1
|
Haake M, Reuillard B, Chavarot-Kerlidou M, Costentin C, Artero V. Proton Relays in Molecular Catalysis for Hydrogen Evolution and Oxidation: Lessons From the Mimicry of Hydrogenases and Electrochemical Kinetic Analyses. Angew Chem Int Ed Engl 2024; 63:e202413910. [PMID: 39555743 DOI: 10.1002/anie.202413910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/19/2024]
Abstract
The active sites of metalloenzymes involved in small molecules activation often contain pendant bases that act as proton relay promoting proton-coupled electron-transfer processes. Here we focus on hydrogenases and on the reactions they catalyze, i. e. the hydrogen evolution and oxidation reactions. After a short description of these enzymes, we review some of the various biomimetic and bioinspired molecular systems that contain proton relays. We then provide the formal electrochemical framework required to decipher the key role of such proton relay to enhance catalysis in a single direction and discuss the few systems active for H2 evolution for which quantitative kinetic data are available. We finally highlight key parameters required to reach bidirectional catalysis (both hydrogen evolution and hydrogen oxidation catalyzed) and then transition to reversible catalysis (both reactions catalyzed in a narrow potential range) as well as illustrate these features on few systems from the literature.
Collapse
Affiliation(s)
- Matthieu Haake
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Bertrand Reuillard
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Murielle Chavarot-Kerlidou
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| | - Cyrille Costentin
- Département de Chimie Moléculaire, Univ. Grenoble. Alpes, CNRS, 38000, Grenoble, France
| | - Vincent Artero
- Univ. Grenoble. Alpes, CNRS, CEA, IRIG, L, aboratoire de Chimie et Biologie des Métaux, 38000, Grenoble, France
| |
Collapse
|
2
|
Jana M, Hall MB, Darensbourg MY. A sulfur-templated Ni-Ni' coordination polymer that relies on a polarizable nickel nitrosyl hub. Dalton Trans 2024. [PMID: 39688012 DOI: 10.1039/d4dt03174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The templating properties of a diaza-nickel-cis-dithiolate towards triphenylphosphine gold(I), yielding a transoid [Ni(N2S2)·2Au(PPh3)] complex (T. A. Pinder, S. K. Montalvo, A. M. Lunsford, C.-H. Hsieh, J. H. Reibenspies and M. Y. Darensbourg, Dalton Trans., 2014, 43, 138-144) suggested that a suitable analogue of d10-Au(I), i.e., {Ni(NO)}10, could generate a tetrahedral nickel node for a [Ni(N2S2)·2Ni(NO)(X)]n coordination polymer. Monomeric precursors, derived from Feltham's [(Ph3P)2Ni(NO)(Cl)] (R. D. Feltham, Inorg. Chem., 1964, 3, 116-119) produced the bidentate/sulfur-chelated [Ni(N2S2)·Ni(NO)(X)] species with loss of PPh3. Exchange of Cl- by azide, N3-, in the {Ni(NO)}10 synthon led to the balance of electrophilicity at Ni(NO) and non-covalent (H-bonding and van der Waals) interactions that stabilized the extended chain of bridging sulfurs, in transoid connectivities, between a square planar NiII and a tetrahedral Ni, the latter within the electronic and spin-delocalized {Ni(NO)}10 system. This study defines a new path that creates coordination polymers using metallodithiolates, the success of which, in this case, depends on the highly polarizable {Ni(NO)}10 unit.
Collapse
Affiliation(s)
- Manish Jana
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Michael B Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
3
|
Li W, Peng X, Qin H, Xu Y, Han J, Lei H, Cao R. Electrocatalytic hydrogen evolution reaction with a Cu porphyrin bearing meso-CF 3 substituents. Dalton Trans 2024; 53:19121-19125. [PMID: 39588664 DOI: 10.1039/d4dt03098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cu tetrakis(trifluoromethyl)porphyrin (1) was synthesized and examined as an electrocatalyst for the hydrogen evolution reaction (HER). We showed that 1 is highly efficient for the electrocatalytic HER in acetonitrile with trifluoroacetic acid (TFA) and outperforms Cu tetrakis(pentafluorophenyl)porphyrin (2) by decreasing the onset overpotential by 220 mV. The icat/ip value (icat is the catalytic peak current and ip is the non-catalytic peak current) with 1 is 97, while it is 53 with 2. These results suggest that for Cu porphyrins, meso-CF3 substituents are much more effective than meso-C6F5 substituents to enhance the HER.
Collapse
Affiliation(s)
- Wenzi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyang Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Zarcone SR, Zhang Z, Handunneththige S, Ni Z, Bhuvanesh N, Nippe M, Meyer K, Hall MB, Gladysz JA. A Caged Neutral 17-Valence-Electron Iron(I) Radical [Fe(CO) 2(Cl)(P((CH 2) 10) 3P)] •: Synthetic, Structural, Spectroscopic, Redox, and Computational Studies. Inorg Chem 2024; 63:16313-16326. [PMID: 39163584 PMCID: PMC11379347 DOI: 10.1021/acs.inorgchem.4c02275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
UV irradiation of yellow CH2Cl2 solutions of trans-Fe(CO)3(P((CH2)10)3P) (2a) and PMe3 (10 equiv) gives, in addition to the previously reported dibridgehead diphosphine P((CH2)10)3P (46%), a green paramagnetic complex that crystallography shows to be the trigonal-bipyramidal iron(I) radical trans-[Fe(CO)2(Cl)(P((CH2)10)3P)]• (1a•; 31% after workup). This is a rare example of an isolable species of the formula [Fe(CO)4-n(L)n(X)]• (n = 0-3, L = two-electron-donor ligand; X = one-electron-donor ligand). Analogous precursors with longer P(CH2)nP segments (n = 12, 14, 16, 18) give only the demetalated diphosphines, and a rationale is proposed. The magnetic susceptibility of 1a•, assayed by Evans' method and SQUID measurements, indicates a spin (S) of 1/2. Cyclic voltammetry shows that 1a• undergoes a partially reversible one-electron oxidation, but no facile reduction. The UV-visible, EPR, and 57Fe Mössbauer spectra are analyzed in detail. Complex 2a is similarly studied, and, despite the extra valence electron, exhibits a comparable oxidation potential (ΔE1/2 ≤ 0.04 V). The crystal structure shows a cage conformation, solvation level, disorder motif, and unit cell parameters essentially identical to those of 1a•. DFT calculations provide much insight regarding the structural, redox, and spectroscopic properties.
