1
|
Wen Y, Liu R, Xie Y, Li M. Targeted SERS Imaging and Intraoperative Real-Time Elimination of Microscopic Tumors for Improved Breast-Conserving Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405253. [PMID: 38820719 DOI: 10.1002/adma.202405253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Breast-conserving surgery is the favorable option for breast cancer patients owing to its advantages of less aggressiveness and better cosmetic outcomes over mastectomy. However, it often suffers from postsurgical lethal recurrence due to the incomplete removal of microscopic tumors. Here, a surface-enhanced Raman scattering (SERS) surgical strategy is reported for precise delineation of tumor margins and intraoperative real-time elimination of microscopic tumor foci, which is capable of complete surgical removal of breast tumors and significantly improve the outcomes of breast-conserving surgery without local tumor recurrence. The technique is chiefly based on the human epidermal growth factor receptor 2 (HER2)-targeting SERS probes with integrated multifunctionalities of ultrahigh sensitive detection, significant HER2 expression suppression, cell proliferation inhibition, and superior photothermal ablation. In a HER2+ breast tumor mouse model, the remarkable capability of the SERS surgical strategy for complete removal of HER2+ breast tumors through SERS-guided surgical resection and intraoperative real-time photothermal elimination is demonstrated. The results show complete eradiation of HER2+ breast tumors without local recurrence, consequently delivering a 100% tumor-free survival. Expectedly, this SERS surgical strategy holds great promise for clinical treatment of HER2+ breast cancer with improved patients' survival.
Collapse
Affiliation(s)
- Yu Wen
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
| | - Ruoxuan Liu
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yangcenzi Xie
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
2
|
Ullah Z, Roy S, Gu J, Ko Soe S, Jin J, Guo B. NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery. BIOSENSORS 2024; 14:282. [PMID: 38920586 PMCID: PMC11201439 DOI: 10.3390/bios14060282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging is the most advanced imaging fidelity method with extraordinary penetration depth, signal-to-background ratio, biocompatibility, and targeting ability. It is currently booming in the medical realm to diagnose tumors and is being widely applied for fluorescence-imaging-guided tumor surgery. To efficiently execute this modern imaging modality, scientists have designed various probes capable of showing fluorescence in the NIR-II window. Here, we update the state-of-the-art NIR-II fluorescent probes in the most recent literature, including indocyanine green, NIR-II emissive cyanine dyes, BODIPY probes, aggregation-induced emission fluorophores, conjugated polymers, donor-acceptor-donor dyes, carbon nanotubes, and quantum dots for imaging-guided tumor surgery. Furthermore, we point out that the new materials with fluorescence in NIR-III and higher wavelength range to further optimize the imaging results in the medical realm are a new challenge for the scientific world. In general, we hope this review will serve as a handbook for researchers and students who have an interest in developing and applying fluorescent probes for NIR-II fluorescence-imaging-guided surgery and that it will expedite the clinical translation of the probes from bench to bedside.
Collapse
Affiliation(s)
- Zia Ullah
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Jingshi Gu
- Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Sai Ko Soe
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| | - Jian Jin
- Education Center of Experiments and Innovations, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China; (Z.U.); (S.R.); (S.K.S.)
| |
Collapse
|
3
|
Chen H, Fang G, Ren Y, Zou W, Ying K, Yang Z, Chen Q. Super-resolution imaging for in situ monitoring sub-cellular micro-dynamics of small molecule drug. Acta Pharm Sin B 2024; 14:1864-1877. [PMID: 38572114 PMCID: PMC10985125 DOI: 10.1016/j.apsb.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 04/05/2024] Open
Abstract
Small molecule drugs play a pivotal role in the arsenal of anticancer pharmacological agents. Nonetheless, their small size poses a challenge when directly visualizing their localization, distribution, mechanism of action (MOA), and target engagement at the subcellular level in real time. We propose a strategy for developing triple-functioning drug beacons that seamlessly integrate therapeutically relevant bioactivity, precise subcellular localization, and direct visualization capabilities within a single molecular entity. As a proof of concept, we have meticulously designed and constructed a boronic acid fluorescence drug beacon using coumarin-hemicyanine (CHB). Our CHB design includes three pivotal features: a boronic acid moiety that binds both adenosine triphosphate (ATP) and adenosine diphosphate (ADP), thus depleting their levels and disrupting the energy supply within mitochondria; a positively charged component that targets the drug beacon to mitochondria; and a sizeable conjugated luminophore that emits fluorescence, facilitating the application of structured illumination microscopy (SIM). Our study indicates the exceptional responsiveness of our proof-of-concept drug beacon to ADP and ATP, its efficacy in inhibiting tumor growth, and its ability to facilitate the tracking of ADP and ATP distribution around the mitochondrial cristae. Furthermore, our investigation reveals that the micro-dynamics of CHB induce mitochondrial dysfunction by causing damage to the mitochondrial cristae and mitochondrial DNA. Altogether, our findings highlight the potential of SIM in conjunction with visual drug design as a potent tool for monitoring the in situ MOA of small molecule anticancer compounds. This approach represents a crucial advancement in addressing a current challenge within the field of small molecule drug discovery and validation.
