1
|
Fathy M, El-Hallouty SM, Mansour AS, Fahmy M, Hassan N, ElZayat EM. The Anti-proliferative Effect, Apoptotic Induction, and Cell Cycle Arrest of Tetra Halo Ruthenate Nanocomposites in Different Human Cancer Cell Lines. Cell Biochem Biophys 2025; 83:865-877. [PMID: 39406967 DOI: 10.1007/s12013-024-01519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 03/03/2025]
Abstract
Chemotherapy is the most common cancer treatment, and metallic anticancer compounds have generated increasing amounts of interest since the discovery of cisplatin. More recently, scientists have focused on ruthenium-based compounds as alternatives for platinum compounds, which seem like ideal therapeutic anticancer alternatives to platinum derivatives. The present study aims to assess whether one or more of three Ruthenium-based nanocomposites, namely Ru+Lysine+CTAB (RCTL), Ru+CTAB (RCT), and Ru+Lysine (RL) exhibit pronounced anti-proliferative properties against different cancer cells. Three Ruthenium nanocomposites have been synthesized by standard chemical methods and characterized by Dynamic light scattering (DLS) and Transmission electron microscopy (TEM). The cytotoxic effect of the three composites has been evaluated by MTT in-vitro assay for different human cancer cell lines, namely MCF7, HepG2, A549, and PC3 versus normal human skin cell line (BJ1). The molecular underlying mechanisms of cytotoxicity have been assessed via qRT-PCR for pro-apoptotic makers P53 and Casp-3, and anti-apoptotic marker Bcl-2 as well as flow cytometric analysis of the cell cycle. Among the 3 nanocomposites, RCTL gave the best sensitivity and cytotoxicity especially on HepG2 with IC50 0.55 µg/ml but was still toxic on normal cell line with dose <12.5 µg/ml. RCTL and RCT nanocomposites have demonstrated a significant increase in the expression of P53 and Casp-3 markers versus untreated controls, but a significant reduction in the expression of Bcl-2. There was a direct correlation between the cytotoxic effect and the degree of apoptosis in the different cancer cell lines. The present study has also proved cell cycle arrest at G2-M and pre-G1 phases under the effect of IC50 of RCTL and RCT nanocomposites in different cancer lines with the best effect being achieved in HepG2 cells. Ruthenium nanocomposites seem to open a new avenue in cancer therapy.
Collapse
Affiliation(s)
- Mariam Fathy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salwa M El-Hallouty
- Drug bioassay-cell culture laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed S Mansour
- Department of Laser Applications in Meteorology, Photochemistry and Agriculture, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
- Faculty of Postgraduate Studies for Nanotechnology, Cairo University, Zayed City, Giza, Egypt
| | - Mohamed Fahmy
- Applied Surfactant Laboratory, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Nourhan Hassan
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Emad M ElZayat
- Biotechnology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
2
|
Attar GS, Kumar M, Bhalla V. Targeting sub-cellular organelles for boosting precision photodynamic therapy. Chem Commun (Camb) 2024; 60:11610-11624. [PMID: 39320942 DOI: 10.1039/d4cc02702g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Among various cancer treatment methods, photodynamic therapy has received significant attention due to its non-invasiveness and high efficiency in inhibiting tumour growth. Recently, specific organelle targeting photosensitizers have received increasing interest due to their precise accumulation and ability to trigger organelle-mediated cell death signalling pathways, which greatly reduces the drug dosage, minimizes toxicity, avoids multidrug resistance, and prevents recurrence. In this review, recent advances and representative photosensitizers used in targeted photodynamic therapy on organelles, specifically including the endoplasmic reticulum, Golgi apparatus, mitochondria, nucleus, and lysosomes, have been comprehensively reviewed with a focus on organelle structure and organelle-mediated cell death signalling pathways. Furthermore, a perspective on future research and potential challenges in precision photodynamic therapy has been presented at the end.