Collapse
Affiliation(s)
- Samuel R Zarcone
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Zihan Zhang
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Suhashini Handunneththige
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Zhen Ni
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
5
|
Quiroz M, Jana M, Liu K, Bhuvanesh N, Hall MB, Darensbourg MY. Site specific redox properties in ligand differentiated di-nickel complexes inspired by the acetyl CoA synthase active site. Dalton Trans 2024; 53:7414-7423. [PMID: 38591102 DOI: 10.1039/d4dt00306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Bimetallic transition metal complexes with site-specific redox properties offer a versatile platform for understanding electron polarization, intramolecular electron transfer processes, and customizing electronic and magnetic properties that might impact reactivity and catalyst design. Inspired by the dissymmetric nickel sites in the Acetyl CoA Synthase (ACS) Active Site, three new bimetallic Ni(N2S2)-Ni(S2C2R2) complexes based on Ni(N2S2) metalloligand donor synthons, Nid, in mimicry of the nickel site distal to the redox-active iron sulfur cluster of ACS, and nickel dithiolene receiver units, designated as Nip, the nickel proximal to the 4Fe4S cluster, were combined to explore the influence of ligand environment on electronic structure and redox properties of each unit. The combination of synthons gave a matrix of three S-bridged dinickel complexes, characterized by X-ray crystallography, and appropriate spectroscopies. Computational modeling is connected to the electronic characteristics of the nickel donor and receiver units. This study demonstrated the intricacies of identifying sites of electrochemical redox processes, within multi-metallic systems containing non-innocent ligands.
Collapse
Affiliation(s)
- Manuel Quiroz
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Manish Jana
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Kaiyang Liu
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | - Michael B Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
6
|
Jana M, Zheng X, Le T, Quiroz M, Guererro‐Almaraz P, Darensbourg DJ, Darensbourg MY. Bond Trading: Intramolecular Metal and Ligand Exchange within a NO/Ni/Co Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307113. [PMID: 38044312 PMCID: PMC10853699 DOI: 10.1002/advs.202307113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 12/05/2023]
Abstract
With the goal of generating hetero-redox levels on metals as well as on nitric oxide (NO), metallodithiolate (N2 S2 )CoIII (NO- ), N2 S2 = N,N- dibenzyl-3,7-diazanonane-1,9-dithiolate, is introduced as ligand to a well-characterized labile [Ni0 (NO)+ ] synthon. The reaction between [Ni0 (NO+ )] and [CoIII (NO- )] has led to a remarkable electronic and ligand redistribution to form a heterobimetallic dinitrosyl cobalt [(N2 S2 )NiII ∙Co(NO)2 ]+ complex with formal two electron oxidation state switches concomitant with the nickel extraction or transfer as NiII into the N2 S2 ligand binding site. To date, this is the first reported heterobimetallic cobalt dinitrosyl complex.
Collapse
Affiliation(s)
- Manish Jana
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Xueyan Zheng
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Trung Le
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Manuel Quiroz
- Department of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | | | | | | |
Collapse
|
7
|
Liao CJ, Tseng YT, Cheng YA, Dayao LA, Iffland-Mühlhaus L, Gee LB, Ribson RD, Chan TS, Apfel UP, Lu TT. Ligand Control of Dinitrosyl Iron Complexes for Selective Superoxide-Mediated Nitric Oxide Monooxygenation and Superoxide-Dioxygen Interconversion. J Am Chem Soc 2023; 145:20389-20402. [PMID: 37683125 DOI: 10.1021/jacs.3c05577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Through nitrosylation of [Fe-S] proteins, or the chelatable iron pool, a dinitrosyl iron unit (DNIU) [Fe(NO)2] embedded in the form of low-molecular-weight/protein-bound dinitrosyl iron complexes (DNICs) was discovered as a metallocofactor assembled under inflammatory conditions with elevated levels of nitric oxide (NO) and superoxide (O2-). In an attempt to gain biomimetic insights into the unexplored transformations of the DNIU under inflammation, we investigated the reactivity toward O2- by a series of DNICs [(NO)2Fe(μ-MePyr)2Fe(NO)2] (1) and [(NO)2Fe(μ-SEt)2Fe(NO)2] (3). During the superoxide-induced conversion of DNIC 1 into DNIC [(K-18-crown-6-ether)2(NO2)][Fe(μ-MePyr)4(μ-O)2(Fe(NO)2)4] (2-K-crown) and a [Fe3+(MePyr)x(NO2)y(O)z]n adduct, stoichiometric NO monooxygenation yielding NO2- occurs without the transient formation of peroxynitrite-derived •OH/•NO2 species. To study the isoelectronic reaction of O2(g) and one-electron-reduced DNIC 1, a DNIC featuring an electronically localized {Fe(NO)2}9-{Fe(NO)2}10 electronic structure, [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)2Fe(NO)2] (1-red), was successfully synthesized and characterized. Oxygenation of DNIC 1-red leads to the similar assembly of DNIC 2-K-crown, of which the electronic structure is best described as paramagnetic with weak antiferromagnetic coupling among the four S = 1/2 {FeIII(NO-)2}9 units and S = 5/2 Fe3+ center. In contrast to DNICs 1 and 1-red, DNICs 3 and [K-18-crown-6-ether][(NO)2Fe(μ-SEt)2Fe(NO)2] (3-red) display a reversible equilibrium of "3 + O2- ⇋ 3-red + O2(g)", which is ascribed to the covalent [Fe(μ-SEt)2Fe] core and redox-active [Fe(NO)2] unit. Based on this study, the supporting/bridging ligands in dinuclear DNIC 1/3 (or 1-red/3-red) control the selective monooxygenation of NO and redox interconversion between O2- and O2 during reaction with O2- (or O2).
