1
|
Zou J, Song B, Kong D, Dong Z, Liu Q, Yuan J. Responsive β-Diketonate-europium(III) Complex-Based Probe for Time-Gated Luminescence Detection and Imaging of Hydrogen Sulfide In Vitro and In Vivo. Inorg Chem 2024; 63:13244-13252. [PMID: 38981109 DOI: 10.1021/acs.inorgchem.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
As a crucial biological gasotransmitter, hydrogen sulfide (H2S) plays important roles in many pathological and physiological processes. Highly selective and sensitive detection of H2S is significant for the precise diagnosis and evaluation of diverse diseases. Nevertheless, challenges remain in view of the interference of autofluorescence in organisms and the stronger reactivity of H2S itself. Herein, we report the design and synthesis of a novel H2S-responsive β-diketonate-europium(III) complex-based probe, [Eu(DNB-Npketo)3(terpy)], for background-free time-gated luminescence (TGL) detection and imaging of H2S in autofluorescence-rich biological samples. The probe, consisting of a 2,4-dinitrobenzenesulfonyl (DNB) group coupled to a β-diketonate-europium(III) complex, shows almost no luminescence owing to the existence of intramolecular photoinduced electron transfer. The cleavage of the DNB group by a H2S-triggered reaction results in the recovery of the long-lived luminescence of the Eu3+ complex, allowing the detection of H2S in complicated biological samples to be performed in TGL mode. The probe showed a fast response, high specificity, and high sensitivity toward H2S, which enabled it to be successfully used for the quantitative TGL detection of H2S in tissue homogenates of mouse organs. Additionally, the low cytotoxicity of the probe allowed it to be further used for the TGL imaging of H2S in living cells and mice under different stimuli. All of the results suggested the potential of the probe for the investigation and diagnosis of H2S-related diseases.
Collapse
Affiliation(s)
- Jinhua Zou
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Qi Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian 116600, China
| |
Collapse
|
2
|
Gu X, Wang X, Cai W, Han Y, Zhang QW. Monofluorophore-based Two-Photon Ratiometric Fluorescent Probe for the Quantitative Imaging of Fatty Acid Amide Hydrolase in Live Neurons and Mouse Brain Tissues. ACS Sens 2024; 9:3387-3393. [PMID: 38850514 DOI: 10.1021/acssensors.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Fatty acid amide hydrolase (FAAH) plays a crucial role in the metabolism of the endocannabinoid system by hydrolyzing a series of bioactive amides, whose abnormal levels are associated with neuronal disorders including Alzheimer's disease (AD). However, due to the lack of suitable quantitative sensing tools, real-time and accurate monitoring of the activity of FAAH in living systems remains unresolved. Herein, a novel enzyme-activated near-infrared two-photon ratiometric fluorescent probe (CANP) based on a naphthylvinylpyridine monofluorophore is successfully developed, in which the electron-withdrawing amide moiety is prone to be hydrolyzed to an electron-donating amine group under the catalysis of FAAH, leading to the activation of the intramolecular charge transfer process and the emergence of a new 80 nm red-shifted emission, thereby achieving a ratiometric luminescence response. Benefiting from the high selectivity, high sensitivity, and ratiometric response to FAAH, the probe CANP is successfully used to quantitatively monitor and image the FAAH levels in living neurons, by which an amyloid β (Aβ)-induced upregulation of endogenous FAAH activity is observed. Similar increases in FAAH activity are found in various brain regions of AD model mice, indicating a potential fatty acid amide metabolite-involved pathway for the pathological deterioration of AD. Moreover, our quantitative FAAH inhibition experiments further demonstrate the great value of CANP as an efficient visual probe for in situ and precise assessment of FAAH inhibitors in complex living systems, assisting the discovery of FAAH-related therapeutic agents.
Collapse
Affiliation(s)
- Xin Gu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xuewei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Wenyan Cai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yujie Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
3
|
Yu SQ, Li P, Li HJ, Shang LJ, Guo R, Sun XM, Ren QQ. Highly Sensitive Detection of Hydrogen Peroxide in Cancer Tissue Based on 3D Reduced Graphene Oxide-MXene-Multi-Walled Carbon Nanotubes Electrode. BIOSENSORS 2024; 14:261. [PMID: 38920565 PMCID: PMC11201644 DOI: 10.3390/bios14060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
Hydrogen peroxide (H2O2) is a signaling molecule that has the capacity to control a variety of biological processes in organisms. Cancer cells release more H2O2 during abnormal tumor growth. There has been a considerable amount of interest in utilizing H2O2 as a biomarker for the diagnosis of cancer tissue. In this study, an electrochemical sensor for H2O2 was constructed based on 3D reduced graphene oxide (rGO), MXene (Ti3C2), and multi-walled carbon nanotubes (MWCNTs) composite. Three-dimensional (3D) rGO-Ti3C2-MWCNTs sensor showed good linearity for H2O2 in the ranges of 1-60 μM and 60 μM-9.77 mM at a working potential of -0.25 V, with sensitivities of 235.2 µA mM-1 cm-2 and 103.8 µA mM-1 cm-2, respectively, and a detection limit of 0.3 µM (S/N = 3). The sensor exhibited long-term stability, good repeatability, and outstanding immunity to interference. In addition, the modified electrode was employed to detect real-time H2O2 release from cancer cells and cancer tissue ex vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Xu-Ming Sun
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| | - Qiong-Qiong Ren
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China; (S.-Q.Y.); (P.L.); (H.-J.L.); (L.-J.S.); (R.G.)
