxygen. SAR plays a crucial role in local environmental speciation of reactive Cu2+, where the sufficient isolated Al provided in SAR20 pulls Cu2+ into the eight-membered ring (8MR), allowing it to come into contact with NH3 more readily.
Collapse
Affiliation(s)
- Yang Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Xiaokun Yi
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Baojuan Dou
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Running Kang
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Feng Bin
- State Key Laboratory of High-Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
8
|
Rojas-Buzo S, Salusso D, Le THT, Ortuño MA, Lomachenko KA, Bordiga S. Unveiling the Role and Stabilization Mechanism of Cu + into Defective Ce-MOF Clusters during CO Oxidation. J Phys Chem Lett 2024; 15:3962-3967. [PMID: 38569092 PMCID: PMC11017307 DOI: 10.1021/acs.jpclett.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Copper single-site catalysts supported on Zr-based metal-organic frameworks (MOFs) are well-known systems in which the nature of the active sites has been deeply investigated. Conversely, the redox chemistry of the Ce-counterparts is more limited, because of the often-unclear Cu2+/Cu+ and Ce4+/Ce3+ pairs behavior. Herein, we studied a novel Cu2+ single-site catalyst supported on a defective Ce-MOF, Cu/UiO-67(Ce), as a catalyst for the CO oxidation reaction. Based on a combination of in situ DRIFT and operando XAS spectroscopies, we established that Cu+ sites generated during catalysis play a pivotal role. Moreover, the oxygen vacancies associated with Ce3+ sites and presented in the defective Cu/UiO-67(Ce) material are able to activate the O2 molecules, closing the catalytic cycle. The results presented in this work open a new route for the design of active and stable single-site catalysts supported on defective Ce-MOFs.
Collapse
Affiliation(s)
- Sergio Rojas-Buzo
- Instituto
de Tecnología Química, Universitat
Politècnica de València - Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos, s/n, 46022 Valencia, Spain
| | - Davide Salusso
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Thanh-Hiep Thi Le
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel A. Ortuño
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, 10125 Turin, Italy
| |
Collapse
|
9
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
10
|
Molokova AY, Abasabadi RK, Borfecchia E, Mathon O, Bordiga S, Wen F, Berlier G, Janssens TVW, Lomachenko KA. Elucidating the reaction mechanism of SO 2 with Cu-CHA catalysts for NH 3-SCR by X-ray absorption spectroscopy. Chem Sci 2023; 14:11521-11531. [PMID: 37886093 PMCID: PMC10599480 DOI: 10.1039/d3sc03924b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The application of Cu-CHA catalysts for the selective catalytic reduction of NOx by ammonia (NH3-SCR) in exhaust systems of diesel vehicles requires the use of fuel with low sulfur content, because the Cu-CHA catalysts are poisoned by higher concentrations of SO2. Understanding the mechanism of the interaction between the Cu-CHA catalyst and SO2 is crucial for elucidating the SO2 poisoning and development of efficient catalysts for SCR reactions. Earlier we have shown that SO2 reacts with the [Cu2II(NH3)4O2]2+ complex that is formed in the pores of Cu-CHA upon activation of O2 in the NH3-SCR cycle. In order to determine the products of this reaction, we use X-ray absorption spectroscopy (XAS) at the Cu K-edge and S K-edge, and X-ray emission spectroscopy (XES) for Cu-CHA catalysts with 0.8 wt% Cu and 3.2 wt% Cu loadings. We find that the mechanism for SO2 uptake is similar for catalysts with low and high Cu content. We show that the SO2 uptake proceeds via an oxidation of SO2 by the [Cu2II(NH3)4O2]2+ complex, resulting in the formation of different CuI species, which do not react with SO2, and a sulfated CuII complex that is accumulated in the pores of the zeolite. The increase of the SO2 uptake upon addition of oxygen to the SO2-containing feed, evidenced by X-ray adsorbate quantification (XAQ) and temperature-programmed desorption of SO2, is explained by the re-oxidation of the CuI species into the [Cu2II(NH3)4O2]2+ complexes, which makes them available for reaction with SO2.
Collapse
Affiliation(s)
- Anastasia Yu Molokova
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Reza K Abasabadi
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
- Umicore Denmark ApS Kogle Allé 1 2970 Hørsholm Denmark
| | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Olivier Mathon
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | - Fei Wen
- Umicore AG & Co Rodenbacher Chaussee 4 63457 Hanau Germany
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of Turin via Giuria 7 10125 Turin Italy
| | | | - Kirill A Lomachenko
- European Synchrotron Radiation Facility 71 avenue des Martyrs CS 40220 38043 Grenoble Cedex 9 France
| |
Collapse
|
11
|
Kvande K, Garetto B, Deplano G, Signorile M, Solemsli BG, Prodinger S, Olsbye U, Beato P, Bordiga S, Svelle S, Borfecchia E. Understanding C-H activation in light alkanes over Cu-MOR zeolites by coupling advanced spectroscopy and temperature-programmed reduction experiments. Chem Sci 2023; 14:9704-9723. [PMID: 37736625 PMCID: PMC10510758 DOI: 10.1039/d3sc01677c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The direct activation of methane to methanol (MTM) proceeds through a chemical-looping process over Cu-oxo sites in zeolites. Herein, we extend the overall understanding of oxidation reactions over metal-oxo sites and C-H activation reactions by pinpointing the evolution of Cu species during reduction. To do so, a set of temperature-programmed reduction experiments were performed with CH4, C2H6, and CO. With a temperature ramp, the Cu reduction could be accelerated to detect changes in Cu speciation that are normally not detected due to the slow CH4 adsorption/interaction during MTM (∼200 °C). To follow the Cu-speciation with the three reductants, X-ray absorption spectroscopy (XAS), UV-vis and FT-IR spectroscopy were applied. Multivariate curve resolution alternating least-square (MCR-ALS) analysis was used to resolve the time-dependent concentration profiles of pure Cu components in the X-ray absorption near edge structure (XANES) spectra. Within the large datasets, as many as six different CuII and CuI components were found. Close correlations were found between the XANES-derived CuII to CuI reduction, CH4 consumption, and CO2 production. A reducibility-activity relationship was also observed for the Cu-MOR zeolites. Extended X-ray absorption fine structure (EXAFS) spectra for the pure Cu components were furthermore obtained with MCR-ALS analysis. With wavelet transform (WT) analysis of the EXAFS spectra, we were able to resolve the atomic speciation at different radial distances from Cu (up to about 4 Å). These results indicate that all the CuII components consist of multimeric CuII-oxo sites, albeit with different Cu-Cu distances.
