1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Xie H, Wang S, Shu XZ. C-OH Bond Activation for Stereoselective Radical C-Glycosylation of Native Saccharides. J Am Chem Soc 2024; 146:32269-32275. [PMID: 39545714 DOI: 10.1021/jacs.4c11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Radical C-glycosylation presents a flexible and efficient method for synthesizing C-glycosides. Existing methods always require multistep processes for generating anomeric radicals. In this study, we introduce a streamlined approach to produce anomeric radicals through direct C-OH bond homolysis of unmodified saccharides, eliminating the need for protection, deprotection, or activation steps. These anomeric radicals selectively couple with activated alkenes, yielding C-glycosylation products with high stereoselectivity (>20:1). This method is applicable to a variety of native monosaccharides, such as l-arabinose, d-arabinose, d-xylose, l-xylose, d-galactose, β-d-glucose, α-d-glucose, and l-ribose, as well as oligosaccharides including α-lactose, d-(+)-melibiose, and acarbose. We also extend this approach to C-glycosylation of amino acid and peptide derivatives, and demonstrate a streamlined synthesis of an anti-inflammatory agent.
Collapse
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
3
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
4
|
Zhang JR, Ding HJ, Shang ZL, Zhang B, Xu M, Cao P, Hu P, Wang BQ, Chen B. Nickel-Catalyzed Reductive Dicarbofunctionalization of 1,3-Dienes with Aziridines and (Het)Aryl Electrophiles. Org Lett 2024; 26:8301-8306. [PMID: 39325534 DOI: 10.1021/acs.orglett.4c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A three-component reductive 1,4-dicarbofunctionalization of 1,3-dienes with aziridines and (het)aryl electrophiles was realized. The combination of Ni catalysis with Mn powder as a final reductant enables the direct formation of a Csp2-Csp3 and a Csp3-Csp3 bond at one time. This protocol afforded a convenient approach to the synthesis of β-arylethylamines bearing various functionals and heterocyclic groups. The utility of this reaction was also demonstrated by scale-up preparation, late-stage modification of bioactive molecules, and diverse transformations.
Collapse
Affiliation(s)
- Jie-Rui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hua-Jiao Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Zhang-Li Shang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Minghui Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
5
|
Lukas F, Findlay MT, Fillols M, Templ J, Savino E, Martin B, Allmendinger S, Furegati M, Noël T. Graphitic Carbon Nitride as a Photocatalyst for Decarboxylative C(sp 2)-C(sp 3) Couplings via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405902. [PMID: 38807439 DOI: 10.1002/anie.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The development of robust and reliable methods for the construction of C(sp2)-C(sp3) bonds is vital for accessing an increased array of structurally diverse scaffolds in drug discovery and development campaigns. While significant advances towards this goal have been achieved using metallaphotoredox chemistry, many of these methods utilise photocatalysts based on precious-metals due to their efficient redox processes and tuneable properties. However, due to the cost, scarcity, and toxicity of these metals, the search for suitable replacements should be a priority. Here, we show the use of commercially available heterogeneous semiconductor graphitic carbon nitride (gCN) as a photocatalyst, combined with nickel catalysis, for the cross-coupling between aryl halide and carboxylic acid coupling partners. gCN has been shown to engage in single-electron-transfer (SET) and energy-transfer (EnT) processes for the formation of C-X bonds, and in this manuscript we overcome previous limitations to furnish C-C over C-O bonds using carboxylic acids. A broad scope of both aryl halides and carboxylic acids is presented, and recycling of the photocatalyst demonstrated. The mechanism of the reaction is also investigated.
Collapse
Affiliation(s)
- Florian Lukas
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michael T Findlay
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johanna Templ
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Elia Savino
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wei XX, Zhao ZZ, Pang X, Shu XZ. Aliphatic Hydrosilanes via Nickel-Catalyzed Reductive Csp 3-Si Coupling of Primary Alkyl Bromides and Chlorohydrosilanes. Org Lett 2024; 26:6125-6129. [PMID: 38994746 DOI: 10.1021/acs.orglett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The reductive C-Si coupling of chlorosilanes offers efficient access to organosilanes, but its potential for constructing aliphatic ones remains largely unexplored. This manuscript presents a nickel-catalyzed Csp3-Si coupling reaction of unactivated alkyl-Br and R2Si(H)Cl. This work establishes a new approach for synthesizing highly functionalized aliphatic hydrosilanes from readily available chemical feedstocks. The reaction is easily scalable and can accommodate various functional groups, including carboxylic acids, which are usually incompatible with basic conditions.