Collapse
Affiliation(s)
- Cheng-Jhe Liao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Tseng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-An Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leland B Gee
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ryan D Ribson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry I, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Electrosynthesis, Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
8
|
Tseng YT, Pelmenschikov V, Iffland-Mühlhaus L, Calabrese D, Chang YC, Laun K, Pao CW, Sergueev I, Yoda Y, Liaw WF, Chen CH, Hsu IJ, Apfel UP, Caserta G, Lauterbach L, Lu TT. Substrate-Gated Transformation of a Pre-Catalyst into an Iron-Hydride Intermediate [(NO) 2(CO)Fe(μ-H)Fe(CO)(NO) 2] - for Catalytic Dehydrogenation of Dimethylamine Borane. Inorg Chem 2023; 62:769-781. [PMID: 36580657 DOI: 10.1021/acs.inorgchem.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(μ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(μ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(μ-MePyr)(μ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | - Linda Iffland-Mühlhaus
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Donato Calabrese
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Yu-Che Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Konstantin Laun
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ilya Sergueev
- Deutsches Elektronen-Synchrotron DESY, Hamburg D-22607, Germany
| | | | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry, Chung Shan Medical University and Department of Medical Education, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Ulf-Peter Apfel
- Department of Chemistry and Biochemistry, Inorganic Chemistry Ι, Ruhr-Universität Bochum, Bochum 44801, Germany.,Department for Electrosynthesis, Fraunhofer UMSICHT, Oberhausen 46047, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Berlin 10623, Germany
| | - Lars Lauterbach
- Institute of Applied Microbiology, RWTH Aachen University, Aachen 52074, Germany
| | - Tsai-Te Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Habib I, Lu TT, Sabbah A, Chen KH, Tsai FT, Liaw WF. One-Pot Photosynthesis of Cubic Fe@Fe 3O 4 Core-Shell Nanoparticle Well-Dispersed in N-Doping Carbonaceous Polymer Using a Molecular Dinitrosyl Iron Precursor. Inorg Chem 2022; 61:20719-20724. [PMID: 36516228 DOI: 10.1021/acs.inorgchem.2c03773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoscale zerovalent iron (NZVI) features potential application to biomedicine, (electro-/photo)catalysis, and environmental remediation. However, multiple-synthetic steps and limited ZVI content prompt the development of a novel strategy for efficient preparation of NZVI composites. Herein, a dinitrosyl iron complex [(N3MDA)Fe(NO)2] (1-N3MDA) was explored as a molecular precursor for one-pot photosynthesis of a cubic Fe@Fe3O4 core-shell nanoparticle (ZVI% = 60%) well-dispersed in an N-doping carbonaceous polymer (NZVI@NC). Upon photolysis of 1-N3MDA, photosensitizer Eosin Y, and sacrificial reductant TEA, the α-diimine N3MDA and noninnocent NO ligands (1) enable the slow reduction of 1-N3MDA into an unstable [(N3MDA)Fe(NO)2]- species, (2) serve as a capping reagent for controlled nucleation of zerovalent Fe atom into Fe nanoparticle, and (3) promote the polymerization of degraded Eosin Y with N3MDA yielding an N-doping carbonaceous matrix in NZVI@NC. This discovery of a one-pot photosynthetic process for NZVI@NC inspires continued efforts on its application to photolytic water splitting and ferroptotic chemotherapy in the near future.
Collapse
Affiliation(s)
| | | | - Amr Sabbah
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Kuei-Hsien Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | | | | |
Collapse
|
10
|
Guerrero-Almaraz P, Quiroz M, Darensbourg MY. Structural analysis of heteropolymetallic complexes: A chiral pinwheel {Cr[Ni(N2S2)]3}3+ and the {trans-(MeCN)Cr(NO)[Ni(N2S2)]2}2+ basket. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
12
|
Wu T, Wang S, Lv Y, Fu T, Jiang J, Lu X, Yu ZP, zhang J, Wang L, Zhou HP. A New Bis(thioether)-Dipyrrin N2S2 Ligand and Its Coordination Behaviors to Nickel, Copper and Zinc. Dalton Trans 2022; 51:9699-9707. [DOI: 10.1039/d2dt01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetradentate N2S2 coordination platforms are widespread in biological system and have endowed the metalloenzymes and metalloproteins with abundant reactivities and functions. However, there have only three types of N2S2 scaffolds...