Collapse
Affiliation(s)
- Huimin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guiqian Fang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Youxiao Ren
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kang Ying
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
4
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
5
|
Wongso H, Kurniawan A, Forentin AM, Susilo VY, Setiadi Y, Mahendra I, Febrian MB, Rosdianto AM, Setiawan I, Goenawan H, Susianti S, Supratman U, Widyasari EM, Wibawa TH, Sriyani ME, Halimah I, Lesmana R. New hybrid radio-fluorescent probes [ 131I]-BPF-01 and [ 131I]-BPF-02 for visualisation of cancer cells: Synthesis and preliminary in vitro and ex vivo evaluations. Heliyon 2023; 9:e20710. [PMID: 37860547 PMCID: PMC10582398 DOI: 10.1016/j.heliyon.2023.e20710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
We synthesised and biologically evaluated two new hybrid probes [131I]BPF-01 and [131I]BPF-02 which were built from three structural entities: benzothiazole-phenyl, fluorescein isothiocyanate (FITC), and iodine-131. These probes were designed for potential applications in assisting surgical procedures of solid cancers. The cytotoxicity study demonstrated that fluorescent probes BPF-01 (31.23 μg/mL) and BPF-02 (250 μg/mL) were relatively not toxic to normal immortalized human keratinocytes (HaCaT) cells, as indicated by the percentage of cell survival above 50 %. Furthermore, both probes displayed low to moderate anticancer activity against the breast cancer cells (MDA-MB-231) and prostate cancer cells (LNCaP and DU-145). The probe BPF-01 apparently showed an accumulation in the tumour tissues, as suggested by ex vivo fluorescence examinations. In addition, the cellular uptake study suggests that hybrid probe [131I]-BPF-01 was potentially accumulated in the MCF-7 cell line with the highest uptake of 16.11 ± 1.52 % after 2 h of incubation, approximately 50-fold higher than the accumulation of iodine-131 (control). The magnetic bead assay suggests that [131I]-BPF-02 and [131I]-BPF-02 showed a promising capability to interact with translocator protein 18 kDa (TSPO). Moreover, the computational data showed that the binding scores for ligands 7-8, BPF-01 and BPF-02, and [131I]-BPF-01 and [131I]-BPF-02 in the TSPO were considerably high. Accordingly, fluorescent probes BPF-01 and BPF-02, and hybrid probes [131I]BPF-01 and [131I]BPF-02 can be further developed for targeting cancer cells during intraoperative tumour surgery.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Ahmad Kurniawan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Alfian M. Forentin
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Veronika Y. Susilo
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Yanuar Setiadi
- Research Center for Environmental and Clean Technology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Isa Mahendra
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Jl. Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia
| | - Muhamad B. Febrian
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Aziiz M. Rosdianto
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Iwan Setiawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Hanna Goenawan
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Susianti Susianti
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Unang Supratman
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Eva M. Widyasari
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Teguh H.A. Wibawa
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Maula E. Sriyani
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Iim Halimah
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
- Laboratory of Sciences, Graduate School, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
6
|