Collapse
Affiliation(s)
- Karoline Kvande
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Beatrice Garetto
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Gabriele Deplano
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Matteo Signorile
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Bjørn Gading Solemsli
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Sebastian Prodinger
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Unni Olsbye
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Pablo Beato
- Topsoe A/S, Haldor Topsøes Allé 1 DK-2800 Kgs. Lyngby Denmark
| | - Silvia Bordiga
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Stian Svelle
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| |
Collapse
|
12
|
Yu B, Cheng L, Dai S, Jiang Y, Yang B, Li H, Zhao Y, Xu J, Zhang Y, Pan C, Cao X, Zhu Y, Lou Y. Silver and Copper Dual Single Atoms Boosting Direct Oxidation of Methane to Methanol via Synergistic Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302143. [PMID: 37401146 PMCID: PMC10502841 DOI: 10.1002/advs.202302143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Rationally constructing atom-precise active sites is highly important to promote their catalytic performance but still challenging. Herein, this work designs and constructs ZSM-5 supported Cu and Ag dual single atoms as a proof-of-concept catalyst (Ag1 -Cu1 /ZSM-5 hetero-SAC (single-atom catalyst)) to boost direct oxidation of methane (DOM) by H2 O2 . The Ag1 -Cu1 /ZSM-5 hetero-SAC synthesized via a modified co-adsorption strategy yields a methanol productivity of 20,115 µmol gcat -1 with 81% selectivity at 70 °C within 30 min, which surpasses most of the state-of-the-art noble metal catalysts. The characterization results prove that the synergistic interaction between silver and copper facilitates the formation of highly reactive surface hydroxyl species to activate the C-H bond as well as the activity, selectivity, and stability of DOM compared with SACs, which is the key to the enhanced catalytic performance. This work believes the atomic-level design strategy on dual-single-atom active sites should pave the way to designing advanced catalysts for methane conversion.
Collapse
Affiliation(s)
- Baiyang Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Lu Cheng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Bing Yang
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Hong Li
- Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics457 Zhongshan RoadDalian116023China
| | - Yi Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Jing Xu
- School of Food Science and TechnologyJiangnan UniversityWuxiJiangsu214122China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Chengsi Pan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| | - Xiao‐Ming Cao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Centre for Computational Chemistry and Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghai200237China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122China
| |
Collapse
|
13
|
Sahle CJ, Gerbon F, Henriquet C, Verbeni R, Detlefs B, Longo A, Mirone A, Lagier MC, Otte F, Spiekermann G, Petitgirard S. A compact von Hámos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:251-257. [PMID: 36601944 PMCID: PMC9814058 DOI: 10.1107/s1600577522011171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A compact spectrometer for medium-resolution resonant and non-resonant X-ray emission spectroscopy in von Hámos geometry is described. The main motivation for the design and construction of the spectrometer is to allow for acquisition of non-resonant X-ray emission spectra while measuring non-resonant X-ray Raman scattering spectra at beamline ID20 of the European Synchrotron Radiation Facility. Technical details are provided and the performance and possible use of the spectrometer are demonstrated by presenting results of several X-ray spectroscopic methods on various compounds.
Collapse
Affiliation(s)
- Ch. J. Sahle
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Gerbon
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - C. Henriquet
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - R. Verbeni
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - B. Detlefs
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Longo
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Mirone
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - M.-C. Lagier
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Otte
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
- The Rossendorf Beamline at ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - G. Spiekermann
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S. Petitgirard
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
14
|
Chen J, Huang W, Bao S, Zhang W, Liang T, Zheng S, Yi L, Guo L, Wu X. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH 3-SCR. RSC Adv 2022; 12:27746-27765. [PMID: 36320283 PMCID: PMC9517171 DOI: 10.1039/d2ra05107a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 06/07/2024] Open
Abstract
Cu-based and Fe-based zeolites are promising catalysts for NH3-SCR due to their high catalytic activity, wide temperature window and good hydrothermal stability, while the detailed investigation of NH3-SCR mechanism should be based on the accurate determination of active metal sites. This review systematically summarizes the qualitative and quantitative determination of metal active sites in Cu-based or Fe-based zeolites for NH3-SCR reactions based on advanced characterization methods such as UV-vis absorption (UV-vis), temperature-programmed reduction with H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure spectroscopy (XAFS), Infrared spectroscopy (IR), Electron paramagnetic resonance (EPR), Mössbauer spectroscopy and DFT calculations. The application and limitations of different characterization methods are also discussed to provide insights for further study of the NH3-SCR reaction mechanism over metal-based zeolites.