Collapse
|
13
|
Zhao J, Shi Q, Song D, Li B, Ren H, Zhang D, Sun X, Li J, Wang N. Effect of the NiN2S2 Metallothiolate Ligands on the Preparation, Structure, and Property of Dinickel Complexes Related to [NiFe]-Hydrogenases Active Site. Catal Letters 2022. [DOI: 10.1007/s10562-021-03627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
15
|
Huang H, Li R, Li C, Zheng F, Ramirez GA, Houf W, Zhen Q, Bashir S, Liu JL. Perspective on advanced nanomaterials used for energy storage and conversion. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
To drive the next ‘technical revolution’ towards commercialization, we must develop sustainable energy materials, procedures, and technologies. The demand for electrical energy is unlikely to diminish over the next 50 years, and how different countries engage in these challenges will shape future discourse. This perspective summarizes the technical aspects of nanomaterials’ design, evaluation, and uses. The applications include solid oxide fuel cells (SOFCs), solid oxide electrolysis cells (SOEC), microbial fuel cells (MFC), supercapacitors, and hydrogen evolution catalysts. This paper also described energy carriers such as ammonia which can be produced electrochemically using SOEC under ambient pressure and high temperature. The rise of electric vehicles has necessitated some form of onboard storage of fuel or charge. The fuels can be generated using an electrolyzer to convert water to hydrogen or nitrogen and steam to ammonia. The charge can be stored using a symmetrical supercapacitor composed of tertiary metal oxides with self-regulating properties to provide high energy and power density. A novel metal boride system was constructed to absorb microwave radiation under harsh conditions to enhance communication systems. These resources can lower the demand for petroleum carbon in portable power devices or replace higher fossil carbon in stationary power units. To improve the energy conversion and storage efficiency, we systematically optimized synthesis variables of nanomaterials using artificial neural network approaches. The structural characterization and electrochemical performance of the energy materials and devices provide guidelines to control new structures and related properties. Systemic study on energy materials and technology provides a feasible transition from traditional to sustainable energy platforms. This perspective mainly covers the area of green chemistry, evaluation, and applications of nanomaterials generated in our laboratory with brief literature comparison where appropriate. The conceptual and experimental innovations outlined in this perspective are neither complete nor authoritative but a snapshot of selecting technologies that can generate green power using nanomaterials.
Collapse
Affiliation(s)
- Hsuanyi Huang
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Rong Li
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Cuixia Li
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology , 287 Langongping Rd, Qilihe District , Lanzhou , Gansu , PR China
| | - Feng Zheng
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Giovanni A. Ramirez
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - William Houf
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Qiang Zhen
- Nano-Science & Technology Research Center, College of Science, Shanghai University , Shanghai 200444 , PR China
| | - Sajid Bashir
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
| | - Jingbo Louise Liu
- Department of Chemistry , Texas A&M University-Kingsville , MSC 161,700 University Boulevard , Kingsville , TX 78363 , USA
- Texas A&M Energy Institute , Frederick E. Giesecke Engineering Research Bldg., 3372 TAMU , College Station , TX 77843-3372 , USA
| |
Collapse
|
16
|
Tung CY, Tseng YT, Lu TT, Liaw WF. Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorg Chem 2021; 60:15846-15873. [PMID: 34009960 DOI: 10.1021/acs.inorgchem.1c00566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(μ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(μ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.
Collapse
Affiliation(s)
- Chi-Yen Tung
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University (NTHU), Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University (NTHU), Hsinchu 30013 Taiwan
| |
Collapse
|
17
|
Kerns SA, Seo J, Lynch VM, Shearer J, Goralski ST, Sullivan ER, Rose MJ. Scaffold-based [Fe]-hydrogenase model: H 2 activation initiates Fe(0)-hydride extrusion and non-biomimetic hydride transfer. Chem Sci 2021; 12:12838-12846. [PMID: 34703571 PMCID: PMC8494020 DOI: 10.1039/d0sc03154b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C–H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe–C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H2 activation across the Fe(ii) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe–carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H2/hydride-induced loss of the organometallic acyl unit (i.e. pyCH2–C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O → pyCH3+C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O). The known reduced hydride species [HFe(CO)4]− and [HFe3(CO)11]− have been observed as products by 1H/2H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO)4]. The former species (i.e. [HFe(CO)4]−) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([TolIm](BArF) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase. We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor.![]()
Collapse
Affiliation(s)
- Spencer A Kerns
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Jason Shearer
- Department of Chemistry, Trinity University One Trinity Place San Antonio Texas 78212 USA
| | - Sean T Goralski
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Eileen R Sullivan
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Michael J Rose
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
18
|
Yatabe T, Kamitakahara K, Higashijima K, Ando T, Matsumoto T, Yoon KS, Enomoto T, Ogo S. Synthesis of acetic acid from CO 2, CH 3I and H 2 using a water-soluble electron storage catalyst. Chem Commun (Camb) 2021; 57:4772-4774. [PMID: 33942824 DOI: 10.1039/d1cc01611c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper reports a possible mechanism of acetic acid formation from CO2, CH3I and H2 in aqueous media and the central role played by a water-soluble Rh-based electron storage catalyst. In addition to water-solubility, we also report the crystal structures of two presumed intermediates. These findings together reveal (1) the advantage of water, not only as a green solvent, but also as a reactive Lewis base to extract H+ from H2, (2) the role of the metal (Rh) centre as a point for storing electrons from H2 and (3) the importance of an electron-withdrawing ligand (quaterpyridine, qpy) that supports electron storage.