A novel urokinase plasminogen activator receptor-targeted peptide-based probe for in-vivo molecular imaging of glioblastoma. Nucl Med Commun 2023; 44:142-149. [PMID: 36630218 DOI: 10.1097/mnm.0000000000001644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AIM The urokinase plasminogen activator receptor (uPAR) is a promising biomarker for cancer diagnosis and therapy. We herein fabricated a new type of uPAR-targeted imaging probe Al18F-NOTA-VC and preliminarily evaluated its potential application in PET imaging of the glioma model in vivo. METHODS Peptide VC was synthesized and identified by MALDI-TOF-MS. The IC50 between VC/precursor NOTA-VC and uPAR was then determined before the synthesis and purification of Al18F-NOTA-VC, followed by further studies of in-vitro properties of Al18F-NOTA-VC. Meanwhile, the AE105-based probe followed a similar procedure in-vitro test. Finally, the PET imaging properties, including uPAR-targeting ability and the metabolism of Al18F-NOTA-VC, were investigated. RESULTS The VC and NOTA-VC were obtained successfully and demonstrated a good affinity with uPAR. Followed by Al18F labeling successfully, excellent properties, including the serum stability, water solubility, and specificity of Al18F-NOTA-VC, were obtained in-vitro test compared with AE105 based probe. An excellent tumor uptake and renal excretion data of Al18F-NOTA-VC were acquired from in-vivo U87MG tumor model PET imaging, consistent with the subsequent biodistribution study. CONCLUSION In addition to the excellent specificity and high tumor/normal tissue contrast for uPAR-targeted PET imaging of U87MG tumor, Al18F-NOTA-VC possessed promising clearance ability by renal system route. These excellent properties facilitated Al18F-NOTA-VC to be a promising imaging agent for uPAR high-expressing tumors and, thus, provided a paradigm for developing peptide-based probes for uPAR-associated disease diagnosis.
Collapse
|
7
|
Dong Y, Lu X, Li Y, Chen W, Yin L, Zhao J, Hu X, Li X, Lei Z, Wu Y, Chen H, Luo X, Qian X, Yang Y. Spectral and biodistributional engineering of deep near-infrared chromophore. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
The multifaceted roles of peptides in “always-on” near-infrared fluorescent probes for tumor imaging. Bioorg Chem 2022; 129:106182. [DOI: 10.1016/j.bioorg.2022.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
|
9
|
Gu H, Liu W, Li H, Sun W, Du J, Fan J, Peng X. 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Lopes S, Nikitin T, Fausto R. Photochemical Study and Vibrational Spectra of Propiolamide Isolated in Low-Temperature Ar, Xe, and N2 Matrices. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Emerging NIR-II luminescent bioprobes based on lanthanide-doped nanoparticles: From design towards diverse bioapplications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Liang W, He S, Wu S. Fluorescence Imaging in Second Near‐infrared Window: Developments, Challenges, and Opportunities. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Weijun Liang
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Shuqing He
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
14
|
Wu M, Li X, Mu X, Zhang X, Wang H, Zhang XD. Multimodal molecular imaging in the second near-infrared window. Nanomedicine (Lond) 2022; 17:1585-1606. [PMID: 36476011 DOI: 10.2217/nnm-2022-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near-infrared-II (NIR-II) fluorescence imaging has rapidly developed for the noninvasive investigation of physiological and pathological activities in living organisms with high spatiotemporal resolution. However, the penetration depth of fluorescence restricts its ability to provide deep anatomical information. Scientists integrate NIR-II fluorescence imaging with other imaging modes (such as photoacoustic and magnetic resonance imaging) to create multimodal imaging that can acquire detailed anatomical and quantitative information with deeper penetration by using multifunctional probes. This review offers a comprehensive picture of NIR-II-based dual/multimodal imaging probes and highlights advances in bioimaging and therapy. In addition, seminal studies and trends in multimodal imaging probes activated by NIR-II laser are summarized and several key points regarding future clinical translation are elucidated.