Collapse
Affiliation(s)
- Gopal Singh Attar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Manoj Kumar
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| | - Vandana Bhalla
- Department of chemistry UGC Sponsored-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
| |
Collapse
|
3
|
Summer M, Hussain T, Ali S, Khan RRM, Muhammad G, Liaqat I. Exploring the underlying modes of organic nanoparticles in diagnosis, prevention, and treatment of cancer: a review from drug delivery to toxicity. INT J POLYM MATER PO 2024:1-17. [DOI: 10.1080/00914037.2024.2375337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, GC University Lahore, Lahore, Pakistan
| | - Rana Rashad Mahmood Khan
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Gulzar Muhammad
- Department of Chemistry, Government College University Lahore, Faculty of Chemistry and Life Sciences, Lahore, Pakistan
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Pradhan L, Sah P, Nayak M, Upadhyay A, Pragya P, Tripathi S, Singh G, Mounika B, Paik P, Mukherjee S. Biosynthesized silver nanoparticles prevent bacterial infection in chicken egg model and mitigate biofilm formation on medical catheters. J Biol Inorg Chem 2024; 29:353-373. [PMID: 38744691 DOI: 10.1007/s00775-024-02050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
Investigating the application of innovative antimicrobial surface coatings on medical devices is an important field of research. Many of these coatings have significant drawbacks, including biocompatibility, coating stability and the inability to effectively combat multiple drug-resistant bacteria. In this research, we developed an antibiofilm surface coating for medical catheters using biosynthesized silver nanoparticles (b-Cs-AgNPs) developed using leaves extract of Calliandra surinamensis. Various characterization techniques were employed to thoroughly characterize the synthesized b-Cs-AgNPs and c-AgNPs. b-Cs-AgNPs were compatible with human normal kidney cells and chicken embryos. It did not trigger any skin inflammatory response in in vivo rat model. b-Cs-AgNPs demonstrated potent zone of inhibition of 19.09 mm when subjected to the disc diffusion method in E. coli confirming strong antibacterial property. Different anti-bacterial assays including liquid growth curve, colony counting assay, biofilm formation assay supported the potent antimicrobial efficacy of b-Cs-AgNPs alone and when coated to medical grade catheters. Mechanistic studies reveal the presence of ferulic acid, that was important for the synthesis of b-AgNPs along with enhanced antibacterial effects of b-Cs-AgNPs compared to c-AgNPs, supported by molecular docking analysis. These results together demonstrated the effective role b-Cs-AgNPs in combating infections and mitigating biofilm formations, highlighting their need for further study in the field of biomedical applications.
Collapse
Affiliation(s)
- Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Prince Sah
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Pragya Pragya
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Shikha Tripathi
- Department of Physics, IIT (BHU), Uttar Pradesh, Varanasi, India
| | - Gurmeet Singh
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - B Mounika
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Pradip Paik
- School of Biomedical Engineering, IIT (BHU), Varanasi, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, India.
| |
Collapse
|
5
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
6
|
Yang L, Chen Q, Gan S, Huang C, Zhang H, Sun H. Rational Design of Self-Reporting Photosensitizers for Cell Membrane-Targeted Photodynamic Therapy. Anal Chem 2023; 95:11988-11996. [PMID: 37530604 DOI: 10.1021/acs.analchem.3c01659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Organelle-targeted photosensitizers (PSs) have demonstrated enhanced phototherapeutic effect by specifically destroying subcellular organelle. As a critical cellular organelle, the cell membrane plays crucial roles in maintaining cell integrity and regulating cellular communications. To date, a variety of membrane-targeted PSs have been developed and shown exceptional therapeutic effects. However, functional PSs that can achieve membrane-targeted photodynamic therapy (PDT) and real-time monitor the therapeutic process have rarely been reported. In particular, the development of self-reporting PS with near-infrared (NIR) absorption is highly desirable but remains a challenge. Herein, we presented two molecular rotor-based self-reporting PSs. One of the PSs, MRMP-2, possesses NIR absorption property, making it a promising candidate for clinical applications. These PSs could not only enable membrane-targeted PDT but also demonstrate selective fluorescence response toward viscosity. In this regard, the fluorescence variation of these PSs could be utilized to indicate the disruption of membrane structure during PDT process. By leveraging the feedback of the fluorescence signal, we could make intuitive judgement about the phototherapeutic results. As a result, these two PSs possess significant potential in the field of imaging-guided PDT.