Collapse
Affiliation(s)
- Takeshi Yatabe
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kamitakahara
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kaede Higashijima
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Tatsuya Ando
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ki-Seok Yoon
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takao Enomoto
- Specialty Chemicals Section, Technology Development Department, Technical Division, Tanaka Kikinzoku Kogyo K. K. 22 Wadai, Tsukuba, Ibaraki, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. and Center for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
20
|
Mandegani Z, Nahaei A, Nikravesh M, Nabavizadeh SM, Shahsavari HR, Abu-Omar MM. Synthesis and Characterization of RhIII–MII (M = Pt, Pd) Heterobimetallic Complexes Based on a Bisphosphine Ligand: Tandem Reactions Using Ethanol. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Wang XZ, Meng SL, Xiao H, Feng K, Wang Y, Jian JX, Li XB, Tung CH, Wu LZ. Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H 2 Photogeneration. Angew Chem Int Ed Engl 2020; 59:18400-18404. [PMID: 32667116 DOI: 10.1002/anie.202006593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2020] [Indexed: 11/09/2022]
Abstract
Inspired by the natural [NiFe]-H2 ase, we designed mimic 1, (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2 Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h-1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2. The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.
Collapse
Affiliation(s)
- Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu-Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing-Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Saratovskikh EA, Martynenko VM, Psikha BL, Sanina NA. Reaction of adenosine triphosphoric acid and tetranitrosyl iron complex [Fe2(S(CH2)2NH3)2(NO)4]SO4·2.5H2O. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Wang X, Meng S, Xiao H, Feng K, Wang Y, Jian J, Li X, Tung C, Wu L. Identifying a Real Catalyst of [NiFe]‐Hydrogenase Mimic for Exceptional H
2
Photogeneration. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Shu‐Lin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yang Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing‐Xin Jian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Xu‐Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
24
|
Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel U, Zhang W, Cao R. Water‐Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
25
|
Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel U, Zhang W, Cao R. Water‐Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:15844-15848. [DOI: 10.1002/anie.202003836] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/10/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
26
|
Tseng Y, Ching W, Liaw W, Lu T. Dinitrosyl Iron Complex [K‐18‐crown‐6‐ether][(NO)
2
Fe(
Me
PyrCO
2
)]: Intermediate for Capture and Reduction of Carbon Dioxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yu‐Ting Tseng
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Min Ching
- Institute of Chemistry Academia Sinica Taipei 10529 Taiwan
| | - Wen‐Feng Liaw
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Tsai‐Te Lu
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
27
|
Tseng Y, Ching W, Liaw W, Lu T. Dinitrosyl Iron Complex [K‐18‐crown‐6‐ether][(NO)
2
Fe(
Me
PyrCO
2
)]: Intermediate for Capture and Reduction of Carbon Dioxide. Angew Chem Int Ed Engl 2020; 59:11819-11823. [DOI: 10.1002/anie.202002977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yu‐Ting Tseng
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Wei‐Min Ching
- Institute of Chemistry Academia Sinica Taipei 10529 Taiwan
| | - Wen‐Feng Liaw
- Department of Chemistry National Tsing Hua University Hsinchu 30013 Taiwan
| | - Tsai‐Te Lu
- Department of Chemistry Chung Yuan Christian University Taoyuan 32023 Taiwan
- Institute of Biomedical Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
28
|
Kariyawasam Pathirana KD, Ghosh P, Hsieh CH, Elrod LC, Bhuvanesh N, Darensbourg DJ, Darensbourg MY. Synthetic Metallodithiolato Ligands as Pendant Bases in [Fe IFe I], [Fe I[Fe(NO)] II], and [(μ-H)Fe IIFe II] Complexes. Inorg Chem 2020; 59:3753-3763. [PMID: 32083850 DOI: 10.1021/acs.inorgchem.9b03409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of ligands with specific stereo- and electrochemical requirements that are necessary for catalyst design challenges synthetic chemists in academia and industry. The crucial aza-dithiolate linker in the active site of [FeFe]-H2ase has inspired the development of synthetic analogues that utilize ligands which serve as conventional σ donors with pendant base features for H+ binding and delivery. Several MN2S2 complexes (M = Ni2+, [Fe(NO)]2+, [Co(NO)]2+, etc.) utilize these cis-dithiolates to bind low valent metals and also demonstrate the useful property of hemilability, i.e., alternate between bi- and monodentate ligation. Herein, synthetic efforts have led to the isolation and characterization of three heterotrimetallics that employ metallodithiolato ligand binding to di-iron scaffolds in three redox levels, (μ-pdt)[Fe(CO)3]2, (μ-pdt)[Fe(CO)3][(Fe(NO))II(IMe)(CO)]+, and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)]2+ to generate (μ-pdt)[(FeI(CO)3][FeI(CO)2·NiN2S2] (1), (μ-pdt)[FeI(CO)3][(Fe(NO))II(IMe)(CO)]+ (2), and (μ-pdt)(μ-H)[FeII(CO)2(PMe3)][FeII(CO)(PMe3)·NiN2S2]+ (3) complexes (pdt = 1,3-propanedithiolate, IMe = 1,3-dimethylimidazole-2-ylidene, NiN2S2 = [N,N'-bis(2-mercaptidoethyl)-1,4-diazacycloheptane] nickel(II)). These complexes display efficient metallodithiolato binding to the di-iron scaffold with one thiolate-S, which allows the free unbound thiolate to potentially serve as a built-in pendant base to direct proton binding, promoting a possible Fe-H-···+H-S coupling mechanism for the electrocatalytic hydrogen evolution reaction (HER) in the presence of acids. Ligand substitution studies on 1 indicate an associative/dissociative type reaction mechanism for the replacement of the NiN2S2 ligand, providing insight into the Fe-S bond strength.