Collapse
Affiliation(s)
- Jialing Chen
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wei Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Sizhuo Bao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Wenbo Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Tingyu Liang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Shenke Zheng
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Chemistry and Chemical Engineering, Huanggang Normal University Huanggang 438000 China
| | - Lan Yi
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Li Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology Wuhan 430081 China +86 027 68862335
| |
Collapse
|
15
|
Signorile M, Borfecchia E, Bordiga S, Berlier G. Influence of ion mobility on the redox and catalytic properties of Cu ions in zeolites. Chem Sci 2022; 13:10238-10250. [PMID: 36277636 PMCID: PMC9473501 DOI: 10.1039/d2sc03565k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
This contribution aims at analysing the current understanding about the influence of Al distribution, zeolite topology, ligands/reagents and oxidation state on ions mobility in Cu-zeolites, and its relevance toward reactivity of the metal sites. The concept of Cu mobilization has been originally observed in the presence of ammonia, favouring the activation of oxygen by formation of NH3 oxo-bridged complexes in zeolites and opening a new perspective about the chemistry in single-site zeolite-based catalysts, in particular in the context of the NH3-mediated Selective Catalytic Reduction of NO x (NH3-SCR) processes. A different mobility of bare Cu+/Cu2+ ions has been documented too, showing for Cu+ a better mobilization than for Cu2+ also in absence of ligands. These concepts can have important consequences for the formation of Cu-oxo species, active and selective in other relevant reactions, such as the direct conversion of methane to methanol. Here, assessing the structure, the formation pathways and reactivity of Cu-oxo mono- or multimeric moieties still represents a challenging playground for chemical scientists. Translating the knowledge about Cu ions mobility and redox properties acquired in the context of NH3-SCR reaction into the field of direct conversion of methane to methanol can have important implications for a better understanding of transition metal ions redox properties in zeolites and for an improved design of catalysts and catalytic processes.
Collapse
Affiliation(s)
- Matteo Signorile
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| |
Collapse
|
16
|
Bruzzese PC, Salvadori E, Civalleri B, Jäger S, Hartmann M, Pöppl A, Chiesa M. The Structure of Monomeric Hydroxo-Cu II Species in Cu-CHA. A Quantitative Assessment. J Am Chem Soc 2022; 144:13079-13083. [PMID: 35819401 PMCID: PMC9335873 DOI: 10.1021/jacs.2c06037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Using EPR and HYSCORE spectroscopies in conjunction with ab initio calculations, we assess the structure of framework-bound
monomeric hydroxo-CuII in copper-loaded chabazite (CHA).
The species is an interfacial distorted square-planar [CuIIOH(O-8MRs)3] complex located at eight-membered-ring windows,
displaying three coordinating bonds with zeolite lattice oxygens and
the hydroxo ligand hydrogen-bonded to the cage. The complex has a
distinctive EPR signature with g = [2.072 2.072 2.290], CuA= [30 30 410] MHz, and HA = [−13.0 −4.5 +11.5] MHz, distinctively different
from other CuII species in CHA.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany.,Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Bartolomeo Civalleri
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Mario Chiesa
- Department of Chemistry and NIS Centre of Excellence, University of Turin, 10125 Torino, Italy
| |
Collapse
|
17
|
Martini A, Negri C, Bugarin L, Deplano G, Abasabadi RK, Lomachenko KA, Janssens TVW, Bordiga S, Berlier G, Borfecchia E. Assessing the Influence of Zeolite Composition on Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-CHA DeNO x Catalysts by Machine Learning-Assisted X-ray Absorption Spectroscopy. J Phys Chem Lett 2022; 13:6164-6170. [PMID: 35763262 PMCID: PMC9272442 DOI: 10.1021/acs.jpclett.2c01107] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cu-exchanged chabazite is the catalyst of choice for NOx abatement in diesel vehicles aftertreatment systems via ammonia-assisted selective catalytic reduction (NH3-SCR). Herein, we exploit in situ X-ray absorption spectroscopy powered by wavelet transform analysis and machine learning-assisted fitting to assess the impact of the zeolite composition on NH3-mobilized Cu-complexes formed during the reduction and oxidation half-cycles in NH3-SCR at 200 °C. Comparatively analyzing well-characterized Cu-CHA catalysts, we show that the Si/Al ratio of the zeolite host affects the structure of mobile dicopper(II) complexes formed during the oxidation of the [CuI(NH3)2]+ complexes by O2. Al-rich zeolites promote a planar coordination motif with longer Cu-Cu interatomic distances, while at higher Si/Al values, a bent motif with shorter internuclear separations is also observed. This is paralleled by a more efficient oxidation at a given volumetric Cu density at lower Si/Al, beneficial for the NOx conversion under NH3-SCR conditions at 200 °C.
Collapse
Affiliation(s)
- Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Chiara Negri
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Luca Bugarin
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gabriele Deplano
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Reza K. Abasabadi
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | | | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria 7, 10125 Turin, Italy
| |
Collapse
|
18
|
Molokova A, Borfecchia E, Martini A, Pankin IA, Atzori C, Mathon O, Bordiga S, Wen F, Vennestrøm PNR, Berlier G, Janssens TVW, Lomachenko KA. SO 2 Poisoning of Cu-CHA deNO x Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy. JACS AU 2022; 2:787-792. [PMID: 35557768 PMCID: PMC9088759 DOI: 10.1021/jacsau.2c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/11/2023]
Abstract
Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.