| |
Collapse
|
4
|
Yuwen Z, Zeng Q, Ye Q, Zhao Y, Zhu J, Chen K, Liu H, Yang R. A Quencher-Based Blood-Autofluorescence-Suppression Strategy Enables the Quantification of Trace Analytes in Whole Blood. Angew Chem Int Ed Engl 2023; 62:e202302957. [PMID: 37102382 DOI: 10.1002/anie.202302957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Precise quantification of trace components in whole blood via fluorescence is of great significance. However, the applicability of current fluorescent probes in whole blood is largely hindered by the strong blood autofluorescence. Here, we proposed a blood autofluorescence-suppressed sensing strategy to develop an activable fluorescent probe for quantification of trace analyte in whole blood. Based on inner filter effect, by screening fluorophores whose absorption overlapped with the emission of blood, a redshift BODIPY quencher with an absorption wavelength ranging from 600-700 nm was selected for its superior quenching efficiency and high brightness. Two 7-nitrobenzo[c] [1,2,5] oxadiazole ether groups were introduced onto the BODIPY skeleton for quenching its fluorescence and the response of H2 S, a gas signal molecule that can hardly be quantified because of its low concentration in whole blood. Such detection system shows a pretty low background signal and high signal-to-back ratio, the probe thus achieved the accurate quantification of endogenous H2 S in 20-fold dilution of whole blood samples, which is the first attempt of quantifying endogenous H2 S in whole blood. Moreover, this autofluorescence-suppressed sensing strategy could be expanded to other trace analytes detection in whole blood, which may accelerate the application of fluorescent probes in clinical blood test.
Collapse
Affiliation(s)
- Zhiyang Yuwen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qin Zeng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Qiaozhen Ye
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Yixing Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Jingxuan Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| | - Kang Chen
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Hunan Normal University, Hunan Normal University, 410005, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410082, Changsha, P. R. China
| |
Collapse
|
5
|
Wang H, Yang J, Zheng X. Elucidation of the key role of isomerization in the self-assembly and luminescence properties of AIEgens. Phys Chem Chem Phys 2023; 25:14387-14399. [PMID: 37183990 DOI: 10.1039/d3cp00797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Due to the hierarchical nature of the self-assembly process, it is effective to control assembled nanostructures by tuning the spatial configurations of the building blocks through Z-/E-isomerization. A pair of AIE stereoisomers termed (Z)-/(E)-TPE-UPy was reported with different self-assembly mechanisms, morphologies and luminescence properties. In this study, we present a multiscale modeling combining MD simulations, hybrid QM/MM calculations and the PCM model, to systematically clarify the molecular configuration-molecular assembly-photophysical property relationship of (Z)-/(E)-TPE-UPy. Our study shows that (Z)-TPE-UPy follows a concentration-dependent ring-chain polymerization mechanism. At low concentration, (Z)-TPE-UPy tends to form ring-like (Z)-close-dimers with all H-bond sites occupied, while at high concentration, the H-bond backbone in the chain-like structures is more planar and stronger, making the zig-zag chain-like conformations more favorable. For the (E)-isomer, the H-bond backbone is quite planar and rigid, which makes it linearly elongate one-by-one at the whole range of concentrations via the isodesmic polymerization mechanism. (Z)-TPE-UPy oligomers exhibit large flexibility and diverse conformations, leading to sharply enhanced viscosity at high concentration in experiments. Moreover, the fluorescence spectrum of (Z)-/(E)-TPE-UPy aggregate is conformation-dependent and the enhanced emission in the aggregated state is attributed to the restriction of the low-frequency intramolecular rotations of the phenyl rings and the distortion of the CC plane, as well as the reduction of electron-vibration couplings. Our work not only offers valuable insights into the key role of stereoisomerism in assembled morphologies and luminescence properties, but also provides a theoretical basis for the rational design of new building blocks based on stereoisomers.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Junfang Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, 510640, China
| |
Collapse
|
6
|
Wu Q, Lei Q, Zhong HC, Ren TB, Sun Y, Zhang XB, Yuan L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem Commun (Camb) 2023; 59:3024-3039. [PMID: 36785939 DOI: 10.1039/d2cc06286k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, supramolecular chemistry with its unique properties has received considerable attention in many fields. Supramolecular fluorescent systems constructed on the basis of macrocyclic hosts are not only effective in overcoming the limitations of imaging and diagnostic reagents, but also in enhancing their performances. This paper summarizes the recent advances in supramolecular fluorescent systems based on host-guest interactions and their application in bioimaging and therapy as well as the challenges and prospects in developing novel supramolecular fluorescent systems.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Qian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Hai-Chen Zhong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
7
|