Collapse
Affiliation(s)
- Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
7
|
Cook A, Kassymbek A, Vaezghaemi A, Barbery C, Newman SG. An S N1-Approach to Cross-Coupling: Deoxygenative Arylation Facilitated by the β-Silicon Effect. J Am Chem Soc 2024; 146:19929-19938. [PMID: 39002160 DOI: 10.1021/jacs.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
We report a dual metal-catalyzed method for the cross-coupling of unprotected alcohols by exploiting the β-Si effect. This deoxygenative Suzuki-Miyaura reaction tolerates a range of primary, secondary, and tertiary alcohol substrates along with diverse functional groups and heterocycles. Mechanistic experiments including KIE, VTNA, and Eyring analyses suggest the existence of a carbocation intermediate on the reaction pathway, consistent with a rare SN1 pathway for the activation of an electrophile in cross-coupling reactions. A novel bis-imidazolium N-heterocyclic carbene (NHC) ligand was found to be optimal for reactivity, and nickel(0)-, nickel(I)- and nickel(II)- complexes of this ligand were isolated and characterized. In contrast to more well-established shorter chain ligands, these long-chain NHCs are found to have characteristically large bite angles, which may be critical for enabling the deoxygenative arylation of aliphatic alcohols.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aishabibi Kassymbek
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aref Vaezghaemi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Carlos Barbery
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
8
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
10
|
Liu W, Xing Y, Yan D, Kong W, Shen K. Nickel-catalyzed electrophiles-controlled enantioselective reductive arylative cyclization and enantiospecific reductive alkylative cyclization of 1,6-enynes. Nat Commun 2024; 15:1787. [PMID: 38413585 PMCID: PMC10899222 DOI: 10.1038/s41467-024-45617-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful tool for the construction of chiral nitrogen-containing heterocycles. Despite notable achievements, these transformations have been largely limited to the use of aryl or alkenyl metal reagents, and stereoselective or stereospecific alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes with aryl iodides, providing enantioenriched six-membered carbo- and heterocycles in good yields with excellent enantioselectivities. Additionally, we have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides, furnishing chiral five-membered heterocycles with high regioselectivity and stereochemical fidelity. Mechanistic studies reveal that the arylative cyclization of 1,6-enynes is initiated by the oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is triggered by the oxidative addition of Ni(0) to allylic acetates. The utility of this strategy is further demonstrated in the enantioselective synthesis of the antiepileptic drug Brivaracetam.
Collapse
Affiliation(s)
- Wenfeng Liu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yunxin Xing
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Denghong Yan
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
| | - Kun Shen
- Department of Radiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Liu K, Wang Z, Künzel AN, Layh M, Studer A. Regioselective Formal β-Allylation of Carbonyl Compounds Enabled by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2023; 62:e202303473. [PMID: 37141023 DOI: 10.1002/anie.202303473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
The Tsuji-Trost reaction between carbonyl compounds and allylic precursors has been widely used in the synthesis of natural products and pharmaceutical compounds. As the α-C-H bond is far more acidic than the β-C-H bond, carbonyl compounds undergo highly regioselective allylation at the α-position and their β-allylation is therefore highly challenging. This innate α-reactivity conversely hampers diversity, especially if the corresponding β-allylation product is targeted. Herein, we present a formal intermolecular β-C-C bond formation reaction of a broad range of aldehydes and ketones with different allyl electrophiles through cooperative nickel and photoredox catalysis. β-Selectivity is achieved via initial transformation of the aldehydes and ketones to their corresponding silyl enol ethers. The overall transformation features mild conditions, excellent regioselectivity, wide functional group tolerance and high reaction efficiency. The introduced facile and regioselective β-allylation of carbonyl compounds proceeding through cooperative catalysis allows the preparation of valuable building blocks that are difficult to access from aldehydes and ketones using existing methodology.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Augustinus N Künzel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Marcus Layh