Collapse
Affiliation(s)
- Anastasia
Yu. Molokova
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Cesare Atzori
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Olivier Mathon
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Fei Wen
- Umicore
AG & Co, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | | | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Ohyama J, Tsuchimura Y, Hirayama A, Iwai H, Yoshida H, Machida M, Nishimura S, Kato K, Takahashi K. Relationships among the Catalytic Performance, Redox Activity, and Structure of Cu-CHA Catalysts for the Direct Oxidation of Methane to Methanol Investigated Using In Situ XAFS and UV–Vis Spectroscopies. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Yuka Tsuchimura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroki Iwai
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo 060-0815, Japan
| |
Collapse
|
20
|
Shan Y, Du J, Zhang Y, Shan W, Shi X, Yu Y, Zhang R, Meng X, Xiao FS, He H. Selective catalytic reduction of NO x with NH 3: opportunities and challenges of Cu-based small-pore zeolites. Natl Sci Rev 2021; 8:nwab010. [PMID: 34858603 PMCID: PMC8566184 DOI: 10.1093/nsr/nwab010] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Zeolites, as efficient and stable catalysts, are widely used in the environmental catalysis field. Typically, Cu-SSZ-13 with small-pore structure shows excellent catalytic activity for selective catalytic reduction of NO x with ammonia (NH3-SCR) as well as high hydrothermal stability. This review summarizes major advances in Cu-SSZ-13 applied to the NH3-SCR reaction, including the state of copper species, standard and fast SCR reaction mechanism, hydrothermal deactivation mechanism, poisoning resistance and synthetic methodology. The review gives a valuable summary of new insights into the matching between SCR catalyst design principles and the characteristics of Cu2+-exchanged zeolitic catalysts, highlighting the significant opportunity presented by zeolite-based catalysts. Principles for designing zeolites with excellent NH3-SCR performance and hydrothermal stability are proposed. On the basis of these principles, more hydrothermally stable Cu-AEI and Cu-LTA zeolites are elaborated as well as other alternative zeolites applied to NH3-SCR. Finally, we call attention to the challenges facing Cu-based small-pore zeolites that still need to be addressed.
Collapse
Affiliation(s)
- Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenpo Shan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangju Meng
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Feng-Shou Xiao
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310007, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Deplano G, Martini A, Signorile M, Borfecchia E, Crocellà V, Svelle S, Bordiga S. Copper Pairing in the Mordenite Framework as a Function of the Cu
I
/Cu
II
Speciation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriele Deplano
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
| | - Andrea Martini
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
- Smart Materials Research Institute Southern Federal University Sladkova Street 174/28 344090 Rostov-on-Don Russia
| | - Matteo Signorile
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
| | - Elisa Borfecchia
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
| | - Valentina Crocellà
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
| | - Stian Svelle
- Department of Chemistry SMN Centre for Materials Science and Nanotechnology University of Oslo N-0315 Oslo Norway
| | - Silvia Bordiga
- Department of Chemistry NIS and INSTM Reference Centre Università di Torino Via G. Quarello 15 I-10135 and Via P. Giuria 7, I-10125 Torino Italy
| |
Collapse
|
22
|
Deplano G, Martini A, Signorile M, Borfecchia E, Crocellà V, Svelle S, Bordiga S. Copper Pairing in the Mordenite Framework as a Function of the Cu I /Cu II Speciation. Angew Chem Int Ed Engl 2021; 60:25891-25896. [PMID: 34582094 PMCID: PMC9298398 DOI: 10.1002/anie.202109705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/16/2022]
Abstract
A series of gas‐phase reactants is used to treat a Cu‐exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X‐ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu–Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu‐oxo species formed upon oxidation was further crosschecked by DFT‐assisted fitting of the EXAFS data and by resonant Raman spectroscopy. Altogether, the CuI/CuII speciation clearly correlates with Cu proximity, with metal ion pairs quantitatively forming under an oxidative environment.
Collapse
Affiliation(s)
- Gabriele Deplano
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
| | - Andrea Martini
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy.,Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Matteo Signorile
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
| | - Elisa Borfecchia
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
| | - Valentina Crocellà
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
| | - Stian Svelle
- Department of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, N-0315, Oslo, Norway
| | - Silvia Bordiga
- Department of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15, I-10135 and Via P. Giuria 7, I-10125, Torino, Italy
| |
Collapse
|
23
|
Ramirez A, Ticali P, Salusso D, Cordero-Lanzac T, Ould-Chikh S, Ahoba-Sam C, Bugaev AL, Borfecchia E, Morandi S, Signorile M, Bordiga S, Gascon J, Olsbye U. Multifunctional Catalyst Combination for the Direct Conversion of CO 2 to Propane. JACS AU 2021; 1:1719-1732. [PMID: 34723275 PMCID: PMC8549042 DOI: 10.1021/jacsau.1c00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The production of carbon-rich hydrocarbons via CO2 valorization is essential for the transition to renewable, non-fossil-fuel-based energy sources. However, most of the recent works in the state of the art are devoted to the formation of olefins and aromatics, ignoring the rest of the hydrocarbon commodities that, like propane, are essential to our economy. Hence, in this work, we have developed a highly active and selective PdZn/ZrO2+SAPO-34 multifunctional catalyst for the direct conversion of CO2 to propane. Our multifunctional system displays a total selectivity to propane higher than 50% (with 20% CO, 6% C1, 13% C2, 10% C4, and 1% C5) and a CO2 conversion close to 40% at 350 °C, 50 bar, and 1500 mL g-1 h-1. We attribute these results to the synergy between the intimately mixed PdZn/ZrO2 and SAPO-34 components that shifts the overall reaction equilibrium, boosting CO2 conversion and minimizing CO selectivity. Comparison to a PdZn/ZrO2+ZSM-5 system showed that propane selectivity is further boosted by the topology of SAPO-34. The presence of Pd in the catalyst drives paraffin production via hydrogenation, with more than 99.9% of the products being saturated hydrocarbons, offering very important advantages for the purification of the products.