Fernández-Caro H, Méndez-Ardoy A, Montenegro J. Dynamic nanosurface reconfiguration by host-guest supramolecular interactions. NANOSCALE 2022; 14:3599-3608. [PMID: 35188162 DOI: 10.1039/d1nr05315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamic functionalization of the nanoparticle surface with biocompatible coatings is a critical step towards the development of functional nano-sized systems. While covalent approaches have been broadly exploited in the stabilization of nanoparticle colloidal systems, these strategies hinder the dynamic nanosurface chemical reconfiguration. Supramolecular strategies based on specific host-guest interactions hold promise due to their intrinsic reversibility, self-healing capabilities and modularity. Host/guest couples have recently been implemented in nanoparticle platforms for the exchange and release of effector molecules. However, the direct exchange of biocompatible hydrophilic oligomers (e.g. peptides) for the modulation of the surface charge and chemical properties of nanoparticles still remains a challenge. Here, we show the intracellular reconfiguration of nanoparticles by a host/guest mechanism with biocompatible oligomeric competitors. The surface of gold nanoparticles was functionalized with cyclodextrin hosts and the guest exchange was studied with biocompatible mono and divalent adamantyl competitors. The systematic characterization of the size and surface potential of the host/guest nanoparticles allowed the optimization of the binding and the stabilization properties of these supramolecular systems. The in cellulo host/guest-mediated direct reconfiguration of the peptide layer at the surface of nanoparticles is achieved by controlling the valence of adamantane-equipped peptides. This work demonstrates that host/guest supramolecular systems can be exploited for the direct exchange of pendants at the surface of nanoparticles and the intracellular dynamic chemical reconfiguration of biocompatible colloidal systems.
Collapse
Affiliation(s)
- Héctor Fernández-Caro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Xu S, Pan W, Ren T, Huan S, Yuan L, Zhang X. Molecular Engineering of Novel Fluorophores for
High‐Contrast
Bioimaging. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Wenjing Pan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Tian‐Bing Ren
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Shuang‐Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| | - Xiao‐Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine Hunan University Changsha 410082 P. R. China
| |
Collapse
|
9
|
Li W, Shen Y, Gong X, Zhang XB, Yuan L. Highly Selective Fluorescent Probe Design for Visualizing Hepatic Hydrogen Sulfide in the Pathological Progression of Nonalcoholic Fatty Liver. Anal Chem 2021; 93:16673-16682. [PMID: 34842411 DOI: 10.1021/acs.analchem.1c04246] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hydrogen sulfide (H2S), emerging as an important gaseous signal, has attracted more and more attention for its key role in chronic fatty liver diseases. However, lacking tools for H2S-specific in situ detection, the changes of endogenous hepatic H2S levels in the pathological progression of chronic liver diseases are still unclear. To this end, we adopted a strategy of combining molecular probe design and nanofunctionalization to develop a highly selective near-infrared (NIR) fluorescent probe, which allows in vivo real-time monitoring of hepatic H2S levels in the process of nonalcoholic fatty liver disease (NAFLD). As a proof of strategy demonstration, we first designed NIR molecular probes for H2S sensing through chemical design and probe screening and then loaded molecular probes into mesoporous silicon nanomaterials (MSNs) with surface encapsulation using poly(ethylene glycol) to construct a highly selective probe MSN@CSN@PEG, with significantly improved selectivity and photostability. Moreover, MSN@CSN@PEG exhibited high selectivity and sensitivity for endogenous H2S in cells and tumors in vivo, eliminating the interference of a high concentration of biothiols and sulfhydryl proteins. Furthermore, the probe was applied to in situ intravital imaging and systematic assessment of hepatic H2S levels in different stages of NAFLD for the first time, which may offer a promising tool for the future study of fatty liver diseases and other chronic liver diseases.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Ratiometric two-photon fluorescence probes for sensing, imaging and biomedicine applications at living cell and small animal levels. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214114] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
12
|
Chen H, Wang W, Ji C, Wang L. Dye-sensitized core-shell NaGdF 4:Yb,Er@NaGdF 4:Yb,Nd upconversion nanoprobe for determination of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119281. [PMID: 33310610 DOI: 10.1016/j.saa.2020.119281] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The core-shell NaGdF4:Yb,Er@NaGdF4:Yb,Nd upconversion nanoparticles (UCNPs) were successfully obtained with the method of co-precipitation, and the water-solubility of UCNPs was improved by the ligand exchange reaction between nitrosyl tetrafluoroborate (NOBF4) and nanoparticles. The IR-783 dye with negative charge and NOBF4-UCNPs with positive charge can bind together by electrostatic action to sensitize UCNPs through the energy transfer from IR-783 to UCNPs. However, with the presence of Na2S (a commonly used H2S donor), a highly selective reaction between H2S and IR-783, which destoried the structure of IR-783 and blocked the energy transfer, thus led to the quenching of luminescent intensity. Based on this, a sensing system for determination of H2S has been constructed successfully. The linear range of H2S detection by this system is 0.5-15 μM, and the detection limit is 34.17 nM. Furthermore, the dye-sensitized core-shell NaGdF4:Yb,Er@NaGdF4:Yb,Nd upconversion nanoprobe was applied to real sample analysis with satisfactory results.