Collapse
Affiliation(s)
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Chung-H Hsieh
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Lindy Chase Elrod
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Donald J Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
29
|
Tang H, Brothers EN, Grapperhaus CA, Hall MB. Electrocatalytic Hydrogen Evolution and Oxidation with Rhenium Tris(thiolate) Complexes: A Competition between Rhenium and Sulfur for Electrons and Protons. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | | | - Craig A. Grapperhaus
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
30
|
Charles III RM, Yokley TW, Schley ND, DeYonker NJ, Brewster TP. Hydrogen Activation and Hydrogenolysis Facilitated By Late-Transition-Metal–Aluminum Heterobimetallic Complexes. Inorg Chem 2019; 58:12635-12645. [DOI: 10.1021/acs.inorgchem.9b01359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. Malcolm Charles III
- Department of Chemistry, The University of Memphis, 3744 Walker Avenue, Smith Chemistry
Building, Memphis, Tennessee 38152, United States
| | - Timothy W. Yokley
- Department of Chemistry, The University of Memphis, 3744 Walker Avenue, Smith Chemistry
Building, Memphis, Tennessee 38152, United States
| | - Nathan D. Schley
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan J. DeYonker
- Department of Chemistry, The University of Memphis, 3744 Walker Avenue, Smith Chemistry
Building, Memphis, Tennessee 38152, United States
| | - Timothy P. Brewster
- Department of Chemistry, The University of Memphis, 3744 Walker Avenue, Smith Chemistry
Building, Memphis, Tennessee 38152, United States
| |
Collapse
|
31
|
Arnet NA, Bhuvanesh N, Darensbourg MY. Proton affinity studies of nickel N 2S 2 complexes and control of aggregation. J Biol Inorg Chem 2019; 24:909-917. [PMID: 31175446 DOI: 10.1007/s00775-019-01671-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
The thiolate ligands of [NiFe]-H2ase enzymes have been implicated as proton-binding sites for the reduction/oxidation of H+/H2. This study examines the ligand effect on reactivity of NiN2S2 complexes with an array of acids in methanol solution. UV-Vis absorption spectroscopy is utilized to observe the transformation from the monomeric species to a trimetallic complex that is formed after proton-induced ligand dissociation. Nickel complexes with a flexible (propyl and ethyl) N to N linker were found to readily form the trimetallic complex with acids as weak as ammonium (pKa = 10.9 in methanol). A more constrained nickel complex with a diazacycloheptane N to N linker required stronger acids such as 2,2-dichloroacetic acid (pKa = 6.38 in methanol) to form the trimetallic complex and featured the formation of an NiN2S2H+ complex with acetic acid (pKa = 9.63 in methanol). The most strained ligand, which featured a diazacyclohexane backbone, readily dissociated from the nickel center upon mixture with acids with pKa ≤ 9.63 and showed no evidence of a trimetallic species with any acid. This research highlights the dramatic differences in reactivity with proton sources that can be imparted by minor alterations to ligand geometry and strain.
Collapse
Affiliation(s)
- Nicholas A Arnet
- Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | | |
Collapse
|
32
|
Cho SL, Liao CJ, Lu TT. Synthetic methodology for preparation of dinitrosyl iron complexes. J Biol Inorg Chem 2019; 24:495-515. [DOI: 10.1007/s00775-019-01668-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022]
|
33
|
Khandelwal S, Zamader A, Nagayach V, Dolui D, Mir AQ, Dutta A. Inclusion of Peripheral Basic Groups Activates Dormant Cobalt-Based Molecular Complexes for Catalytic H2 Evolution in Water. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shikha Khandelwal
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Afridi Zamader
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Vivek Nagayach
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dependu Dolui
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Ab Qayoom Mir
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Arnab Dutta
- Chemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
- Center for Sustainable Development, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| |
Collapse
|
34
|
Chu X, Jin J, Ming B, Pang M, Yu X, Tung CH, Wang W. Bimetallic nickel-cobalt hydrides in H 2 activation and catalytic proton reduction. Chem Sci 2019; 10:761-767. [PMID: 30746109 PMCID: PMC6340403 DOI: 10.1039/c8sc04346a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The synergism of the electronic properties of nickel and cobalt enables bimetallic NiCo complexes to process H2. The nickel-cobalt hydride [(dppe)Ni(pdt)(H)CoCp*]+ ([1H]+ ) arising from protonation of the reduced state 1 was found to be an efficient electrocatalyst for H2 evolution with Cl2CHCOOH, and the oxidized [Ni(ii)Co(iii)]2+ form is capable of activating H2 to produce [1H]+ . The features of stereodynamics, acid-base properties, redox chemistry and reactivity of these bimetallic NiCo complexes in processing H2 are potentially related to the active site of [NiFe]-H2ases.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
- School of Chemistry and Materials Science , Ludong University , Yantai , 264025 , China
| | - Jihao Jin
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Bangrong Ming
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Maofu Pang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Xin Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Wenguang Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| |
Collapse
|
35
|
Huang HC, Ching WM, Tseng YT, Chen CH, Lu TT. Transformation of the hydride-containing dinitrosyl iron complex [(NO)2Fe(η2-BH4)]− into [(NO)2Fe(η3-HCS2)]−via reaction with CS2. Dalton Trans 2019; 48:5897-5902. [DOI: 10.1039/c8dt04714f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hydride-insertion reactivity of DNIC [(NO)2Fe(η2-BH4)]− promotes the reductive transformation of CS2 into DNIC [(NO)2Fe(η3-HCS2)]− featuring Fe 3dz2-to-HCS2 π* backbonding interaction.