Collapse
Affiliation(s)
- Adrian Ramirez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Pierfrancesco Ticali
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Davide Salusso
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Tomas Cordero-Lanzac
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Samy Ould-Chikh
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Christian Ahoba-Sam
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| | - Aram L. Bugaev
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova 178/24, Rostov-on-Don 344090, Russian Federation
| | - Elisa Borfecchia
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sara Morandi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Matteo Signorile
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Jorge Gascon
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Unni Olsbye
- SMN
Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, Oslo N-0315, Norway
| |
Collapse
|
24
|
Millan R, Cnudde P, van Speybroeck V, Boronat M. Mobility and Reactivity of Cu + Species in Cu-CHA Catalysts under NH 3-SCR-NOx Reaction Conditions: Insights from AIMD Simulations. JACS AU 2021; 1:1778-1787. [PMID: 34723280 PMCID: PMC8549050 DOI: 10.1021/jacsau.1c00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 05/25/2023]
Abstract
The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
25
|
Wang H, Du G, Jia J, Chen S, Su Z, Chen R, Chen T. Hierarchically porous zeolites synthesized with carbon materials as templates. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2090-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Negri C, Martini A, Deplano G, Lomachenko KA, Janssens TVW, Borfecchia E, Berlier G, Bordiga S. Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Phys Chem Chem Phys 2021; 23:18322-18337. [PMID: 34612374 PMCID: PMC8409503 DOI: 10.1039/d1cp01754c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Abstract
The speciation of framework-interacting CuII sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NOx with NH3 is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O2 mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O2 followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z2CuII sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z2CuII monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O2. By contrast, framework-anchored Z[CuII(NO3)] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O2 with Z[CuII(OH)] sites or structurally similar mono- or multi-copper Zx[CuIIxOy] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[CuII(OH)]/Zx[CuIIxOy] sites formed during activation in O2 and that of Z[CuII(NO3)] complexes formed by reaction with NO/O2, further confirming the chemical inertia of Z2CuII towards these reactants in the absence of solvating NH3 molecules.
Collapse
Affiliation(s)
- Chiara Negri
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Andrea Martini
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
- The Smart Materials Research Institute, Southern Federal UniversitySladkova 178/24344090 Rostov-on-DonRussia
| | - Gabriele Deplano
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility71 Avenue des Martyrs, CS 4022038043 Grenoble Cedex 9France
| | | | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| |
Collapse
|
27
|
Bruzzese PC, Salvadori E, Jäger S, Hartmann M, Civalleri B, Pöppl A, Chiesa M. 17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nat Commun 2021; 12:4638. [PMID: 34330914 PMCID: PMC8324863 DOI: 10.1038/s41467-021-24935-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
The bonding of copper ions to lattice oxygens dictates the activity and selectivity of copper exchanged zeolites. By 17O isotopic labelling of the zeolite framework, in conjunction with advanced EPR methodologies and DFT modelling, we determine the local structure of single site CuII species, we quantify the covalency of the metal-framework bond and we assess how this scenario is modified by the presence of solvating H216O or H217O molecules. This enables to follow the migration of CuII species as a function of hydration conditions, providing evidence for a reversible transfer pathway within the zeolite cage as a function of the water pressure. The results presented in this paper establish 17O EPR as a versatile tool for characterizing metal-oxide interactions in open-shell systems.
Collapse
Affiliation(s)
- Paolo Cleto Bruzzese
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany ,grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Enrico Salvadori
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Stefan Jäger
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Erlangen, Germany
| | - Bartolomeo Civalleri
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| | - Andreas Pöppl
- grid.9647.c0000 0004 7669 9786Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany
| | - Mario Chiesa
- grid.7605.40000 0001 2336 6580Department of Chemistry and NIS Centre of Excellence, University of Turin, Torino, Italy
| |
Collapse
|
28
|
Pappas DK, Kvande K, Kalyva M, Dyballa M, Lomachenko KA, Arstad B, Borfecchia E, Bordiga S, Olsbye U, Beato P, Svelle S. Influence of Cu-speciation in mordenite on direct methane to methanol conversion: Multi-Technique characterization and comparison with NH3 selective catalytic reduction of NOx. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Direct measurement of enthalpy and entropy changes in NH
3
promoted O
2
activation over Cu−CHA at low temperature. ChemCatChem 2021. [DOI: 10.1002/cctc.202100253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Ohyama J, Hirayama A, Kondou N, Yoshida H, Machida M, Nishimura S, Hirai K, Miyazato I, Takahashi K. Data science assisted investigation of catalytically active copper hydrate in zeolites for direct oxidation of methane to methanol using H 2O 2. Sci Rep 2021; 11:2067. [PMID: 33483547 PMCID: PMC7822835 DOI: 10.1038/s41598-021-81403-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
Dozens of Cu zeolites with MOR, FAU, BEA, FER, CHA and MFI frameworks are tested for direct oxidation of CH4 to CH3OH using H2O2 as oxidant. To investigate the active structures of the Cu zeolites, 15 structural variables, which describe the features of the zeolite framework and reflect the composition, the surface area and the local structure of the Cu zeolite active site, are collected from the Database of Zeolite Structures of the International Zeolite Association (IZA). Also analytical studies based on inductively coupled plasma-optical emission spectrometry (ICP-OES), X-ray fluorescence (XRF), N2 adsorption specific surface area measurement and X-ray absorption fine structure (XAFS) spectral measurement are performed. The relationships between catalytic activity and the structural variables are subsequently revealed by data science techniques, specifically, classification using unsupervised and supervised machine learning and data visualization using pairwise correlation. Based on the unveiled relationships and a detailed analysis of the XAFS spectra, the local structures of the Cu zeolites with high activity are proposed.