Collapse
Affiliation(s)
- Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Wen Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Changchun Ji
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
13
|
Su D, Chen X, Zhang Y, Gao X. Activatable imaging probes for cancer-linked NAD(P)H:quinone oxidoreductase-1 (NQO1): Advances and future prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Jose DA, Sakla R, Sharma N, Gadiyaram S, Kaushik R, Ghosh A. Sensing and Bioimaging of the Gaseous Signaling Molecule Hydrogen Sulfide by Near-Infrared Fluorescent Probes. ACS Sens 2020; 5:3365-3391. [PMID: 33166465 DOI: 10.1021/acssensors.0c02005] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A fluorescent probe for the monitoring of H2S levels in living cells and organisms is highly desirable. In this regard, near-infrared (NIR) fluorescent probes have emerged as a promising tool. NIR-I and NIR-II probes have many significant advantages; for instance, NIR light penetrates deeper into tissue than light at visible wavelengths, and it causes less photodamage during biosample analysis and less autofluorescence, enabling higher signal-to-background ratios. Therefore, it is expected that fluorescent probes having emission in the NIR region are more suitable for in vivo imaging. Consequently, a considerable increase in reports of new H2S-responsive NIR fluorescent probes appeared in the literature. This review highlights the advances made in developing new NIR fluorescent probes aimed at the sensitive and selective detection of H2S in biological samples. Their applications in real-time monitoring of H2S in cells and in vivo for bioimaging of living cells/animals are emphasized. The selection of suitable dyes for designing NIR fluorescent probes, along with the principles and mechanisms involved for the sensing of H2S in the NIR region, are described. The discussions are focused on small-molecule and nanomaterials-based NIR probes.
Collapse
Affiliation(s)
- D. Amilan Jose
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Sakla
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Nancy Sharma
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Srushti Gadiyaram
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Rahul Kaushik
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| | - Amrita Ghosh
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, Kurukshetra-136119, Haryana, India
| |
Collapse
|
15
|
Tian J, Xia L, Wu J, Huang B, Cao H, Zhang W. Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32352-32359. [PMID: 32584539 DOI: 10.1021/acsami.0c07333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular polymers with facile and versatile architectures via noncovalent connection present great potential in biological fields. Herein, a linear alternating supramolecular polymer is constructed via host-guest inclusion interaction between cyclodextrin dimer (CD2) and bifunctional adamantane-conjugated porphyrin (TPP-Ad2). The supramolecular alternating structure of CD/TPP could not only suppress the aggregation of PSs to improve the photophysical properties because of the steric hindrance but also enhance the water solubility of PSs induced from cyclodextrin moieties. The nanoplatform obtained by this linear alternating supramolecular polymer (TPP-Ad2/CD2) presents significantly enhanced photodynamic therapy (PDT) efficacy, providing a promising path for PDT.
Collapse
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
16
|
Zhu Y, Chen C, Wu Q, Yang G, Liu Z, Hao E, Cao H, Gao Y, Zhang W. Single-wavelength phototheranostics for colon cancer via the thiolytic reaction. NANOSCALE 2020; 12:12165-12171. [PMID: 32490457 DOI: 10.1039/d0nr02393k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It's a huge challenge to develop effective nanosystems that combine the capabilities of diagnoses and therapies together for colon cancer in the clinic. Herein, we constructed a far-red absorbing phototheranostic nanosystem (FR-H2S) based on the thiolytic reaction of a dinitrophenyl modified phototheranostic prodrug and over-expressed H2S in colon cancer sites for precise imaging-guided phototherapy. FR-H2S with a BODIPY core not only could work as an imaging probe for diagnosis but also act as a phototherapeutic agent for cancer treatment under a single FR laser source (650 nm). FR-H2S exhibited a gradually enhanced fluorescence emission for precise diagnosis of H2S-rich colon tumor sites. After entering tumor cells, FR-H2S could generate abundant 1O2 and heat for phototherapies timely by using the same laser source (650 nm). We believe that this precise imaging-guided phototheranostic nanosystem could provide a promising approach to colon cancer with minimal damage.