Collapse
Affiliation(s)
- Menglin Wu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xue Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science & Neural Engineering, Academy of Medical Engineering & Translational Medicine, Tianjin University, Tianjin, 300072, China.,Department of Physics & Tianjin Key Laboratory of Low Dimensional Materials Physics & Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
15
|
Martin E, Hom M, Mani L, Rosenthal EL. Current and Future Applications of Fluorescence-Guided Surgery in Head and Neck Cancer. Surg Oncol Clin N Am 2022; 31:695-706. [DOI: 10.1016/j.soc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Li B, Zhao M, Lin J, Huang P, Chen X. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem Soc Rev 2022; 51:7692-7714. [PMID: 35861173 DOI: 10.1039/d2cs00131d] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical fluorescence imaging in the second near-infrared (NIR-II, 100-1700 nm) window provides great potential for visualizing physiological and pathological processes, owing to the reduced tissue absorption, scattering, and autofluorescence. Various types of NIR-II probes have been reported in the past decade. Among them, NIR-II organic/inorganic nanohybrids have attracted widespread attention due to their unique properties by integrating the advantages of both organic and inorganic species. Versatile organic/inorganic nanohybrids provide the possibility of realizing a combination of functions, controllable size, and multiple optical features. This tutorial review summarizes the reported organic and inorganic species in nanohybrids, and their biomedical applications in NIR-II fluorescence and lifetime imaging. Finally, the challenges and outlook of organic/inorganic nanohybrids in biomedical applications are discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China. .,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mengyao Zhao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
17
|
Chen Z, Huang H, He S, Wang Y, Cai L, Xie Y. Progresses in Fluorescence Imaging Guidance for Bone and Soft Tissue Sarcoma Surgery. Front Oncol 2022; 12:879697. [PMID: 35860548 PMCID: PMC9289289 DOI: 10.3389/fonc.2022.879697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
R0 surgical resection is the preferred treatment for bone and soft tissue sarcoma. However, there is still a lack of precise technology that can visualize bone and soft tissue sarcoma during surgery to assist the surgeon in judging the tumor surgical boundary. Fluorescence imaging technology has been used in the diagnosis of cancer. It is a simple and essentially safe technique that takes no additional time during the operation. Intraoperative fluorescence imaging has potential application prospects in assisting the surgeons in judging the tumor boundary and improving the accuracy of surgical resection. This review mainly starts with clinical studies, animal experimentation, and newly designed probes of intraoperative fluorescence imaging of bone and soft tissue sarcoma, to appraise the application prospects of fluorescence imaging technology in bone and soft tissue sarcoma.
Collapse
|
18
|
Zhu H, Ren F, Wang T, Jiang Z, Sun Q, Li Z. Targeted Immunoimaging of Tumor-Associated Macrophages in Orthotopic Glioblastoma by the NIR-IIb Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202201. [PMID: 35771091 DOI: 10.1002/smll.202202201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Developing dynamic and highly sensitive methods for imaging M2-type tumor-associated macrophages (TAMs) is vital for monitoring the tumor progression and assessing the therapeutic efficacy. Here, the fabrication and application of rationally designed Er-based rare-earth nanoprobes for the targeted imaging of M2-type TAMs in glioblastoma (GBM) through the second near-infrared (NIR-II) fluorescence beyond 1500 nm is reported. The NIR-IIb fluorescence of Er-based rare-earth nanoparticles can be remarkably enhanced by optimizing their core-shell structures and the shell thickness, which allows for in vivo imaging under excitation by a 980 nm laser with the lowest power density (40 mW cm-2 ). These bright Er-based nanoparticles functionalized with M2pep polypeptide show notable targeting ability to M2-type macrophages, which has been well tested in both in vitro and in vivo experiments by their up-conversion (UC) fluorescence (540 nm) and down-shifting (DS) fluorescence (1525 nm), respectively. The targeting capability of these nanoprobes in vivo is also demonstrated by the overlap of immunofluorescence of M2-type TAMs and Arsenazo III staining of rare-earth ions in tumor tissue. It is envisioned that these nanoprobes can serve as a companion diagnostic tool to dynamically assess the progression and prognosis of GBM.
Collapse
Affiliation(s)
- Hongqin Zhu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Ren
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Qiao Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
19
|
Wang Z, Chen D, Fan Q, Wu Z, Dong J, Cui J, Wang J, Xu T, Meng Q, Li S. Design, Synthesis and In Vivo Fluorescence Imaging Study of a Cytochrome P450 1B1 Targeted NIR Probe Containing a Chelator Moiety. Chembiochem 2022; 23:e202200268. [PMID: 35567365 DOI: 10.1002/cbic.202200268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 (CYP) 1B1 has been found to be overexpressed specifically in tumor tissues at early stage, which makes it a potential cancer biomarker for molecular imaging of cancer. Multimodal imaging combines different imaging modalities and offers more comprehensive information. Thus, imaging probes bearing more than one kind of signal fragment have been extensively explored and displayed great promise. Herein, we developed a near infrared (NIR) probe with a chelator moiety targeting CYP1B1 by conjugating α-naphthoflavone (ANF) derivatives with both a NIR dye and a chelator for potential application in bimodal imaging. Enzymatic inhibitory studies demonstrated inhibitory activity against CYP1B1 and selectivity among CYP1 were successfully retained after chemical modification. Cell-based saturation study indicated nanomolar range binding affinity between the probe and CYP1B1 overexpressed cancer cells. In vitro competitive binding assay monitored by confocal microscopy revealed that the probe could specifically accumulate in tumor cells. In vivo and ex vivo imaging studies demonstrated the probe could effectively lighten up the tumor tissues as early as 2 hours post injection. Besides, the fluorescence was significantly blocked by co-injection of CYP1B1 inhibitor, which indicated the probe accumulation in tumor sites was due to specific binding towards CYP1B1.