Collapse
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Nahoko Kondou
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, 923-1292, Japan
| | - Kenji Hirai
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-Ward, Sapporo, 001-0020, Japan
| | - Itsuki Miyazato
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo, 060-0815, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo, 060-0815, Japan
| |
Collapse
|
31
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Activation of C-H bonds by a nonheme iron(IV)-oxo complex: mechanistic evidence through a coupled EDXAS/UV-Vis multivariate analysis. Phys Chem Chem Phys 2021; 23:1188-1196. [PMID: 33355324 DOI: 10.1039/d0cp04304d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The understanding of reactive processes involving organic substrates is crucial to chemical knowledge and requires multidisciplinary efforts for its advancement. Herein, we apply a combined multivariate, statistical and theoretical analysis of coupled time-resolved X-ray absorption (XAS)/UV-Vis data to obtain detailed mechanistic information for on the C-H bond activation of 9,10-dihydroanthracene (DHA) and diphenylmethane (Ph2CH2) by the nonheme FeIV-oxo complex [N4Py·FeIV(O)]2+ (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) in CH3CN at room temperature. Within this approach, we determine the number of key chemical species present in the reaction mixtures and derive spectral and concentration profiles for the reaction intermediates. From the quantitative analysis of the XAS spectra the transient intermediate species are structurally determined. As a result, it is suggested that, while DHA is oxidized by [N4Py·FeIV(O)]2+ with a hydrogen atom transfer-electron transfer (HAT-ET) mechanism, Ph2CH2 is oxidized by the nonheme iron-oxo complex through a HAT-radical dissociation pathway. In the latter process, we prove that the intermediate FeIII complex [N4Py·FeIII(OH)]2+ is not able to oxidize the diphenylmethyl radical and we provide its structural characterization in solution. The employed combined experimental and theoretical strategy is promising for the spectroscopic characterization of transient intermediates as well as for the mechanistic investigation of redox chemical transformations on the second to millisecond time scales.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Andrea Martini
- Dipartimento di Chimica, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy and The Smart Materials Research Institute, Southern Federal University, 344090 Sladkova 178/24 Rostov-on-Don, Russia
| | - Francesco Sessa
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| | - Paola D'Angelo
- Dipartimento di Chimica, Università di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
32
|
In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04350-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractAmmonia-mediated selective catalytic reduction (NH3-SCR) using Cu-exchanged chabazite zeolites as catalysts is one of the leading technologies for NOx removal from exhaust gases, with CuII/CuI redox cycles being the basis of the catalytic reaction. The amount of CuII ions reduced by NO/NH3 can be quantified by the consumption of NO during temperature-programmed reduction experiments (NO-TPR). In this article, we show the capabilities of in situ X-ray absorption near-edge spectroscopy (XANES), coupled with multivariate curve resolution (MCR) and principal component analysis (PCA) methods, in following CuII/CuI speciation during reduction in NO/NH3 after oxidation in NO/O2 at 50 °C on samples with different copper loading and pretreatment conditions. Our XANES results show that during the NO/NH3 ramp CuII ions are fully reduced to CuI in the 50–290 °C range. The number of species involved in the process, their XANES spectra and their concentration profiles as a function of the temperature were obtained by MCR and PCA. Mixed ligand ammonia solvated complexes [CuII(NH3)3(X)]+ (X = OH−/O− or NO3−) are present at the beginning of the experiment, and are transformed into mobile [CuI(NH3)2]+ complexes: these complexes lose an NH3 ligand and become framework-coordinated above 200 °C. In the process, multiple CuII/CuI reduction events are observed: the first one around 130 °C is identified with the reduction of [CuII(NH3)3(OH/O)]+ moieties, while the second one occurs around 220–240 °C and is associated with the reduction of the ammonia-solvated Cu-NO3− species. The nitrate concentration in the catalysts is found to be dependent on the zeolite Cu loading and on the applied pretreatment conditions. Ammonia solvation increases the number of CuII sites available for the formation of nitrates, as confirmed by infrared spectroscopy.
Collapse
|
33
|
Ohyama J, Hirayama A, Tsuchimura Y, Kondou N, Yoshida H, Machida M, Nishimura S, Kato K, Miyazato I, Takahashi K. Catalytic direct oxidation of methane to methanol by redox of copper mordenite. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00125f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic production of CH3OH by direct oxidation of CH4 with O2 was performed using Cu zeolites in a CH4/O2/H2O flow reaction, where Cu-MOR exhibited relatively high CH3OH production with the redox of Cu(i)/Cu(ii) species.
Collapse
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Yuka Tsuchimura
- Department of Applied Chemistry and Biochemistry
- Graduate School of Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Nahoko Kondou
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology
- Kumamoto University
- Kumamoto
- Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology
- Japan Advanced Institute of Science and Technology (JAIST)
- Nomi
- Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute
- Japan
| | | | | |
Collapse
|
34
|
Tavani F, Capocasa G, Martini A, Sessa F, Di Stefano S, Lanzalunga O, D'Angelo P. Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Trans 2021; 50:131-142. [DOI: 10.1039/d0dt03083j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined multivariate and theoretical analysis of coupled XAS/UV–Vis data was proven to be an innovative method to obtain direct structural and mechanistic evidence for bimolecular reactions in solution involving organic substrates.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | - Andrea Martini
- Dipartimento di Chimica
- Università degli Studi di Torino
- 10125 Torino
- Italy
- The Smart Materials Research Institute
| | - Francesco Sessa
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| | | | | | - Paola D'Angelo
- Dipartimento di Chimica
- Università di Roma “La Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
35
|
Daya R, Keturakis CJ, Trandal D, Kumar A, Joshi SY, Yezerets A. Alternate pathway for standard SCR on Cu-zeolites with gas-phase ammonia. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00041a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox mechanisms have been theorized for the selective catalytic reduction (SCR) of NOx over small-pore Cu-zeolites.
Collapse
|
36
|
Ohata Y, Kubota H, Toyao T, Shimizu KI, Ohnishi T, Moteki T, Ogura M. Kinetic and spectroscopic insights into the behaviour of Cu active site for NH 3-SCR over zeolites with several topologies. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01838d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolite topology has a great effect on the dependence of NH3-SCR rates over Cu–zeolites at 473 K on Cu density. It is revealed by the time-resolved UV-vis measurements that zeolites mainly affect the oxidation property of Cu ion by O2.