Collapse
Affiliation(s)
- Huang-Chia Huang
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
| | - Wei-Min Ching
- Instrumentation Center
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Yu-Ting Tseng
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
- Department of Chemistry
| | - Chien-Hong Chen
- Department of Medical Applied Chemistry
- Chung Shan Medical University and Department of Medical Education
- Chung Shan Medical University Hospital
- Taichung 40201
- Taiwan
| | - Tsai-Te Lu
- Department of Chemistry
- Chung Yuan Christian University
- Taoyuan
- Taiwan
- Institute of Biomedical Engineering
| |
Collapse
|
36
|
Thammavongsy Z, Mercer IP, Yang JY. Promoting proton coupled electron transfer in redox catalysts through molecular design. Chem Commun (Camb) 2019; 55:10342-10358. [DOI: 10.1039/c9cc05139b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mini-review on using the secondary coordination sphere to facilitate multi-electron, multi-proton catalysis.
Collapse
Affiliation(s)
| | - Ian P. Mercer
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|
37
|
Ahmed ME, Chattopadhyay S, Wang L, Brazzolotto D, Pramanik D, Aldakov D, Fize J, Morozan A, Gennari M, Duboc C, Dey A, Artero V. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]‐Hydrogenase Model: Low pH Enables Catalysis through an Enzyme‐Relevant Mechanism. Angew Chem Int Ed Engl 2018; 57:16001-16004. [DOI: 10.1002/anie.201808215] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/21/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Md Estak Ahmed
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | | | - Lianke Wang
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Deborah Brazzolotto
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Debajyoti Pramanik
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Dmitry Aldakov
- Univ. Grenoble AlpesCNRS, CEA, INAC-SyMMES 38000 Grenoble France
| | - Jennifer Fize
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Adina Morozan
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Marcello Gennari
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Carole Duboc
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Abhishek Dey
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| |
Collapse
|
38
|
Ahmed ME, Chattopadhyay S, Wang L, Brazzolotto D, Pramanik D, Aldakov D, Fize J, Morozan A, Gennari M, Duboc C, Dey A, Artero V. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]‐Hydrogenase Model: Low pH Enables Catalysis through an Enzyme‐Relevant Mechanism. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Md Estak Ahmed
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | | | - Lianke Wang
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Deborah Brazzolotto
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Debajyoti Pramanik
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Dmitry Aldakov
- Univ. Grenoble AlpesCNRS, CEA, INAC-SyMMES 38000 Grenoble France
| | - Jennifer Fize
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Adina Morozan
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| | - Marcello Gennari
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Carole Duboc
- Université Grenoble AlpesUMR CNRS 5250Département de Chimie Moléculaire 38000 Grenoble France
| | - Abhishek Dey
- Indian Association for the Cultivation of Science 700032 Kolkata India
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEALaboratoire de Chimie et Biologie des Métaux 38000 Grenoble France
| |
Collapse
|
39
|
Ghosh P, Ding S, Quiroz M, Bhuvanesh N, Hsieh CH, Palacios PM, Pierce BS, Darensbourg MY, Hall MB. Structural and Electronic Responses to the Three Redox Levels of Fe(NO)N 2 S 2 -Fe(NO) 2. Chemistry 2018; 24:16003-16008. [PMID: 30216575 DOI: 10.1002/chem.201804168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/10/2022]
Abstract
The nitrosylated diiron complexes, Fe2 (NO)3 , of this study are interpreted as a mono-nitrosyl Fe(NO) unit, MNIU, within an N2 S2 ligand field that serves as a metallodithiolate ligand to a dinitrosyl iron unit, DNIU. The cationic Fe(NO)N2 S2 ⋅Fe(NO)2 + complex, 1+ , of Enemark-Feltham electronic notation {Fe(NO)}7 -{Fe(NO)2 }9 , is readily obtained via myriad synthetic routes, and shown to be spin coupled and diamagnetic. Its singly and doubly reduced forms, {Fe(NO)}7 -{Fe(NO)2 }10 , 10 , and {Fe(NO)}8 -{Fe(NO)2 }10 , 1- , were isolated and characterized. While structural parameters of the DNIU are largely unaffected by redox levels, the MNIU readily responds; the neutral, S= 1 / 2 , complex, 10 , finds the extra electron density added into the DNIU affects the adjacent MNIU as seen by the decrease its Fe-N-O angle (from 171° to 149°). In contrast, addition of the second electron, now into the MNIU, returns the Fe-N-O angle to 171° in 1- . Compensating shifts in FeMNIU distances from the N2 S2 plane (from 0.518 to 0.551 to 0.851 Å) contribute to the stability of the bimetallic complex. These features are addressed by computational studies which indicate that the MNIU in 1- is a triplet-state {Fe(NO)}8 with strong spin polarization in the more linear FeNO unit. Magnetic susceptibility and parallel mode EPR results are consistent with the triplet state assignment.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Shengda Ding
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Manuel Quiroz
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Chung-Hung Hsieh
- Department of Chemistry, Tamkang Univesrity, New Taipei City, 25157, Taiwan
| | - Philip M Palacios
- Department of Chemistry, University of Texas at Arlington, 503 W 3rd St, Arlington, TX, 76010, USA
| | - Brad S Pierce
- Department of Chemistry, University of Texas at Arlington, 503 W 3rd St, Arlington, TX, 76010, USA
| | - Marcetta Y Darensbourg
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
40
|