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität, Corrensstraße 28/30, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
12
|
Liu S, Wang SL, Wan J, Peng S, Zhang JR, Ding HJ, Zhang B, Ni HL, Cao P, Hu P, Wang BQ, Chen B. Nickel-Catalyzed Reductive Cross-Coupling of Aziridines and Allylic Chlorides. Org Lett 2023; 25:6582-6586. [PMID: 37642345 DOI: 10.1021/acs.orglett.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A nickel-catalyzed reductive cross-coupling of aziridines and allylic chlorides was realized by using manganese metal as the reducing agent. This protocol afforded a convenient approach to obtain β-allyl-substituted arylethylamines bearing various functional groups. The utility of this reaction was also demonstrated by scale-up preparation and diverse transformations, including the synthesis of Baclofen and several bioactive molecular motifs.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Sen-Lin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie Wan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Shuang Peng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jie-Rui Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hua-Jiao Ding
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
13
|
Zhao D, Xu B, Zhu C. Migratory allylic arylation of 1,n-enols enabled by nickel catalysis. Nat Commun 2023; 14:3308. [PMID: 37286547 DOI: 10.1038/s41467-023-38865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Transition-metal-catalyzed allylic substitution reactions (Tsuji-Trost reactions) proceeding via a π-allyl metal intermediate have been demonstrated as a powerful tool in synthetic chemistry. Herein, we disclose an unprecedented π-allyl metal species migration, walking on the carbon chain involving 1,4-hydride shift as confirmed by deuterium labeling experiments. This migratory allylic arylation can be realized under dual catalysis of nickel and lanthanide triflate, a Lewis acid. Olefin migration has been observed to preferentially occur with the substrate of 1,n-enols (n ≥ 3). The robust nature of the allylic substitution strategy is reflected by a broad scope of substrates with the control of regio- and stereoselectivity. DFT studies suggest that π-allyl metal species migration consists of the sequential β-H elimination and migratory insertion, with diene not being allowed to release from the metal center before producing a new π-allyl nickel species.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, 519000, China
| | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
14
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
15
|
Zhang L, Zhao M, Pu M, Ma Z, Zhou J, Chen C, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Conjugate Arylation and Heteroarylation via an Elementary Mechanism of 1,4-Addition. J Am Chem Soc 2022; 144:20249-20257. [DOI: 10.1021/jacs.2c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Mengxin Zhao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
| | - Zhaoming Ma
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Jingsong Zhou
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road,
Guangming District, Shenzhen 518107, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
16
|
Tran HN, Nguyen CM, Koeritz MT, Youmans DD, Stanley LM. Nickel-catalyzed arylative substitution of homoallylic alcohols. Chem Sci 2022; 13:11607-11613. [PMID: 36320388 PMCID: PMC9555571 DOI: 10.1039/d2sc01716d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Direct coupling of unactivated alcohols remains a challenge in synthetic chemistry. Current approaches to cross-coupling of alcohol-derived electrophiles often involve activated alcohols such as tosylates or carbonates. We report the direct arylative substitution of homoallylic alcohols catalyzed by a nickel-bisphosphine complex as a facile method to generate allylic arenes. These reactions proceed via formation of an allylic alcohol intermediate. Subsequent allylic substitution with arylboroxine nucleophiles enables the formation of a variety of allylic arenes. The presence of p-methoxyphenylboronic acid is crucial to activate the allylic alcohol to achieve high product yields.