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Takeshi Ohnishi
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Takahiko Moteki
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Masaru Ogura
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
37
|
Mesilov V, Dahlin S, Bergman SL, Hammershøi PS, Xi S, Pettersson LJ, Bernasek SL. Insights into sulfur poisoning and regeneration of Cu-SSZ-13 catalysts: in situ Cu and S K-edge XAS studies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00975c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature during sulfur poisoning affects the relation between total sulfur content and the fraction of sulfur-free copper in poisoned and regenerated Cu-SSZ-13 catalysts.
Collapse
Affiliation(s)
- Vitaly Mesilov
- Science Division
- Yale-NUS College
- Singapore 138527
- Singapore
| | - Sandra Dahlin
- Department of Chemical Engineering
- KTH Royal Institute of Technology
- Stockholm 10044
- Sweden
- Scania CV AB
| | | | | | - Shibo Xi
- Institute of Chemical and Engineering Sciences
- A*STAR
- Singapore 627833
- Singapore
| | - Lars J. Pettersson
- Department of Chemical Engineering
- KTH Royal Institute of Technology
- Stockholm 10044
- Sweden
| | | |
Collapse
|
38
|
Pankin IA, Issa Hamoud H, Lomachenko KA, Rasmussen SB, Martini A, Bazin P, Valtchev V, Daturi M, Lamberti C, Bordiga S. Cu- and Fe-speciation in a composite zeolite catalyst for selective catalytic reduction of NO x: insights from operando XAS. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01654c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cu-SAPO-34 (Cu-CZC) and Fe-mordenite (Fe-MOR) and their mechanical mixture (50 : 50) have been exhaustively investigated by means of operando X-ray absorption spectroscopy under NH3-SCR conditions.
Collapse
Affiliation(s)
- Ilia A. Pankin
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | - Houeida Issa Hamoud
- Laboratoire Catalyse & Spectrochimie
- ENSICAEN – Université de Caen – CNRS 6 Boulevard Maréchal Juin
- 14050 Caen
- France
| | | | | | - Andrea Martini
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | - Philippe Bazin
- Laboratoire Catalyse & Spectrochimie
- ENSICAEN – Université de Caen – CNRS 6 Boulevard Maréchal Juin
- 14050 Caen
- France
| | - Valentin Valtchev
- Laboratoire Catalyse & Spectrochimie
- ENSICAEN – Université de Caen – CNRS 6 Boulevard Maréchal Juin
- 14050 Caen
- France
| | - Marco Daturi
- Laboratoire Catalyse & Spectrochimie
- ENSICAEN – Université de Caen – CNRS 6 Boulevard Maréchal Juin
- 14050 Caen
- France
| | - Carlo Lamberti
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| | - Silvia Bordiga
- Department of Chemistry
- NIS Center and INSTM Reference Center
- University of Turin
- Turin
- Italy
| |
Collapse
|
39
|
Millan R, Cnudde P, Hoffman AEJ, Lopes CW, Concepción P, van Speybroeck V, Boronat M. Theoretical and Spectroscopic Evidence of the Dynamic Nature of Copper Active Sites in Cu-CHA Catalysts under Selective Catalytic Reduction (NH 3-SCR-NO x) Conditions. J Phys Chem Lett 2020; 11:10060-10066. [PMID: 33179925 PMCID: PMC7720274 DOI: 10.1021/acs.jpclett.0c03020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The dynamic nature of the copper cations acting as active sites for selective catalytic reduction of nitrogen oxides with ammonia is investigated using a combined theoretical and spectroscopic approach. Ab initio molecular dynamics simulations of Cu-CHA catalysts in contact with reactants and intermediates at realistic operating conditions show that only ammonia is able to release Cu+ and Cu2+ cations from their positions coordinated to the zeolite framework, forming mobile Cu+(NH3)2 and Cu2+(NH3)4 complexes that migrate to the center of the cavity. Herein, we give evidence that such mobilization of copper cations modifies the vibrational fingerprint in the 800-1000 cm-1 region of the IR spectra. Bands associated with the lattice asymmetric T-O-T vibrations are perturbed by the presence of coordinated cations, and allow one to experimentally follow the dynamic reorganization of the active sites at operating conditions.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Alexander E. J. Hoffman
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Christian W. Lopes
- Laboratório
de Reatividade e Catálise (LRC), Universidade Federal do Rio Grande do Sul, Bento Gonçalves Avenue 9500, 91501-970 Porto Alegre, Brazil
| | - Patricia Concepción
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat Politècnica
de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
40
|
Tavani F, Fracchia M, Pianta N, Ghigna P, Quartarone E, D’Angelo P. Multivariate curve resolution analysis of operando XAS data for the investigation of the lithiation mechanisms in high entropy oxides. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Zhang T, Chen Z, Walsh AG, Li Y, Zhang P. Single-Atom Catalysts Supported by Crystalline Porous Materials: Views from the Inside. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002910. [PMID: 32656812 DOI: 10.1002/adma.202002910] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Single-atom catalysts (SACs) have recently emerged as an exciting system in heterogeneous catalysis showing outstanding performance in many catalytic reactions. Single-atom catalytic sites alone are not stable and thus require stabilization from substrates. Crystalline porous materials such as zeolites and metal-organic frameworks (MOFs) are excellent substrates for SACs, offering high stability with the potential to further enhance their performance due to synergistic effects. This review features recent work on the structure, electronic, and catalytic properties of zeolite and MOF-protected SACs, offering atomic-scale views from the "inside" thanks to the subatomic resolution of synchrotron X-ray absorption spectroscopy (XAS). The extended X-ray absorption fine structure and associated methods will be shown to be powerful tools in identifying the single-atom site and can provide details into the coordination environment and bonding disorder of SACs. The X-ray absorption near-edge structure will be demonstrated as a valuable method in probing the electronic properties of SACs by analyzing the white line intensity, absorption edge shift, and pre-/postedge features. Emphasis is also placed on in situ/operando XAS using state-of-the-art equipment, which can unveil the changes in structure and properties of SACs during the dynamic catalytic processes in a highly sensitive and time-resolved manner.