Collapse
Affiliation(s)
- Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Chen Huang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
7
|
Zou H, Liu W, Wang C, Zhou L, Liu N, Wu ZQ. Polyfluorene- block-poly(phenyl isocyanide) Copolymers: One-Pot Synthesis, Helical Assembly, and Circularly Polarized Luminescence. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wei Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province 130012, China
| |
Collapse
|
8
|
Shinde VR, Khatun S, Thanekar AM, Hak A, Rengan AK. Lipid-coated red fluorescent carbon dots for imaging and synergistic phototherapy in breast cancer. Photodiagnosis Photodyn Ther 2023; 41:103314. [PMID: 36736548 DOI: 10.1016/j.pdpdt.2023.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The synthesis of carbon dots using plant leaves is a facile and economically viable approach. Here we report the development of lipid-coated red fluorescent carbon dots (LRCDs), a biocompatible and stable nanomaterial, utilizing Clitoria ternatea leaves. The red fluorescent carbon dots (RCDs) were prepared by hydrothermal method, followed by lipid coating using rotary evaporation for imaging-guided phototherapy. RCDs generate heat in tandem with NIR laser irradiation and could therefore be employed as a photothermal agent in cancer therapy. Additionally, the fluorescent nature of RCDs can be utilized in bioimaging. The fabricated RCDs displayed a characteristic fluorescent emission maximum at 672 nm with a shoulder peak at 723 nm. Hydrophobicity is a major drawback associated with the RCDs, which limits their therapeutic efficiency due to poor biodistribution and rapid clearance. To address this limitation, we coated RCDs with soya lecithin to generate hydrophilic LRCDs with better bioavailability and therapeutic effectiveness. Further analysis using MTT assay reveals high biocompatibility and a distinct photothermal ablation potency of LRCDs against L929 and 4T1 cells, respectively. LRCDs could potentially be synthesized on a large scale and used for a variety of applications due to their low-cost, and biocompatibility.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Ajinkya Madhukar Thanekar
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
9
|
Li R, Gao R, Zhao Y, Zhang F, Wang X, Li B, Wang L, Ma L, Du J. pH-responsive graphene oxide loaded with targeted peptide and anticancer drug for OSCC therapy. Front Oncol 2022; 12:930920. [PMID: 35992794 PMCID: PMC9382286 DOI: 10.3389/fonc.2022.930920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of cancer occurring in the oral and maxillofacial regions. Despite of the advances in the diagnosis and treatment, the overall 5-year survival rate has remained about 40%–50% in the past decades. Various nanotechnology-based carrier systems have been investigated for their potentials in the OSCC treatment. However, because of the lack of active targeting of tumors, their application is limited. Studies have shown that gastrin-releasing peptide receptors (GRPRs) are overexpressed on many human cancers, including head and neck squamous cell carcinoma. Herein, we aimed to develop a GRPR-targeted nano-graphene oxide (NGO) nanoprobe drug delivery system for OSCC therapy. DOX@NGO-BBN-AF750 was synthesized by the non-covalent bonding method to couple carboxylated NGO with BBN-AF750 (bombesin antagonist peptides conjugated to Alexa Fluor 750) and DOX (doxorubicin) through π-π and hydrogen bonding. Internalization and antitumor activities were carried out in human HSC-3 cancer cells. The tumor pH microenvironment was simulated to study the release of antitumor drug DOX from the DOX@NGO-ant BBN-AF750 complex under different pH conditions. DOX@NGO-BBN-AF750 showed internalization into HSC-3 cells. The IC50 (50% inhibitory concentration) was 5 µg/ml for DOX@NGO-BBN-AF750 in HSC-3 cells. Furthermore, DOX@NGO-BBN-AF750 showed a pH-sensitive drug release rate, and a dose-dependent and pH-responsive cytotoxicity in HSC-3 cells. DOX@NGO-BBN-AF750 presents the characteristics ensuring a slow release of DOX from the nanoprobe, thereby protecting the drug from degradation and prolonging the half-life of the drug. This report provides a versatile strategy to achieving targeted and imaging-guided therapy of OSCC.