Collapse
Affiliation(s)
- Yucheng Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering Center, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu, 241000, Anhui, China
| | - Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule Based Materials (State Key Laboratory Cultivation Base) and School of Chemistry and Materials Science, Anhui Normal University, No. 1 East Beijing Road, Wuhu, 241000, Anhui, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
17
|
Méndez‐Ardoy A, Reina JJ, Montenegro J. Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry 2020; 26:7516-7536. [DOI: 10.1002/chem.201904834] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
18
|
An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9689-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Li H, Yao Q, Sun W, Shao K, Lu Y, Chung J, Kim D, Fan J, Long S, Du J, Li Y, Wang J, Yoon J, Peng X. Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via in Situ Spraying. J Am Chem Soc 2020; 142:6381-6389. [DOI: 10.1021/jacs.0c01365] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Jeewon Chung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Dayeh Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian 116024, P. R. China
- Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen 518057, P. R. China
| |
Collapse
|
20
|
Guan K, Wang P, Zhou F, Wang Y, Liu HW, Xie Q, Song G, Yin X, Huan S, Zhang XB. A two-photon fluorescence self-reporting black phosphorus nanoprobe for the in situ monitoring of therapy response. Chem Commun (Camb) 2020; 56:14007-14010. [DOI: 10.1039/d0cc05335j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a black phosphorus based two-photon fluorescent nanoprobe (TPBP) for the in situ and real-time reporting of the therapeutic response of black phosphorus.
Collapse
|
21
|
Gong L, Liu S, Song Y, Xie S, Guo Z, Xu J, Xu L. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. J Mater Chem B 2020; 8:5952-5961. [DOI: 10.1039/d0tb00820f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A versatile LRET-based ratiometric (LBRU) nanoprobe of NaYF4:Yb,Er@NaYF4@NH2–mSiO2/rhodamine B/C-DNA sandwich-structured nanocomposites has been developed for intracellular miRNA biosensing.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
| | - Simin Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Ya Song
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Shaowen Xie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Ziyu Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Jianxiong Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices
- College of Life Sciences and Chemistry, Hunan University of Technology
- Zhuzhou 412007
- P. R. China
| |
Collapse
|
22
|
Xie S, Fu T, He L, Qiu L, Liu H, Tan W. DNA-Capped Silver Nanoflakes as Fluorescent Nanosensor for Highly Sensitive Imaging of Endogenous H2S in Cell Division Cycles. Anal Chem 2019; 91:15404-15410. [DOI: 10.1021/acs.analchem.9b02527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sitao Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lei He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Honglin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- School of Food and Biological Engineering, Hefei University of Technology, Anhui 230009, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
- Department of Chemistry and Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, University of Florida, Gainesville, Florida 32611-7200, United States
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Bezner BJ, Ryan LS, Lippert AR. Reaction-Based Luminescent Probes for Reactive Sulfur, Oxygen, and Nitrogen Species: Analytical Techniques and Recent Progress. Anal Chem 2019; 92:309-326. [DOI: 10.1021/acs.analchem.9b04990] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Chen L, Xu S, Li W, Ren T, Yuan L, Zhang S, Zhang XB. Tumor-acidity activated surface charge conversion of two-photon fluorescent nanoprobe for enhanced cellular uptake and targeted imaging of intracellular hydrogen peroxide. Chem Sci 2019; 10:9351-9357. [PMID: 32110299 PMCID: PMC7017867 DOI: 10.1039/c9sc03781k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Elevated levels of intracellular hydrogen peroxide (H2O2) are closely related to the development of cancers. Specific imaging of H2O2 in tumor sites would be significant not only for cancer diagnosis but also for gaining a deep understanding of the role of H2O2 in cancer. However, traditional fluorescent probes based only on responses to overexpression levels of H2O2 in cancer cells are insufficient to distinguish cancer cells from other unhealthy or healthy cells in complex biological systems. Herein, we developed a smart, two-photon fluorescent GC-NABP nanoprobe with pH-dependent surface charge conversion for tumor-targeted imaging of H2O2. The nanoprobe was constructed by the self-assembly of amphiphilic GC-NABP, which was synthesized by grafting the hydrophobic, H2O2-responsive and two-photon fluorophore, NABP, onto hydrophilic biopolymer glycol chitosan (GC). Taking advantage of pH-titratable amino groups on GC, the nanoprobe had the capability of surface charge conversion from negative at physiologic pH to positive in the acidic tumor microenvironment. The positive charge of the nanoprobe promoted electrostatic interactions with cell membranes, leading to enhanced cellular uptake in acidic environment. Upon cellular uptake, the high level of H2O2 in tumor cells triggered boronate deprotections of the nanoprobe, generating a "turn-on" fluorescence emission for H2O2 imaging. The nanoprobe exhibited good sensitivity and selectivity to H2O2 with a detection limit down to 110 nM in vitro. The results from flow cytometry and two-photon fluorescence imaging of H2O2 in living cells and tissues evidenced the enhanced cellular uptake and targeted imaging of intracellular H2O2 in acidic environment. Compared to control nanoparticles that lack pH sensitivity, our nanoprobe showed enhanced accumulation in tumor sites and was applied to targeted imaging of H2O2 in a tumor-bearing mouse model. This work demonstrates that the nanoprobe GC-NABP holds great promise for tumor-specific imaging of cellular H2O2, providing a potential tool to explore the role of H2O2 in tumor sites.