Collapse
Affiliation(s)
- Tianjun Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ziyi Chen
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Andrew G Walsh
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
42
|
Wang H, Wang L, Xiao FS. Metal@Zeolite Hybrid Materials for Catalysis. ACS CENTRAL SCIENCE 2020; 6:1685-1697. [PMID: 33145408 PMCID: PMC7596864 DOI: 10.1021/acscentsci.0c01130] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Indexed: 05/04/2023]
Abstract
The fixation of metal nanoparticles into zeolite crystals has emerged as a new series of heterogeneous catalysts, giving performances that steadily outperform the generally supported catalysts in many important reactions. In this outlook, we define different noble metal-in-zeolite structures (metal@zeolite) according to the size of the nanoparticles and their relative location to the micropores. The metal species within the micropores and those larger than the micropores are denoted as encapsulated and fixed structures, respectively. The development in the strategies for the construction of metal@zeolite hybrid materials is briefly summarized in this work, where the rational preparation and improved thermal stability of the metal nanostructures are particularly mentioned. More importantly, these metal@zeolite hybrid materials as catalysts exhibit excellent shape selectivity. Finally, we review the current challenges and future perspectives for these metal@zeolite catalysts.
Collapse
Affiliation(s)
- Hai Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liang Wang
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- (L.W.)
| | - Feng-Shou Xiao
- Key
Lab of Biomass Chemical Engineering of Ministry of Education, College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key
Laboratory of Applied Chemistry of Zhejiang Province, Department of
Chemistry, Zhejiang University, Hangzhou 310028, China
- (F.S.X.)
| |
Collapse
|
43
|
Pankin I, Borfecchia E, Martini A, Lomachenko K, Lamberti C, Soldatov A. DFT-assisted XANES simulations to discriminate different monomeric CuII species in CHA catalysts. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Cortés-Reyes M, Herrera C, Larrubia MÁ, Alemany LJ. Advance in the scaling up of a hybrid catalyst for NSR-SCR coupled systems under H2O + CO2 atmosphere. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Guda A, Guda S, Martini A, Bugaev A, Soldatov M, Soldatov A, Lamberti C. Machine learning approaches to XANES spectra for quantitative 3D structural determination: The case of CO2 adsorption on CPO-27-Ni MOF. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Martini A, Pankin IA, Marsicano A, Lomachenko KA, Borfecchia E. Wavelet analysis of a Cu-oxo zeolite EXAFS simulated spectrum. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
|
48
|
Kirste KG, Laassiri S, Hu Z, Stoian D, Torrente-Murciano L, Hargreaves JSJ, Mathisen K. XAS investigation of silica aerogel supported cobalt rhenium catalysts for ammonia decomposition. Phys Chem Chem Phys 2020; 22:18932-18949. [PMID: 32567607 DOI: 10.1039/d0cp00558d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The implementation of ammonia as a hydrogen vector relies on the development of active catalysts to release hydrogen on-demand at low temperatures. As an alternative to ruthenium-based catalysts, herein we report the high activity of silica aerogel supported cobalt rhenium catalysts. XANES/EXAFS studies undertaken at reaction conditions in the presence of the ammonia feed reveal that the cobalt and rhenium components of the catalyst which had been pre-reduced are initially re-oxidised prior to their subsequent reduction to metallic and bimetallic species before catalytic activity is observed. A synergistic effect is apparent in which this re-reduction step occurs at considerably lower temperatures than for the corresponding monometallic counterpart materials. The rate of hydrogen production via ammonia decomposition was determined to be 0.007 molH2 gcat-1 h-1 at 450 °C. The current study indicates that reduced Co species are crucial for the development of catalytic activity.
Collapse
Affiliation(s)
- Karsten G Kirste
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
49
|
Spectral Decomposition of X-ray Absorption Spectroscopy Datasets: Methods and Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
X-ray absorption spectroscopy (XAS) today represents a widespread and powerful technique, able to monitor complex systems under in situ and operando conditions, while external variables, such us sampling time, sample temperature or even beam position over the analysed sample, are varied. X-ray absorption spectroscopy is an element-selective but bulk-averaging technique. Each measured XAS spectrum can be seen as an average signal arising from all the absorber-containing species/configurations present in the sample under study. The acquired XAS data are thus represented by a spectroscopic mixture composed of superimposed spectral profiles associated to well-defined components, characterised by concentration values evolving in the course of the experiment. The decomposition of an experimental XAS dataset in a set of pure spectral and concentration values is a typical example of an inverse problem and it goes, usually, under the name of multivariate curve resolution (MCR). In the present work, we present an overview on the major techniques developed to realize the MCR decomposition together with a selection of related results, with an emphasis on applications in catalysis. Therein, we will highlight the great potential of these methods which are imposing as an essential tool for quantitative analysis of large XAS datasets as well as the directions for further development in synergy with the continuous instrumental progresses at synchrotron sources.
Collapse
|
50
|
Zhang Y, Peng Y, Li J, Groden K, McEwen JS, Walter ED, Chen Y, Wang Y, Gao F. Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01590] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yani Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kyle Groden
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Jean-Sabin McEwen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, 99164, United States
| | - Eric D. Walter
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Chen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|