Collapse
Affiliation(s)
- Ran Li
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Ruifang Gao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Yingjiao Zhao
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Xiangyu Wang
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| | - Jie Du
- Department of Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
- *Correspondence: Ran Li, ; Lixin Ma, ; Jie Du,
| |
Collapse
|
10
|
Liu F, Wang D, Wang J, Ma L, Yu C, Wei H. Construction of Enzyme-Responsive Micelles Based on Theranostic Zwitterionic Conjugated Bottlebrush Copolymers with Brush-on-Brush Architecture for Cell Imaging and Anticancer Drug Delivery. Molecules 2022; 27:molecules27093016. [PMID: 35566368 PMCID: PMC9101325 DOI: 10.3390/molecules27093016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bottlebrush copolymers with different chemical structures and compositions as well as diverse architectures represent an important kind of material for various applications, such as biomedical devices. To our knowledge, zwitterionic conjugated bottlebrush copolymers integrating fluorescence imaging and tumor microenvironment-specific responsiveness for efficient intracellular drug release have been rarely reported, likely because of the lack of an efficient synthetic approach. For this purpose, in this study, we reported the successful preparation of well-defined theranostic zwitterionic bottlebrush copolymers with unique brush-on-brush architecture. Specifically, the bottlebrush copolymers were composed of a fluorescent backbone of polyfluorene derivate (PFONPN) possessing the fluorescence resonance energy transfer with doxorubicin (DOX), primary brushes of poly(2-hydroxyethyl methacrylate) (PHEMA), and secondary graft brushes of an enzyme-degradable polytyrosine (PTyr) block as well as a zwitterionic poly(oligo (ethylene glycol) monomethyl ether methacrylate-co-sulfobetaine methacrylate) (P(OEGMA-co-SBMA)) chain with super hydrophilicity and highly antifouling ability via elegant integration of Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting bottlebrush copolymer, PFONPN9-g-(PHEMA15-g-(PTyr16-b-P(OEGMA6-co-SBMA6)2)) (P2) with a lower MW ratio of the hydrophobic side chains of PTyr and hydrophilic side chains of P(OEGMA-co-SBMA) could self-assemble into stabilized unimolecular micelles in an aqueous phase. The resulting unimolecular micelles showed a fluorescence quantum yield of 3.9% that is mainly affected by the pendant phenol groups of PTyr side chains and a drug-loading content (DLC) of approximately 15.4% and entrapment efficiency (EE) of 90.6% for DOX, higher than the other micelle analogs, because of the efficient supramolecular interactions of π–π stacking between the PTyr blocks and drug molecules, as well as the moderate hydrophilic chain length. The fluorescence of the PFONPN backbone enables fluorescence resonance energy transfer (FRET) with DOX and visualization of intracellular trafficking of the theranostic micelles. Most importantly, the drug-loaded micelles showed accelerated drug release in the presence of proteinase K because of the enzyme-triggered degradation of PTyr blocks and subsequent deshielding of P(OEGMA-co-SBMA) corona for micelle destruction. Taken together, we developed an efficient approach for the synthesis of enzyme-responsive theranostic zwitterionic conjugated bottlebrush copolymers with a brush-on-brush architecture, and the resulting theranostic micelles with high DLC and tumor microenvironment-specific responsiveness represent a novel nanoplatform for simultaneous cell image and drug delivery.
Collapse
Affiliation(s)
- Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
- Correspondence: (C.Y.); (H.W.)
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; (F.L.); (L.M.)
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China; (D.W.); (J.W.)
- Correspondence: (C.Y.); (H.W.)
| |
Collapse
|
11
|
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochim Acta 2022; 189:83. [PMID: 35118576 DOI: 10.1007/s00604-021-05153-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.
Collapse
|
12
|
Murar M, Albertazzi L, Pujals S. Advanced Optical Imaging-Guided Nanotheranostics towards Personalized Cancer Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:399. [PMID: 35159744 PMCID: PMC8838478 DOI: 10.3390/nano12030399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery.