Collapse
Affiliation(s)
- Zengtao Wang
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Dongmei Chen
- Shanghai Jiao Tong University, School of Pharmacy, Shanghai, CHINA
| | - Qiqi Fan
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Zhihao Wu
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jinyun Dong
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jiahua Cui
- Shanghai Jiao Tong University, School of Pharmacy, CHINA
| | - Jie Wang
- Shanghai Jiao Tong University, School of Medicine, CHINA
| | - Ting Xu
- Shanghai Jiao Tong University, School of Medicine, Shanghai, CHINA
| | - Qingqing Meng
- Shanghai Jiao Tong University, School of pharmacy, 800 Dongchuan Road, 200240, Shanghai, CHINA
| | - Shaoshun Li
- Shanghai Jiao Tong University, School of Pharmacy, 800 Dongchuan Road, Shanghai, China, 200240, shanghai, CHINA
| |
Collapse
|
20
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
21
|
Yuen R, West FG, Wuest F. Dual Probes for Positron Emission Tomography (PET) and Fluorescence Imaging (FI) of Cancer. Pharmaceutics 2022; 14:pharmaceutics14030645. [PMID: 35336019 PMCID: PMC8952779 DOI: 10.3390/pharmaceutics14030645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023] Open
Abstract
Dual probes that possess positron emission tomography (PET) and fluorescence imaging (FI) capabilities are precision medicine tools that can be used to improve patient care and outcomes. Detecting tumor lesions using PET, an extremely sensitive technique, coupled with fluorescence-guided surgical resection of said tumor lesions can maximize the removal of cancerous tissue. The development of novel molecular probes is important for targeting different biomarkers as every individual case of cancer has different characteristics. This short review will discuss some aspects of dual PET/FI probes and explore the recently reported examples.
Collapse
Affiliation(s)
- Richard Yuen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Frank Wuest
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (R.Y.); (F.G.W.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, University of Alberta—Cross Cancer Institute, Edmonton, AB T6G IZ2, Canada
- Correspondence:
| |
Collapse
|
22
|
Ariztia J, Solmont K, Moïse NP, Specklin S, Heck MP, Lamandé-Langle S, Kuhnast B. PET/Fluorescence Imaging: An Overview of the Chemical Strategies to Build Dual Imaging Tools. Bioconjug Chem 2022; 33:24-52. [PMID: 34994545 DOI: 10.1021/acs.bioconjchem.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular imaging is a biomedical research discipline that has quickly emerged to afford the observation, characterization, monitoring, and quantification of biomarkers and biological processes in living organism. It covers a large array of imaging techniques, each of which provides anatomical, functional, or metabolic information. Multimodality, as the combination of two or more of these techniques, has proven to be one of the best options to boost their individual properties, hence offering unprecedented tools for human health. In this review, we will focus on the combination of positron emission tomography and fluorescence imaging from the specific perspective of the chemical synthesis of dual imaging agents. Based on a detailed analysis of the literature, this review aims at giving a comprehensive overview of the chemical strategies implemented to build adequate imaging tools considering radiohalogens and radiometals as positron emitters, fluorescent dyes mostly emitting in the NIR window and all types of targeting vectors.