Collapse
Affiliation(s)
- Hai N Tran
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Chau M Nguyen
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Mason T Koeritz
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Dustin D Youmans
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Levi M Stanley
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| |
Collapse
|
17
|
Wang C, Wu X, Li H, Qu J, Chen Y. Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022; 61:e202210484. [DOI: 10.1002/anie.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Chenglong Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Haiyan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
18
|
Abstract
Transition-metal-catalyzed reductive coupling of electrophiles has emerged as a powerful tool for the construction of molecules. While major achievements have been made in the field of cross-couplings between organic halides and pseudohalides, an increasing number of reports demonstrates reactions involving more readily available, low-cost, and stable, but unreactive electrophiles. This account summarizes the recent results in our laboratory focusing on this topic. These findings typically include deoxygenative C-C coupling of alcohols, reductive alkylation of alkenyl acetates, reductive C-Si coupling of chlorosilanes, and reductive C-Ge coupling of chlorogermanes.The reductive deoxygenative coupling of alcohols with electrophiles is synthetically appealing, but the potential of this chemistry remains to be disclosed. Our initial study focused on the reaction of allylic alcohols and aryl bromides by the combination of nickel and Lewis acid catalysis. This method offers a selectivity that is opposite to that of the classic Tsuji-Trost reactions. Further investigation on the reaction of benzylic alcohols led to the foundation of a dynamic kinetic cross-coupling strategy with applications in the nickel-catalyzed reductive arylation of benzylic alcohols and cobalt-catalyzed enantiospecific reductive alkenylation of allylic alcohols. The titanium catalysis was later established to produce carbon radicals directly from unactivated tertiary alcohols via C-OH cleavage. The development of their coupling reactions with carbon fragments delivers new methods for the construction of all-carbon quaternary centers. These reactions have shown high selectivity for the functionalization of tertiary alcohols, leaving primary and secondary alcohols intact. Alkenyl acetates are inexpensive, stable, and environmentally friendly and are considered the most attractive alkenyl reagents. The development of reductive alkylation of alkenyl acetates with benzyl ammoniums and alkyl bromides offers mild approaches for the conversion of ketones into aliphatic alkenes.Extensive studies in this field have enabled us to extend the cross-electrophile coupling from carbon to silicon and germanium chemistry. These reactions harness the ready availability of chlorosilanes and chlorogermanes but suffer from the challenge of their low reactivity toward transition metals. Under reductive nickel catalysis, a broad range of alkenyl and aryl electrophiles couple well with vinyl- and hydrochlorosilanes. The use of alkyl halides as coupling partners led to the formation of functionalized alkylsilanes. The C-Ge coupling seems less substrate-dependent, and various common chlorogermanes couple well with aryl, alkenyl, and alkyl electrophiles. In general, functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine are tolerated. These methods provide new access to organosilicon and organogermanium compounds, some of which are challenging to obtain otherwise.
Collapse
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| |
Collapse
|
19
|
Jin Y, Ng EWH, Fan T, Hirao H, Gong LZ. Photochemical Allylation of Alkanes Enabled by Nickel Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Elvis Wang Hei Ng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People’s Republic of China
| | - Tao Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People’s Republic of China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
20
|
Liu K, Studer A. Formal β-C-H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206533. [PMID: 35656716 PMCID: PMC9400853 DOI: 10.1002/anie.202206533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 01/19/2023]
Abstract
α-C-H-functionalization of ketones and aldehydes has been intensively explored in organic synthesis. The functionalization of unactivated β-C-H bonds in such carbonyl compounds is less well investigated and developing a general method for their β-C-H arylation remains challenging. Herein we report a method that uses cooperative nickel and photoredox catalysis for the formal β-C-H arylation of aldehydes and ketones with (hetero)aryl bromides. The method features mild conditions, remarkable scope and wide functional group tolerance. Importantly, the introduced synthetic strategy also allows the β-alkenylation, β-alkynylation and β-acylation of aldehydes under similar conditions. Mechanistic studies revealed that this transformation proceeds through a single electron oxidation/Ni-mediated coupling/reductive elimination cascade.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
21
|
Carbonylative Cross‐Coupling Reaction of Allylic Alcohols and Organoalanes with 1 atm CO Enabled by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Qi YQ, Liu S, Xu Y, Li Y, Su T, Ni HL, Gao Y, Yu W, Cao P, Hu P, Zhao KQ, Wang BQ, Chen B. Nickel-Catalyzed Three-Component Cross-Electrophile Coupling of 1,3-Dienes with Aldehydes and Aryl Bromides. Org Lett 2022; 24:5023-5028. [PMID: 35822901 DOI: 10.1021/acs.orglett.2c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report a Ni-catalyzed three-component cross-electrophile coupling of 1,3-dienes with aldehydes and aryl bromides using manganese metal as the reducing agent. This efficient protocol accomplishes dicarbofunctionalization of 1,3-dienes to synthesize diverse structural 1,4-disubstituted homoallylic alcohols by forming two new C-C bonds in one time. Mechanistic study suggests that an allyl-nickel(I) species is involved in the catalytic cycle.