Collapse
Affiliation(s)
- Madhura Murar
- Institute of Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.M.); (L.A.)
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.M.); (L.A.)
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Silvia Pujals
- Institute of Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (M.M.); (L.A.)
| |
Collapse
|
13
|
Chakravarty S, Roy Chowdhury S, Mukherjee S. AIE materials for cancer cell detection, bioimaging and theranostics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:19-44. [PMID: 34782105 DOI: 10.1016/bs.pmbts.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
AIE materials exhibit weakly emissive or non-emissive properties in dilute solutions while emit powerful fluorescence in the aggregated/solid state. Recently, AIE based materials have gained immense attention due to their multifunctional role in cancer cell detection, bioimaging and cancer theranostics. In this present book chapter, we will highlight recent advancements of AIE materials for different cancer theranostics applications.
Collapse
Affiliation(s)
- Sudesna Chakravarty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center (UNMC), Omaha, Nebraska, United States
| | - Sayan Roy Chowdhury
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, United States
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
14
|
Basak M, Halder S, Das G. Folic acid induced disassembly of self-assembled fluorene-naphthalene based receptor and contemporaneous detection of folic acid in aqueous medium. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Liu L, Wang X, Zhu S, Li L. Different Surface Interactions between Fluorescent Conjugated Polymers and Biological Targets. ACS APPLIED BIO MATERIALS 2021; 4:1211-1220. [PMID: 35014474 DOI: 10.1021/acsabm.0c01567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorescent conjugated polymers (CPs) have attracted considerable interest in biosensing owing to their high fluorescence, tunable bandgap, and good biocompatibility. Aiming at acquiring the desired optical responses of CPs for bioapplications, it is essential that the CPs bind to biological targets with high efficacy and affinity. However, the efficient binding of CPs is largely driven by their effective interaction with target surfaces. In this Review, we will focus on the different surface interactions that pervade between CPs and biological targets. The multiple surface interactions can lead to changes in spatial conformation and distribution of CPs, which manifest alterable optical properties of CPs based on accumulation of target-directed CPs, Förster resonance energy transfer mechanism, and metal-enhanced fluorescence mechanism. Then, we display diverse bioapplications applying CPs-based surface interactions, such as cell imaging, imaging-guided detection, and photodynamic therapy. Finally, the challenges and future developments to control the efficient attachment of CPs to biological targets are discussed. We expect that the understanding of surface interactions between CPs and biological targets benefits the CPs-based system design and expands their applications in biological detections and therapies.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
16
|
Li R, Gao R, Wang Y, Liu Z, Xu H, Duan A, Zhang F, Ma L. Gastrin releasing peptide receptor targeted nano-graphene oxide for near-infrared fluorescence imaging of oral squamous cell carcinoma. Sci Rep 2020; 10:11434. [PMID: 32651409 PMCID: PMC7351765 DOI: 10.1038/s41598-020-68203-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor that occurs in the oral mucosa. Pathological biopsy is still the current gold standard for OSCC diagnosis; however, some drawbacks need to be overcome. Therefore, it is urgently needed to find a non-invasive targeted technology for OSCC early diagnosis. Fluorescent optical imaging using near infrared (NIR) dyes tagged to tumor specific target will benefit such developments. Gastrin releasing peptide receptor (GRPR) is an attractive target for OSCC imaging and therapy. In this study, we synthesized nano-graphene oxide (NGO) nanoparticles with GRPR-specific peptides AF750-6Ahx-Sta-BBN via hydrogen bond and π–π bonds (NGO-BBN-AF750), and investigated their receptor binding, cell uptake and internalization in HSC-3 cells. NGO-BBN-AF750 and AF750-6Ahx-Sta-BBN showed a similar binding affinity to GRPR on HSC-3 cells. In contrast to AF750-6Ahx-Sta-BBN antagonist peptide, NGO-BBN-AF750 showed cellular internalization property. Overall, this study proposes a NGO nanoclusters-based nanoprobe for GRPR targeted near-infrared fluorescence imaging for OSCC. Nanoparticle-based delivery systems have shown highly significant potential in the delivery of a wide range of therapeutic agents.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Ruifang Gao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Yimei Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Zhuanzhuan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Hang Xu