Collapse
Affiliation(s)
- Julen Ariztia
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Kathleen Solmont
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | | | - Simon Specklin
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Marie Pierre Heck
- Université Paris-Saclay, INRAE, Département Médicaments et Technologies pour la santé (DMTS), SCBM, 91191, Gif-sur-Yvette cedex, France
| | | | - Bertrand Kuhnast
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| |
Collapse
|
23
|
Liu Y, Li Q, Gu M, Lu D, Xiong X, Zhang Z, Pan Y, Liao Y, Ding Q, Gong W, Chen DS, Guan M, Wu J, Tian Z, Deng H, Gu L, Hong X, Xiao Y. A Second Near-Infrared Ru(II) Polypyridyl Complex for Synergistic Chemo-Photothermal Therapy. J Med Chem 2022; 65:2225-2237. [PMID: 34994554 DOI: 10.1021/acs.jmedchem.1c01736] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The clinical success of cisplatin ushered in a new era of the application of metallodrugs. When it comes to practice, however, drug resistance, tumor recurrence, and drug systemic toxicity make it implausible to completely heal the patients. Herein, we successfully transform an electron acceptor [1, 2, 5]thiadiazolo[3,4-g]quinoxaline into a novel second near-infrared (NIR-II) fluorophore H7. After PEGylation and chelation, HL-PEG2k exhibits a wavelength bathochromic shift, enhanced photothermal conversion efficiency (41.77%), and an antineoplastic effect against glioma. Its potential for in vivo tumor tracking and image-guided chemo-photothermal therapy is explored. High levels of uptake and high-resolution NIR-II imaging results are thereafter obtained. The hyperthermia effect could disrupt the lysosomal membranes, which in turn aggravate the mitochondria dysfunction, arrest the cell cycle in the G2 phase, and finally lead to cancer cell apoptosis. HL-PEG2k displays a superior biocompatibility and thus can be a potential theranostic platform to combat the growth and recurrence of tumors.
Collapse
Affiliation(s)
- Yishen Liu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qianqian Li
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Meijia Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Disheng Lu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yanna Pan
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuqin Liao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Qihang Ding
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Wanxia Gong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Dean Shuailin Chen
- Department of Chemistry, Pennsylvania State University, Philadelphia, Pennsylvania 19104, United States
| | - Mengting Guan
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Junzhu Wu
- Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Zhiquan Tian
- College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3FX, U.K
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, Tibet University, Lhasa 850000, China.,Center for Experimental Basic Medical Education, Hubei Provincial Key Laboratory of Developmentally Originated Disease and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan 430071, China
| | - Yuling Xiao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, State Key Laboratory of Virology, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
24
|
Li B, Lin J, Huang P, Chen X. Near-infrared probes for luminescence lifetime imaging. Nanotheranostics 2022; 6:91-102. [PMID: 34976583 PMCID: PMC8671960 DOI: 10.7150/ntno.63124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomedical luminescence imaging in the near-infrared (NIR, 700-1700 nm) region has shown great potential in visualizing biological processes and pathological conditions at cellular and animal levels, owing to the reduced tissue absorption and scattering compared to light in the visible (400-700 nm) region. To overcome the background interference and signal attenuation during intensity-based luminescence imaging, lifetime imaging has demonstrated a reliable imaging modality complementary to intensity measurement. Several selective or environment-responsive probes have been successfully developed for luminescence lifetime imaging and multiplex detection. This review summarizes recent advances in the application of luminescence lifetime imaging at cellular and animal levels in NIR-I and NIR-II regions. Finally, the challenges and further directions of luminescence lifetime imaging are also discussed.