Collapse
Affiliation(s)
- Ya-Qiong Qi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Shuai Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yan Xu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yang Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Tong Su
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Yuanji Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Peng Cao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| | - Bin Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People's Republic of China
| |
Collapse
|
23
|
Ye Y, Qi X, Xu B, Lin Y, Xiang H, Zou L, Ye XY, Xie T. Nickel-catalyzed cross-electrophile allylation of vinyl bromides and the modification of anti-tumour natural medicine β-elemene. Chem Sci 2022; 13:6959-6966. [PMID: 35774167 PMCID: PMC9200125 DOI: 10.1039/d2sc02054h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant. This Ni-catalyzed modular approach displays excellent functional group tolerance and a broad substrate scope, which the creation of a series of 1,4-dienes including several structurally complex natural products and pharmaceutical motifs. Moreover, the coupling strategy has the potential to realize enantiomeric control. The practicality of this transformation is demonstrated through the potent modification of the naturally antitumor active molecule β-elemene. Herein, we present a facile and efficient allylation method via Ni-catalyzed cross-electrophile coupling of readily available allylic acetates with a variety of substituted alkenyl bromides using zinc as the terminal reductant.![]()
Collapse
Affiliation(s)
- Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang Qi
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Bing Xu
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Ying Lin
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Liang Zou
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
| |
Collapse
|
24
|
Liu K, Studer A. Formal β‐C‐H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kun Liu
- Westfälische Wilhelms-Universität Münster: Westfalische Wilhelms-Universitat Munster Chemistry and pharmacy GERMANY
| | - Armido Studer
- Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut Corrensstrasse 40 48149 Münster GERMANY
| |
Collapse
|
25
|
Chen W, Ni S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Reductive Allylation of Aryl Halides. Org Lett 2022; 24:3647-3651. [PMID: 35579336 DOI: 10.1021/acs.orglett.2c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with conventional reductive coupling, reductive coupling under electrochemical conditions without external reductants is greener, milder, and more efficient and is of increasing interest to organic chemists. In this work, we report the sacrificial anode, nickel-catalyzed electrochemical allylation reaction of aryl and alkyl halides. The reaction can be applied to a range of allylation reagents such as trifluoroalkenes, oxalates, and acetates.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Zhao ZZ, Pang X, Wei XX, Liu XY, Shu XZ. Nickel-Catalyzed Reductive C(sp 2 )-Si Coupling of Chlorohydrosilanes via Si-Cl Cleavage. Angew Chem Int Ed Engl 2022; 61:e202200215. [PMID: 35263015 DOI: 10.1002/anie.202200215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/06/2023]
Abstract
We report here a new method for the synthesis of organohydrosilanes from phenols and ketones. This method is established through reductive C-Si coupling of chlorohydrosilanes via unconventional Si-Cl cleavage. The reaction offers access to aryl- and alkenylhydrosilanes with a scope that is complementary to those of the established methods. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled successfully. Functionalities, including Grignard-sensitive groups (e.g., primary amine, amide, phenol, ketone, ester, and free indole), acid-sensitive groups (e.g., ketal and THP protection), alkyl-Cl, pyridine, furan, thiophene, Ar-Bpin, and Ar-SiMe3 , were tolerated. Gram-scale reaction, incorporation of -Si(H)R2 into complex biologically active molecules, and derivatization of formed organohydrosilanes are demonstrated.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
27
|
Hu YC, Min XT, Ji DW, Chen QA. Catalytic prenylation and reverse prenylation of aromatics. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Zhao Z, Pang X, Wei X, Liu X, Shu X. Nickel‐Catalyzed Reductive C(sp
2
)−Si Coupling of Chlorohydrosilanes via Si−Cl Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiao‐Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
29
|
Qi L, Pang X, Yin K, Pan QQ, Wei XX, Shu XZ. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Guo P, Pang X, Wang K, Su PF, Pan QQ, Han GY, Shen Q, Zhao ZZ, Zhang W, Shu XZ. Nickel-Catalyzed Reductive Csp 3-Ge Coupling of Alkyl Bromides with Chlorogermanes. Org Lett 2022; 24:1802-1806. [PMID: 35209712 DOI: 10.1021/acs.orglett.2c00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reductive cross-coupling provides facile access to organogermanes, but it remains largely unexplored. Herein we report a nickel-catalyzed reductive Csp3-Ge coupling of alkyl bromides with chlorogermanes. This work has established a new method for producing alkylgermanes. The reaction proceeds under very mild conditions and tolerates various functionalities including ether, alcohol, alkene, nitrile, amine, ester, phosphonates, amides, ketone, and aldehyde. The application of this method to the modification of bioactive molecules is demonstrated.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.,School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qian Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