Collapse
Affiliation(s)
- Lanlan Chen
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE , College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology , Equipment and Diagnosis-Therapy Integration in Universities of Shandong , Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers , College of Chemistry and Chemical Engineering , Linyi University , Linyi , Shandong 276005 , P. R. China . ;
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , Molecular Science and Biomedicine Laboratory , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , P. R. China .
| |
Collapse
|
25
|
Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 2019; 1061:1-12. [DOI: 10.1016/j.aca.2019.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
26
|
Zhang C, Wang P, Yin X, Liu HW, Yang Y, Cheng L, Song G, Zhang XB. Two-Photon Supramolecular Nanoplatform for Ratiometric Bioimaging. Anal Chem 2019; 91:6371-6377. [DOI: 10.1021/acs.analchem.9b01455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Peng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Hong-Wen Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Yue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
27
|
Visualization of endogenous hydrogen sulfide in living cells based on Au nanorods@silica enhanced fluorescence. Anal Chim Acta 2019; 1053:81-88. [DOI: 10.1016/j.aca.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/02/2018] [Indexed: 01/04/2023]
|
28
|
Cobalt oxyhydroxide modified with poly-β-cyclodextrin and a cyanine dye as a nanoplatform for two-photon imaging of ascorbic acid in living cells and tissue. Mikrochim Acta 2019; 186:201. [PMID: 30796531 DOI: 10.1007/s00604-019-3320-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023]
Abstract
This article describes the development of several nanoconjugates composed of cobalt (III) oxyhydroxide and DEASPI/βCDP, where DEASPI stands for the dye trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium, and βCDP stands for β-cyclodextrin. The material enables sensitive fluorometric detection and 3D imaging of ascorbic acid (AA) in biological samples. A nanomicelle composed of DEASPI and βCDP was prepared to act as a two-photon absorbance (TPA) nanofluorophore with desirable two-photon-sensitized fluorescence, high penetration depth, and excellent cell-permeability). The CoOOH nanoflakes were placed on the surface of the nanomicelle to act as both a quencher of fluorescence and as the recognition unit for AA. In the presence of AA, the CoOOH nanoflakes are reduced to Co (II), and this triggers the recovery of fluorescence. This new nanoprobe exhibits amplified two-photon fluorescence (excitation at 840 nm; emission at 565 nm), high sensitivity, and good selectivity. In-vitro imaging of endogenous AA was demonstrated in living HeLa cells. It was also employed to 3D imaging of exogenous AA in tissue by two-photon excitation microscopy to a depth of up to 320 μm. In our perception, this nanoprobe represents a valuable tool for elucidating the roles of AA in biochemical and clinical studies. Graphical abstract Schematic presentation of the preparation of a novel Poly β-Cyclodextrin/TPdye conjugated with cobalt oxyhydroxide nanoplatform and its application for high sensitive and two-photon 3D imaging of ascorbic acid (AA) in living cells and deep tissues.
Collapse
|
29
|
Wang F, Zhang C, Qu X, Cheng S, Xian Y. Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosens Bioelectron 2019; 126:96-101. [DOI: 10.1016/j.bios.2018.10.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023]
|
30
|
Song JB, Liu GL, Hao L, Zhang F, Li H. Crystal structures and luminescence properties of a D–A type CIEgen and its Zn( ii) complexes. CrystEngComm 2019. [DOI: 10.1039/c9ce00534j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A D–A type CIEgen with a near-planar molecular structure and its two Zn(ii) complexes with fluorescence selectivity for THF were obtained.