Collapse
Affiliation(s)
- Benhao Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
25
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
26
|
Li Y, Gao J, Wang S, Du M, Hou X, Tian T, Qiao X, Tian Z, Stang PJ, Li S, Hong X, Xiao Y. Self-assembled NIR-II Fluorophores with Ultralong Blood Circulation for Cancer Imaging and Image-guided Surgery. J Med Chem 2021; 65:2078-2090. [PMID: 34949094 DOI: 10.1021/acs.jmedchem.1c01615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complete excision of the last remaining 1-2% of tumor tissue without collateral damage remains particularly challenging. Herein, we report thiophenthiadiazole (TTD)-derived fluorophores L6-PEGnk (n = 1, 2, 5) as new-generation NIR-II (1000-1700 nm) probes with exceptional nonfouling performance and significantly high fluorescence quantum yields in water. L6-PEG2k can self-assemble into vesicular micelles and exhibited minimal immunogenicity, low binding affinities, ultralong blood circulation (t1/2 = 59.5 h), and a supercontrast ratio in vivo. Most importantly, L6-PEG2k achieved excellent in vivo CT-26 and U87MG tumor targeting and accumulation (>20 d) through intraperitoneal or intravenous injection. A subcutaneous U87MG tumor and orthotopic brain glioma were successfully resected under NIR-II FIGS in our animal model via intraperitoneal injection in an extended time window (48-144 h). This study highlights the potential of using L6-PEG2K as self-assembling molecular probes with long-circulation persistence for routine preoperative tumor assessment and precise intraoperative image-guided resection.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jianfeng Gao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,ABSL-III Laboratory at the Center for Animal Experiment, State Key Laboratory of Virology, Wuhan University, Wuhan 430071, China
| | - Shuping Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingxia Du
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiaowen Hou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xue Qiao
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Zhiquan Tian
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Peter J Stang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| |
Collapse
|
27
|
Zheng L, Wang Z, Zhang X, Zhou Y, Ji A, Lou H, Liu X, Chen H, Cheng Z. Development of Mitochondria-Targeted Small-Molecule Dyes for Myocardial PET and Fluorescence Bimodal Imaging. J Med Chem 2021; 65:497-506. [PMID: 34937337 DOI: 10.1021/acs.jmedchem.1c01660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mitochondria-targeting positron emission tomography (PET) and fluorescent dual-modal probes are rarely reported. As one of the most promising lipophilic cations, F16 and its derivatives (F16s) have never been used for myocardial imaging. In this work, 14 F16s are synthesized and evaluated for cardiac imaging. In vitro cell fluorescence imaging revealed that the lead probe 5MEF is precisely localized in the mitochondria of cardiomyocytes. In addition, it shows excellent ex vivo fluorescence imaging quality with the heart-to-muscle and heart-to-liver ratios up to ∼2. Furthermore, the radiofluorinated probe 18F-5MEF is successfully prepared and shows a high initial heart uptake of 8.66 ± 0.34 % ID/g at 5 min post injection. It displays a high heart imaging performance, a long retention time in the heart, and a low background in the most normal tissues as revealed by PET. To our knowledge, this is the first time novel F16 analogues are designed and developed for myocardial dual-modal imaging.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No.12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiming Wang
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoqing Zhang
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No.12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yujing Zhou
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No.12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Aiyan Ji
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyue Lou
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingdang Liu
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No.12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen Cheng
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, No.12 Urumchi Middle Road, Jing'an District, Shanghai 200040, China.,Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
28
|
Hu Y, Miao Y, Zhang J, Chen Y, Qiu L, Lin J, Ye D. Alkaline Phosphatase Enabled Fluorogenic Reaction and in situ Coassembly of Near-Infrared and Radioactive Nanoparticles for in vivo Imaging. NANO LETTERS 2021; 21:10377-10385. [PMID: 34898218 DOI: 10.1021/acs.nanolett.1c03683] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probes have shown promise for preoperative and intraoperative imaging of tumors. In this paper, we report an enzyme-activatable probe (P-CyFF-68Ga) and its cold probe (P-CyFF-Ga) using an enzyme-induced fluorogenic reaction and in situ coassembly strategy and demonstrate the utility for NIR FL/PET bimodality imaging of enzymatic activity. P-CyFF-68Ga and P-CyFF-Ga can be converted into dephosphorylated CyFF-68Ga and CyFF-Ga in response to alkaline phosphatase (ALP) and subsequently coassemble into fluorescent and radioactive nanoparticles (NP-68Ga). The ALP-triggered in situ formed NP-68Ga is prone to anchoring on the ALP-positive HeLa cell membrane, permitting the concurrent enrichment of NIR FL and radioactivity. The enhancements in NIR FL and radioactivity enables high sensitivity and deep-tissue imaging of ALP activity, consequently facilitating the delineation of HeLa tumor foci from the normal tissues in vivo.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
29
|
Grabarz AM, Ośmiałowski B. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes. Molecules 2021; 26:7434. [PMID: 34946515 PMCID: PMC8703901 DOI: 10.3390/molecules26247434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022] Open
Abstract
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40-55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15).