31
|
Synthesis of α,β-unsaturated ketones through nickel-catalysed aldehyde-free hydroacylation of alkynes. Commun Chem 2022; 5:13. [PMID: 36697817 PMCID: PMC9814684 DOI: 10.1038/s42004-022-00633-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/20/2022] [Indexed: 01/28/2023] Open
Abstract
α,β-Unsaturated ketones are common feedstocks for the synthesis of fine chemicals, pharmaceuticals, and natural products. Transition metal-catalysed hydroacylation reactions of alkynes using aldehydes have been recognised as an atom-economical route to access α,β-unsaturated ketones through chemoselective aldehydic C-H activation. However, the previously reported hydroacylation reactions using rhodium, cobalt, or ruthenium catalysts require chelating moiety-bearing aldehydes to prevent decarbonylation of acyl-metal-hydride complexes. Herein, we report a nickel-catalysed anti-Markovnikov selective coupling process to afford non-tethered E-enones from terminal alkynes and S-2-pyridyl thioesters in the presence of zinc metal as a reducing agent. Utilization of a readily available thioester as an acylating agent and water as a proton donor enables the mechanistically distinctive and aldehyde-free hydroacylation of terminal alkynes. This non-chelation-controlled approach features mild reaction conditions, high step economy, and excellent regio- and stereoselectivity.
Collapse
|
32
|
He R, Bai Y, Han G, Zhao Z, Pang X, Pan X, Liu X, Shu X. Reductive Alkylation of Alkenyl Acetates with Alkyl Bromides by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rong‐De He
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Guan‐Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Zhen‐Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
33
|
Ghorai D, Cristòfol À, Kleij AW. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Debasish Ghorai
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Àlex Cristòfol
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) the Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007– Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluis Companys 23 08010– Barcelona Spain
| |
Collapse
|
34
|
Xie H, Wang S, Wang Y, Guo P, Shu XZ. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
35
|
Ali K, Prajapati G, Ampapathi RS, Panda G. Transition metal-free reductive coupling of allylic sulfonylhydrazones with aryl boronic acids for C(sp 3)–C(sp 2) bond formation. Org Biomol Chem 2022; 20:8672-8684. [DOI: 10.1039/d2ob01472f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The reductive coupling between allylic sulfonylhydrazones and aryl boronic acids gives 1,3-diarylpropene systems with good to excellent yields under very simple reaction conditions without metal catalysts and an inert atmosphere.
Collapse
Affiliation(s)
- Kasim Ali
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gurudayal Prajapati
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Sankar Ampapathi
- NMR Centre, SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Gautam Panda
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific & Industrial Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
36
|
Zhang XL, Guo RL, Wang MY, Zhao BY, Jia Q, Yang JH, Wang YQ. Palladium-Catalyzed Three-Component Regioselective Dehydrogenative Coupling of Indoles, 2-Methylbut-2-ene, and Carboxylic Acids. Org Lett 2021; 23:9574-9579. [PMID: 34854691 DOI: 10.1021/acs.orglett.1c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five-carbon (C5) structural units are the fundamental building blocks of many natural products. An unprecedented palladium-catalyzed three-component dehydrogenative cascade coupling of indoles, 2-methylbut-2-ene, and carboxylic acids has been developed. The approach enables the straightforward introduction of a C3'-bonded five-carbon structural unit with a tertiary alcohol quaternary carbon center into indoles. The protocol employs 2-methylbut-2-ene as the C5 source and is featured by a broad substrate scope, atom and step economies, and high chemo- and regioselectivies.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Rui-Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Jin-Hui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, School of Foreign Languages, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| |
Collapse
|
37
|
Su P, Wang K, Peng X, Pang X, Guo P, Shu X. Nickel‐Catalyzed Reductive C−Ge Coupling of Aryl/Alkenyl Electrophiles with Chlorogermanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pei‐Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
38
|
Su PF, Wang K, Peng X, Pang X, Guo P, Shu XZ. Nickel-Catalyzed Reductive C-Ge Coupling of Aryl/Alkenyl Electrophiles with Chlorogermanes. Angew Chem Int Ed Engl 2021; 60:26571-26576. [PMID: 34693605 DOI: 10.1002/anie.202112876] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Cross-electrophile coupling has emerged as a promising tool for molecular synthesis; however, current studies have focused mainly on forging C-C bonds. We report a cross-electrophile C-Ge coupling reaction and thereby demonstrate the possibility of constructing organogermanes from carbon electrophiles and chlorogermanes. The reaction proceeds under mild conditions and offers access to both aryl and alkenyl germanes. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled. Gram-scale reaction, incorporation of the -GeR3 moiety into complex biologically active molecules, and derivatization of formed organogermanes are demonstrated.