Brazzolotto D, Wang L, Tang H, Gennari M, Queyriaux N, Philouze C, Demeshko S, Meyer F, Orio M, Artero V, Hall MB, Duboc C. Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deborah Brazzolotto
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Lianke Wang
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Marcello Gennari
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Nicolas Queyriaux
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Christian Philouze
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| | - Serhiy Demeshko
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Franc Meyer
- University of Göttingen, Insitute für Anorganische Chemie, Tammannstrasse 4, D- 37077 Göttingen, Germany
| | - Maylis Orio
- Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, ISM2 UMR 7313, 13397 Marseille, France
| | - Vincent Artero
- Université Grenoble Alpes, UMR CNRS 5249, CEA, Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Carole Duboc
- Université Grenoble Alpes, UMR CNRS 5250, Département de Chimie Moléculaire, F-38000 Grenoble, France
| |
Collapse
|
41
|
Lu TT, Wang YM, Hung CH, Chiou SJ, Liaw WF. Bioinorganic Chemistry of the Natural [Fe(NO)2] Motif: Evolution of a Functional Model for NO-Related Biomedical Application and Revolutionary Development of a Translational Model. Inorg Chem 2018; 57:12425-12443. [DOI: 10.1021/acs.inorgchem.8b01818] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Yun-Ming Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30013, Taiwan
| | | | - Show-Jen Chiou
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | | |
Collapse
|
42
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
43
|
Yu X, Pang M, Zhang S, Hu X, Tung CH, Wang W. Terminal Thiolate-Dominated H/D Exchanges and H2 Release: Diiron Thiol–Hydride. J Am Chem Soc 2018; 140:11454-11463. [DOI: 10.1021/jacs.8b06996] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xin Yu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Maofu Pang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Shengnan Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Xinlong Hu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan, 250100, P. R. China
| |
Collapse
|
44
|
Ghosh P, Quiroz M, Pulukkody R, Bhuvanesh N, Darensbourg MY. Bridging cyanides from cyanoiron metalloligands to redox-active dinitrosyl iron units. Dalton Trans 2018; 47:11812-11819. [DOI: 10.1039/c8dt01761a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanide, as an ambidentate ligand, plays a pivotal role in providing a simple diatomic building-block motif, for controlled metal aggregation, M–CN–M′.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry
- Texas A & M University
- College Station
- USA
| | - Manuel Quiroz
- Department of Chemistry
- Texas A & M University
- College Station
- USA
| | | | | | | |
Collapse
|
45
|
Yang TL, Ni SF, Qin P, Dang L. A mechanism study on the hydrogen evolution reaction catalyzed by molybdenum disulfide complexes. Chem Commun (Camb) 2018; 54:1113-1116. [DOI: 10.1039/c7cc08632f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Water-mediated intermolecular H+/H− coupling between two- or three-electron reduced sulfur hydride complexes with a hydrated proton is preferred to produce H2 rather than intramolecular couplings between sulfur hydride and metal hydride complexes.
Collapse
Affiliation(s)
- Ti-Long Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University
- Guangdong
- P. R. China
- Department of Chemistry, Southern University of Science and Technology
- Shenzhen
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University
- Guangdong
- P. R. China
| | - Peng Qin
- Department of Chemistry, Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University
- Guangdong
- P. R. China
- Department of Chemistry, Southern University of Science and Technology
- Shenzhen
| |
Collapse
|
46
|
Tang H, Hall MB. Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis? J Am Chem Soc 2017; 139:18065-18070. [DOI: 10.1021/jacs.7b10425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hao Tang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
47
|
Interplay of hemilability and redox activity in models of hydrogenase active sites. Proc Natl Acad Sci U S A 2017; 114:E9775-E9782. [PMID: 29087322 DOI: 10.1073/pnas.1710475114] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrogen evolution reaction, as catalyzed by two electrocatalysts [M(N2S2)·Fe(NO)2]+, [Fe-Fe]+ (M = Fe(NO)) and [Ni-Fe]+ (M = Ni) was investigated by computational chemistry. As nominal models of hydrogenase active sites, these bimetallics feature two kinds of actor ligands: Hemilabile, MN2S2 ligands and redox-active, nitrosyl ligands, whose interplay guides the H2 production mechanism. The requisite base and metal open site are masked in the resting state but revealed within the catalytic cycle by cleavage of the MS-Fe(NO)2 bond from the hemilabile metallodithiolate ligand. Introducing two electrons and two protons to [Ni-Fe]+ produces H2 from coupling a hydride temporarily stored on Fe(NO)2 (Lewis acid) and a proton accommodated on the exposed sulfur of the MN2S2 thiolate (Lewis base). This Lewis acid-base pair is initiated and preserved by disrupting the dative donation through protonation on the thiolate or reduction on the thiolate-bound metal. Either manipulation modulates the electron density of the pair to prevent it from reestablishing the dative bond. The electron-buffering nitrosyl's role is subtler as a bifunctional electron reservoir. With more nitrosyls as in [Fe-Fe]+, accumulated electronic space in the nitrosyls' π*-orbitals makes reductions easier, but redirects the protonation and reduction to sites that postpone the actuation of the hemilability. Additionally, two electrons donated from two nitrosyl-buffered irons, along with two external electrons, reduce two protons into two hydrides, from which reductive elimination generates H2.
Collapse
|