Collapse
Affiliation(s)
- Jian-Biao Song
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P.R. China
| | - Gui-lei Liu
- National Research Center for Geoanalysis
- P.R. China
| | - Liang Hao
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P.R. China
| | - Fang Zhang
- Analysis and Testing Center
- Beijing Institute of Technology
- Beijing
- P.R. China
| | - Hui Li
- Key Laboratory of Clusters Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing
- P.R. China
| |
Collapse
|
31
|
Bao B, Yang Z, Liu Y, Xu Y, Gu B, Chen J, Su P, Tong L, Wang L. Two-photon semiconducting polymer nanoparticles as a new platform for imaging of intracellular pH variation. Biosens Bioelectron 2018; 126:129-135. [PMID: 30396020 DOI: 10.1016/j.bios.2018.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 12/23/2022]
Abstract
Intracellular pH (pHi) plays a crucial role in cell physiological and pathological processes. We herein report an efficient pH-sensitive sensor based on two-photon excitable semiconducting polymer nanoparticles (PFV/PSMA-DA NPs) for pHi sensing. PFV/PSMA NPs were functionalized with redox-active dopamine (DA) and the obtained PFV/PSMA-DA NPs showed sensitive and reversible pH response over the pH range of 5.0-9.0. Owning to the high biocompatibility and pH-responsive DA, PFV/PSMA-DA NPs show low cytotoxicity and the quantification and imaging of intracellular pH changes of HeLa cells were successfully realized. Moreover, the detection of intracellular pH fluctuation induced by redox species such as NAC (N-acetylcysteine) and H2O2 was also achieved by both one- and two-photon excitation of the PFV/PSMA-DA NPs probe. This work clearly shows that nanoprobe based on two-photon PFV/PSMA-DA NPs could serve as a promising platform for quantitatively monitoring the intracellular pH fluctuations.
Collapse
Affiliation(s)
- Biqing Bao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Zhenyuan Yang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Yunfei Liu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Yu Xu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Bingbing Gu
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Jia Chen
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Peng Su
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Li Tong
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
32
|
Li H, Yao Q, Xu F, Xu N, Sun W, Long S, Du J, Fan J, Wang J, Peng X. Lighting-Up Tumor for Assisting Resection via Spraying NIR Fluorescent Probe of γ-Glutamyltranspeptidas. Front Chem 2018; 6:485. [PMID: 30370267 PMCID: PMC6194167 DOI: 10.3389/fchem.2018.00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
For the precision resection, development of near-infrared (NIR) fluorescent probe based on specificity identification tumor-associated enzyme for lighting-up the tumor area, is urgent in the field of diagnosis and treatment. Overexpression of γ-glutamyltranspeptidase, one of the cell-membrane enzymes, known as a biomarker is concerned with the growth and progression of ovarian, liver, colon and breast cancer compared to normal tissue. In this work, a remarkable enzyme-activated NIR fluorescent probe NIR-SN-GGT was proposed and synthesized including two moieties: a NIR dicyanoisophorone core as signal reporter unit; γ-glutamyl group as the specificity identification site. In the presence of γ-GGT, probe NIR-SN-GGT was transformed into NIR-SN-NH2, the recovery of Intramolecular Charge Transfer (ICT), liberating the NIR fluorescence signal, which was firstly employed to distinguish tumor tissue and normal tissues via simple “spraying” manner, greatly promoting the possibility of precise excision. Furthermore, combined with magnetic resonance imaging by T2 weight mode, tumor transplanted BABL/c mice could be also lit up for first time by NIR fluorescence probe having a large stokes, which demonstrated that probe NIR-SN-GGT would be a useful tool for assisting surgeon to diagnose and remove tumor in clinical practice.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| |
Collapse
|
33
|
Wang P, Zhou F, Zhang C, Yin SY, Teng L, Chen L, Hu XX, Liu HW, Yin X, Zhang XB. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem Sci 2018; 9:8402-8408. [PMID: 30542589 PMCID: PMC6243647 DOI: 10.1039/c8sc03393e] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
A two-photon fluorescent covalent organic framework nanopore is designed for the first time for H2S interference-resistant bioimaging.
The complex environment of living organisms significantly challenges the selectivity of classic small-molecule fluorescent probes for bioimaging. Due to their predesigned topological structure and engineered internal pore surface, covalent organic frameworks (COFs) have the ability to filter out coexisting interference components and help to achieve accurate biosensing. Herein, we propose an effective interference-resistant strategy by creating a COF-based hybrid probe that combines the respective advantages of COFs and small-molecule probes. As a proof of concept, a two-photon fluorescent COF nanoprobe, namely TpASH-NPHS, is developed for targeting hydrogen sulfide (H2S) as a model analyte. TpASH-NPHS exhibits limited cytotoxicity, excellent photostability and long-term bioimaging capability. More importantly, compared with the small-molecule probe, TpASH-NPHS achieves accurate detection without the interference from intracellular enzymes. This allows us to monitor the levels of endogenous H2S in a mouse model of cirrhosis.