Collapse
Affiliation(s)
- Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
39
|
Fujita T, Kobayashi Y, Takahashi I, Morioka R, Ichitsuka T, Ichikawa J. Nickel-Catalyzed Reductive Allyl-Aryl Cross-Electrophile Coupling via Allylic C-F Bond Activation. Chemistry 2021; 28:e202103643. [PMID: 34881467 DOI: 10.1002/chem.202103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/06/2022]
Abstract
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C-F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C-I bonds of the aryl iodides and the C-F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C-F bonds was avoided to permit their transformation.
Collapse
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yutaro Kobayashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ikko Takahashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ryutaro Morioka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomohiro Ichitsuka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi, 983-8551, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
40
|
He RD, Bai Y, Han GY, Zhao ZZ, Pang X, Pan X, Liu XY, Shu XZ. Reductive Alkylation of Alkenyl Acetates with Alkyl Bromides by Nickel Catalysis. Angew Chem Int Ed Engl 2021; 61:e202114556. [PMID: 34862693 DOI: 10.1002/anie.202114556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Catalytic alkylation of stable alkenyl C-O electrophiles is synthetically appealing, but studies to date have typically focused on the reactions with alkyl Grignard reagents. We report herein a cross-electrophile reaction of alkenyl acetates with alkyl bromides. This work has enabled a new method for the synthesis of aliphatic alkenes from alkenyl acetates to be established that can be used to add more structural complexity and molecular diversity with enhanced functionality tolerance. The method allows for a gram-scale reaction and modification of biologically active molecules, and it affords access to useful building blocks. Preliminary mechanistic studies reveal that the NiI species plays an essential role for the success of the coupling of these two reactivity-mismatched electrophiles.
Collapse
Affiliation(s)
- Rong-De He
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
41
|
Yu H, Wang ZX. Nickel-catalyzed cross-electrophile coupling of aryl chlorides with allylic alcohols. Org Biomol Chem 2021; 19:9723-9731. [PMID: 34727149 DOI: 10.1039/d1ob01874d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nickel-catalyzed cross-electrophile coupling of aryl chlorides with allylic alcohols proceeds readily under mild conditions in the presence of zinc powder and MgCl2 to produce allylarenes in 25-92% yields. The reaction shows high regioselectivity and E/Z-selectivity, giving linear allylation products with an E configurated double bond when 1- or 3-arylallyl alcohols were used as the substrates. Functional groups including F, CF3, COOEt, NMe2, OMe, SiMe3, OH and vinyl groups as well as nitrogen-containing heterocycles were tolerated.
Collapse
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| |
Collapse
|
42
|
Wang H, Yang M, Wang Y, Man X, Lu X, Mou Z, Luo Y, Liang H. Nickel-Catalyzed Reductive Csp 2-Csp 3 Cross Coupling Using Phosphonium Salts. Org Lett 2021; 23:8183-8188. [PMID: 34664959 DOI: 10.1021/acs.orglett.1c02893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed reductive cross coupling with phosphonium salts and allylic C(sp3)-O bond electrophiles, which granted direct construction of the C(sp2)-C(sp3) bond, is successfully developed. The protocol features broad substrate scope, high-functional-group tolerance, and heterocycle compatibility. Notably, the much more challenging reductive cross coupling with heterocyclic thiazolylphosphonium salts has also been accomplished for the first time.