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA.,Department of Radiology, University of Missouri, Columbia, MO, 65212, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Ailin Duan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
| | - Fang Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
| | - Lixin Ma
- Research Division/Biomolecular Imaging Center, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA. .,Department of Radiology, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
17
|
Savić-Gajić IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opin Drug Discov 2019; 15:383-390. [DOI: 10.1080/17460441.2020.1702964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ivan M. Savić
- Faculty of Technology, University of Nis, Leskovac, Republic of Serbia
| |
Collapse
|
18
|
Xu F, Li H, Yao Q, Ge H, Fan J, Sun W, Wang J, Peng X. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chem Sci 2019; 10:10586-10594. [PMID: 32110344 PMCID: PMC7020795 DOI: 10.1039/c9sc03355f] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy is considered as a promising treatment for cancer, but still faces several challenges. The hypoxic environment in solid tumors, imprecise tumor recognition and the lack of selectivity between normal and cancer cells extremely hinder the applications of photodynamic therapy in clinics. Moreover, the "always on" property of photosensitizers also increases the toxicity to normal tissues when exposed to light irradiation. In this study, a hypoxia-activated NIR photosensitizer ICy-N was synthesized and successfully applied for in vivo cancer treatment. ICy-N is in the inactivated state with low fluorescence whereas its NIR emission (λ em = 716 nm) was induced via reduction caused by nitroreductase at the tumor site. In addition, the reduced product ICy-OH was specially located in the mitochondria and demonstrated a high singlet oxygen production under 660 nm light irradiation, which efficiently induced cell apoptosis (IC50 = 0.63 μM). The in vivo studies carried out in Balb/c mice indicated that ICy-N was suitable for precise tumor hypoxia imaging and can work as an efficient photosensitizer for restraining tumor growth through the PDT process.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jingyun Wang
- School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , P. R. China
| |
Collapse
|
19
|
Madamsetty VS, Paul MK, Mukherjee A, Mukherjee S. Functionalization of Nanomaterials and Their Application in Melanoma Cancer Theranostics. ACS Biomater Sci Eng 2019; 6:167-181. [PMID: 33463233 DOI: 10.1021/acsbiomaterials.9b01426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Treatment and cure for melanoma, the most aggressive subcategory of skin cancer, still remains a daunting challenge to be circumvented. When metastasized, it requires radiotherapy, chemotherapy, targeted therapy, immunotherapy, etc. as its treatment, although it can be removed by surgical intervention if detected in its early stage. Development of upgraded therapeutic modalities for melanoma facilitating early diagnosis with subsequent excision before metastasis is, therefore, an urgent need. As we witnessed, nanotechnology has become instrumental with its far-reaching ramifications both in diagnosis and treatment of melanoma. In this review we are going to summarize the encouraging developments made in recent times for functionalization of nanoparticles (including liposomes, polymeric, metal, viral, protein nanoparticles) to create numerous theranostics (therapy plus diagnostics) for melanoma. We will also reflect on the melanoma statistics, molecular biology, conventional therapies, ongoing clinical trials, and future outlook.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville 32224, Florida, United States
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles, Factor Building 621 Charles E. Young Drive, Los Angeles 90095, California, United States
| | - Anubhab Mukherjee
- Sealink Pharmaceuticals, Trendz Avenue, First floor, Plot Number 12, Gafoor Nagar, Madhapur, Hyderabad 500081, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston 77030, Texas, United States
| |
Collapse
|
20
|
Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, Patra CR. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110375. [PMID: 31924026 DOI: 10.1016/j.msec.2019.110375] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Efficient delivery of chemotherapeutic drugs to tumor cells is one of the crucial issues for modern day cancer therapy. In this article, we report the synthesis of poly ethylene glycol (PEG) assisted colloidal platinum nanoparticles (PtNPs) by borohydride reduction method at room temperature. PtNPs are stable at room temperature for more than 2 years and are stable in serum and phosphate buffer (pH = 7.4) solution for one week. PtNPs show biocompatibility in different normal cell lines (in vitro) and chicken egg embryonic model (ex vivo). Further, we designed and fabricated PtNPs-based drug delivery systems (DDS: PtNPs-DOX) using doxorubicin (DOX), a FDA approved anticancer drug. Various analytical techniques were applied to characterize the nanomaterials (PtNPs) and DDS (PtNPs-DOX). This DDS exhibits inhibition of cancer cell (B16F10 and A549) proliferation, observed by different in vitro assays. PtNPs-DOX induces apoptosis in cancer cells observed by annexin-V staining method. Intraperitoneal (IP) administration of PtNPs-DOX shows substantial reduction of tumor growth in subcutaneous murine melanoma tumor model compared to control group with free drug. Up-regulation of tumor suppressor protein p53 and down regulation of SOX2 and Ki-67 proliferation markers in melanoma tumor tissues (as observed by immunofluorescence and western blot analysis) indicates probable molecular mechanism for the anticancer activity of DDS. Considering the in vitro and pre-clinical (in vivo) results in murine melanoma, it is believed that platinum nanoparticle-based drug delivery formulation could be exploited to develop an alternative therapeutic nanomedicine for cancer therapy in the near future.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dwaipayan Bhattacharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India
| | - Jerald Mahesh Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana State, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
21
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
22
|
Mukherjee A, Paul M, Mukherjee S. Recent Progress in the Theranostics Application of Nanomedicine in Lung Cancer. Cancers (Basel) 2019; 11:cancers11050597. [PMID: 31035440 PMCID: PMC6562381 DOI: 10.3390/cancers11050597] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death worldwide. Non-small cell lung cancer (NSCLC) causes around 80% to 90% of deaths. The lack of an early diagnosis and inefficiency in conventional therapies causes poor prognosis and overall survival of lung cancer patients. Recent progress in nanomedicine has encouraged the development of an alternative theranostics strategy using nanotechnology. The interesting physico-chemical properties in the nanoscale have generated immense advantages for nanoparticulate systems for the early detection and active delivery of drugs for a better theranostics strategy for lung cancer. This present review provides a detailed overview of the recent progress in the theranostics application of nanoparticles including liposomes, polymeric, metal and bio-nanoparticles. Further, we summarize the advantages and disadvantages of each approach considering the improvement for the lung cancer theranostics.
Collapse
Affiliation(s)
- Anubhab Mukherjee
- Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA.
| | - Manash Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, The University of California, Los Angeles (UCLA) Factor Bldg. 10-240, 621 Charles E. Young Dr., Los Angeles, CA 90095, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
23
|
Venkatesan P, Thirumalaivasan N, Yu HP, Lai PS, Wu SP. Redox Stimuli Delivery Vehicle Based on Transferrin-Capped MSNPs for Targeted Drug Delivery in Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1623-1633. [PMID: 35026896 DOI: 10.1021/acsabm.9b00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cancer has become one of the major diseases of human health around the world. Conventional antitumor drugs cannot specifically target cancers and result in serious side effects. To achieve better therapy, innovative functional drug delivery platforms that will aid specific targeting for cancer cells need to be developed. In this study, transferrin (Tf), which can target cancer cells, is covalently anchored onto the surface of MSNPs via disulfide linkage, which is used for glutathione-triggered intracellular drug release in tumor cells. The successful functionalization of redox-responsive MSNPs is confirmed by using BET/BJH, TEM, TGA, NMR, and FT-IR (BET, Brunauer-Emmett-Teller; BJH, Barrett-Joyner-Halenda). In addition, polyethylene glycol (PEG) is further grafted onto the surface of MSNPs to improve the biocompatibility and stability under physiological conditions for longer blood circulation. Our in vitro studies demonstrate that DOX-loaded MSNP-SS-Tf@PEG can selectively be internalized into cancer cells via Tf/Tf receptor interactions, and then, DOX is released in HT-29 and MCF-7 cells triggered by high GSH concentration in tumor cells. Remarkably, in vivo studies demonstrate that DOX-loaded MSNP-SS-Tf@PEG can significantly inhibit tumor growth with minimized side effects through cell apoptosis determined by TUNEL assay, whereas MSNP-SS-Tf@PEG revealed no significant inhibition. In conclusion, DOX-MSNP-SS-Tf@PEG with active targeting moieties and a redox-responsive strategy has been demonstrated as a great effective drug carrier for tumor therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Parthiban Venkatesan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Hsiu-Ping Yu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