Collapse
Affiliation(s)
- Peng Wang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Fang Zhou
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Cheng Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Sheng-Yan Yin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Lili Teng
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , College of Life Sciences , Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha , Hunan 410082 , China .
| |
Collapse
|
34
|
Yang T, Li CM, He JH, Chen B, Li YF, Huang CZ. Ratiometrically Fluorescent Electrospun Nanofibrous Film as a Cu2+-Mediated Solid-Phase Immunoassay Platform for Biomarkers. Anal Chem 2018; 90:9966-9974. [DOI: 10.1021/acs.analchem.8b02286] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
| | - Chun Mei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, People’s Republic of China
| | | | | | | | | |
Collapse
|
35
|
Liu Y, Jiang A, Jia Q, Zhai X, Liu L, Ma L, Zhou J. Rationally designed upconversion nanoprobe for simultaneous highly sensitive ratiometric detection of fluoride ions and fluorosis theranostics. Chem Sci 2018; 9:5242-5251. [PMID: 29997879 PMCID: PMC6001250 DOI: 10.1039/c8sc00670a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
For many years, fluorosis has been known as a worldwide disease which seriously diminishes quality of life through skeletal embrittlement and hepatic damage. Aiming to develop novel drugs for simultaneous fluorosis diagnosis and therapy, in this work we explore the feasibility of a novel pyrogallic acid-titanium(iv) complex-modified upconversion nanoprobe (UCNP-PA-Ti) for F- capture and real-time quantification. Utilizing the strong interaction between Ti4+ and F-, the modified PA-Ti decomposes in F--containing solution, which not only weakens the FRET but results in upconversion luminescence (UCL) recovery. Both in vitro and in vivo experiments demonstrate a highly sensitive F- UCL response and therapeutic efficiency, which was promising for successful UCL image monitoring and the therapeutic process. Long blood circulation time and low toxicity ensured their safe application for fluorosis theranostics. Our work provides a new possibility for F- concentration detection within fluorosis therapeutic periods and encourages the development of novel drugs for fluorosis theranostics.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Anqi Jiang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Qi Jia
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Xuejiao Zhai
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Lidong Liu
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Liyi Ma
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Jing Zhou
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| |
Collapse
|
36
|
Wang H, Liu Y, Xu C, Wang X, Chen GR, James TD, Zang Y, Li J, Ma X, He XP. Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chem Commun (Camb) 2018; 54:4037-4040. [PMID: 29619480 DOI: 10.1039/c8cc00920a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed a supramoleuclar imaging probe based on thin-layer manganese dioxide functionalized with a fluorescent, multivalent glyco-poly-cycolodextrin for the targeted, stimulus-responsive bioimaging of cancer cells.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Ying Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Chao Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Xi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd, Shanghai 201203, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai 200237, China.
| |
Collapse
|
37
|
Du Z, Song B, Zhang W, Duan C, Wang YL, Liu C, Zhang R, Yuan J. Quantitative Monitoring and Visualization of Hydrogen Sulfide In Vivo Using a Luminescent Probe Based on a Ruthenium(II) Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhongbo Du
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Bo Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Chengchen Duan
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St. Lucia QLD 4072 Australia
| | - Yong-Lei Wang
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St. Lucia QLD 4072 Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
38
|
Du Z, Song B, Zhang W, Duan C, Wang YL, Liu C, Zhang R, Yuan J. Quantitative Monitoring and Visualization of Hydrogen Sulfide In Vivo Using a Luminescent Probe Based on a Ruthenium(II) Complex. Angew Chem Int Ed Engl 2018; 57:3999-4004. [DOI: 10.1002/anie.201800540] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zhongbo Du
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Bo Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Chengchen Duan
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St. Lucia QLD 4072 Australia
| | - Yong-Lei Wang
- Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; St. Lucia QLD 4072 Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian 116024 China
| |
Collapse
|
39
|
Yan H, Gao Q, Liu Y, Ren W, Shangguan J, Yang X, Li K. Poly(β-cyclodextrin) enhanced fluorescence coupled with specific reaction for amplified detection of GSH and trypsin activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj04325f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the construction process of a specific-reaction assay coupled with βCDP-induced signal amplification platform.
Collapse
Affiliation(s)
- Huijuan Yan
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Yufei Liu
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Wu Ren
- Xinxiang Neurosense and Control Engineering Technology Center, Xinxiang Medical University
- Xinxiang
- P. R. China
| | | | - Xue Yang
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| | - Keke Li
- School of Pharmacy, Xinxiang Medical University
- Xinxiang
- P. R. China
| |
Collapse
|
40
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|