Collapse
Affiliation(s)
- Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.,State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mengwan Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xi Man
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xinyao Lu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yunjie Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
43
|
Lin Q, Ma G, Gong H. Ni-Catalyzed Formal Cross-Electrophile Coupling of Alcohols with Aryl Halides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Guobin Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
44
|
Zhang X, Wang J, Yang SD. Enantioselective Cobalt-Catalyzed Reductive Cross-Coupling for the Synthesis of Axially Chiral Phosphine–Olefin Ligands. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Juan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
45
|
Duan J, Wang Y, Qi L, Guo P, Pang X, Shu XZ. Nickel-Catalyzed Cross-Electrophile C(sp 3)-Si Coupling of Unactivated Alkyl Bromides with Vinyl Chlorosilanes. Org Lett 2021; 23:7855-7859. [PMID: 34608801 DOI: 10.1021/acs.orglett.1c02874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cross-electrophile C-Si coupling has emerged as a promising tool for the construction of organosilanes, but the potential of this method remains largely unexplored. Herein, we report a C(sp3)-Si coupling of unactivated alkyl bromides with vinyl chlorosilanes. The reaction proceeds under mild conditions, and it offers a new approach to alkylsilanes. Functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine were tolerated. Incorporation of the -Si(vinyl)R2 moiety into complex molecules and the immobilization of a glass surface by formed organosilanes were demonstrated.
Collapse
Affiliation(s)
- Jicheng Duan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
46
|
Ma WY, Han GY, Kang S, Pang X, Liu XY, Shu XZ. Cobalt-Catalyzed Enantiospecific Dynamic Kinetic Cross-Electrophile Vinylation of Allylic Alcohols with Vinyl Triflates. J Am Chem Soc 2021; 143:15930-15935. [PMID: 34570474 DOI: 10.1021/jacs.1c08695] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asymmetric cross-electrophile coupling has emerged as a promising tool for producing chiral molecules; however, the potential of this chemistry with metals other than nickel remains unknown. Herein, we report a cobalt-catalyzed enantiospecific vinylation reaction of allylic alcohol with vinyl triflates. This work establishes a new method for the synthesis of enantioenriched 1,4-dienes. The reaction proceeds through a dynamic kinetic coupling approach, which not only allows for direct functionalization of allylic alcohols but also is essential to achieve high chemoselectivity. The use of cobalt enables the reactions to proceed with high enantiospecificity, which have failed to be realized by nickel catalysts.
Collapse
Affiliation(s)
- Wei-Yuan Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Shaolin Kang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People's Republic of China
| |
Collapse
|
47
|
Fan P, Wang R, Wang C. Nickel/Photo-Cocatalyzed C(sp 2)-H Allylation of Aldehydes and Formamides. Org Lett 2021; 23:7672-7677. [PMID: 34553950 DOI: 10.1021/acs.orglett.1c02938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report a nickel/photo-cocatalyzed C(sp2)-H allylation of aldehydes and formamides wherein both allyl acetates and allyl alcohols can be used as the allylating agents. In this reaction, radical-type umpolung of the formyl moiety is enabled by tetrabutylammonium decatungstate as a hydrogen-atom-transfer photocatalyst, whereas nickel serves to cleave the C-O bond of allyl acetates or allyl alcohols. The synergistic effect of these two catalysts provides new access to various β,γ-unsaturated ketones and amides with high selectivities.
Collapse
Affiliation(s)
- Pei Fan
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China.,School of Chemical and Materials Engineering, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Rui Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
48
|
Beil SB. Accessing aliphatic alcohols for metallaphotoredox catalyzed C(sp3)-arylation. Chem 2021. [DOI: 10.1016/j.chempr.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Tercenio QD, Alexanian EJ. Stereospecific Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Tosylate and Allyl Alcohol Electrophiles. Org Lett 2021; 23:7215-7219. [PMID: 34463502 DOI: 10.1021/acs.orglett.1c02616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The stereospecific cross-coupling of easily accessed electrophiles holds significant promise in the construction of C-C bonds. Herein, we report a nickel-catalyzed reductive coupling of allyl alcohols with chiral, nonracemic alkyl tosylates. This cross-coupling delivers valuable allylation products with high levels of stereospecificity across a range of substrates. The catalytic system consists of a simple nickel salt in conjunction with a commercially available reductant and importantly represents a rare example of a cross-coupling involving the C-O bonds of two electrophiles.
Collapse
Affiliation(s)
- Quentin D Tercenio
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Dong Z, MacMillan DWC. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 2021; 598:451-456. [PMID: 34464959 DOI: 10.1038/s41586-021-03920-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcohols remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners4. We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis.
Collapse
Affiliation(s)
- Zhe Dong
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|