24
|
Victor SP, Selvam S, Sharma CP. Recent Advances in Biomaterials Science and Engineering Research in India: A Minireview. ACS Biomater Sci Eng 2019; 5:3-18. [PMID: 33405853 DOI: 10.1021/acsbiomaterials.8b00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biomedical research in health innovation and product development encompasses convergent technologies that primarily integrate biomaterials science and engineering at its core. Particularly, research in this area is instrumental for the implementation of biomedical devices (BMDs) that offer innovative solutions to help maintain and improve quality of life of patients worldwide. Despite achieving extraordinary success, implantable BMDs are still confronted with complex engineering and biological challenges that need to addressed for augmenting device performance and prolonging lifetime in vivo. Biofabrication of tissue constructs, designing novel biomaterials and employing rational biomaterial design approaches, surface engineering of implants, point of care diagnostics and micro/nano-based biosensors, smart drug delivery systems, and noninvasive imaging methodologies are among strategies exploited for improving clinical performance of implantable BMDs. In India, advances in biomedical technologies have dramatically advanced health care over the last few decades and the country is well-positioned to identify opportunities and translate emerging solutions. In this article, we attempt to capture the recent advances in biomedical research and development progressing across the country and highlight the significant research work accomplished in the areas of biomaterials science and engineering.
Collapse
Affiliation(s)
- Sunita P Victor
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Shivaram Selvam
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| | - Chandra P Sharma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Satelmond Palace Campus, Poojappura, Trivandrum 695012, India
| |
Collapse
|
25
|
Tanwar AS, Adil LR, Afroz MA, Iyer PK. Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. ACS Sens 2018; 3:1451-1461. [PMID: 30039698 DOI: 10.1021/acssensors.8b00093] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel conjugated cationic polyfluorene (polyelectrolyte) derivative, PFBT, was developed by means of simple and cost-effective oxidative coupling polymerization method. PFBT displayed dual state emission in dimethyl sulfoxide (DMSO) as well as in water, a characteristic phenomenon of polyfluorene homopolymers, and tested for nitroexplosive analytes detection to observe a remarkable fluorescence quenching response for picric acid (PA) in the both solvents. The polymer PFBT demonstrated substantial selectivity and ultrasensitivity toward nitroexplosive PA in both the solvents (DMSO and H2O) with exceptional quenching constant values of 2.69 × 104 and 2.18 × 105 M-1 and a ultralow limit of detection of 92.7 nM (21.23 ppb) and 0.19 nM (43.53 ppt) in respective solvents. Furthermore, economical portable test strip devices were prepared for easy and fast on-site PA sensing, which can detect up to 0.22 ag level of PA. PA sensing in vapor phase was also established, that could detect up to 42.6 ppb level of PA vapors. Interestingly, the mechanism of sensing in DMSO solvent was attributed to substantial inner filter effect and photoinduced electron transfer, while in H2O the sensing occurs via possible resonance energy transfer and photoinduced electron transfer, which is exceptional and not reported earlier for a single probe.
Collapse
Affiliation(s)
- Arvin Sain Tanwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Laxmi Raman Adil
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Mohammad Adil Afroz
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
26
|
Chao XJ, Wang KN, Sun LL, Cao Q, Ke ZF, Cao DX, Mao ZW. Cationic Organochalcogen with Monomer/Excimer Emissions for Dual-Color Live Cell Imaging and Cell Damage Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13264-13273. [PMID: 29616788 DOI: 10.1021/acsami.7b12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ1 = 0.12%; Φ2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
Collapse
Affiliation(s)
- Xi-Juan Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Li-Li Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Du-Xia Cao
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 Shandong , China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|