Collapse
Affiliation(s)
- Anna M. Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, PL-87100 Toruń, Poland;
| |
Collapse
|
30
|
Chen Y, Xue L, Zhu Q, Feng Y, Wu M. Recent Advances in Second Near-Infrared Region (NIR-II) Fluorophores and Biomedical Applications. Front Chem 2021; 9:750404. [PMID: 34733821 PMCID: PMC8558517 DOI: 10.3389/fchem.2021.750404] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022] Open
Abstract
Fluorescence imaging technique, characterized by high sensitivity, non-invasiveness and no radiation hazard, has been widely applicated in the biomedical field. However, the depth of tissue penetration is limited in the traditional (400-700 nm) and NIR-I (the first near-infrared region, 700-900 nm) imaging, which urges researchers to explore novel bioimaging modalities with high imaging performance. Prominent progress in the second near-infrared region (NIR-II, 1000-1700 nm) has greatly promoted the development of biomedical imaging. The NIR-II fluorescence imaging significantly overcomes the strong tissue absorption, auto-fluorescence as well as photon scattering, and has deep tissue penetration, micron-level spatial resolution, and high signal-to-background ratio. NIR-II bioimaging has been regarded as the most promising in vivo fluorescence imaging technology. High brightness and biocompatible fluorescent probes are crucial important for NIR-II in vivo imaging. Herein, we focus on the recently developed NIR-II fluorescent cores and their applications in the field of biomedicine, especially in tumor delineation and image-guided surgery, vascular imaging, NIR-II-based photothermal therapy and photodynamic therapy, drug delivery. Besides, the challenges and potential future developments of NIR-II fluorescence imaging are further discussed. It is expected that our review will lay a foundation for clinical translation of NIR-II biological imaging, and inspire new ideas and more researches in this field.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liru Xue
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Zhu
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yanzhi Feng
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021; 9:768698. [PMID: 34790654 PMCID: PMC8591038 DOI: 10.3389/fbioe.2021.768698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of morbidity and death rate around the world, although diagnostic and therapeutic technologies are used to advance human disease treatment. Currently, surgical resection of solid tumors is the most effective and a prior remedial measure to treat cancer. Although medical treatment, technology, and science have advanced significantly, it is challenging to completely treat this lethal disease. Near-infrared (NIR) fluorescence, including the first near-infrared region (NIR-I, 650-900 nm) and the second near-infrared region (NIR-II, 1,000-1,700 nm), plays an important role in image-guided cancer surgeries due to its inherent advantages, such as great tissue penetration, minimal tissue absorption and emission light scattering, and low autofluorescence. By virtue of its high precision in identifying tumor tissue margins, there are growing number of NIR fluorescence-guided surgeries for various living animal models as well as patients in clinical therapy. Herein, this review introduces the basic construction and operation principles of fluorescence molecular imaging technology, and the representative application of NIR-I/II image-guided surgery in biomedical research studies are summarized. Ultimately, we discuss the present challenges and future perspectives in the field of fluorescence imaging for surgical navigation and also put forward our opinions on how to improve the efficiency of the surgical treatment.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
32
|
Guan T, Cheng M, Zeng L, Chen X, Xie Y, Lei Z, Ruan Q, Wang J, Cui S, Sun Y, Li H. Engineering the Redox-Driven Channel for Precisely Regulating Nanoconfined Glutathione Identification and Transport. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49137-49145. [PMID: 34623797 DOI: 10.1021/acsami.1c12061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioinspired artificial nanochannels for molecular and ionic transport have extensive applications. However, it is still a huge challenge to achieve an intelligent transport system with high selectivity/efficiency and controllability. Inspired by glutathione transport across the plasma membrane via redox regulation, we herein designed and fabricated a redox-reactive artificial nanochannel based on the host-guest chemical strategy. The nanochannel platform achieved high selectivity/efficiency for the identification and transmission of glutathione in the confined space. In addition, this nanochannel can switch between the ON and OFF states through the redox reaction. This redox-regulated system can provide a potential application for detection/binding of biological analytes and redox-controlled drug release.
Collapse
Affiliation(s)
- Tianpei Guan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lisi Zeng
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Xiaoya Chen
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuan Xie
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Shaoguan 512026, P. R. China
| | - Ziying Lei
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Qiang Ruan
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Jin Wang
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Shuzhong Cui
- Department 2 of Gastroentestinal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
33
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
34
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|
35
|
Huang W, Yang H, Hu Z, Fan Y, Guan X, Feng W, Liu Z, Sun Y. Rigidity Bridging Flexibility to Harmonize Three Excited-State Deactivation Pathways for NIR-II-Fluorescent-Imaging-Guided Phototherapy. Adv Healthc Mater 2021; 10:e2101003. [PMID: 34160129 DOI: 10.1002/adhm.202101003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 12/31/2022]
Abstract
Small organic phototherapeutic molecules of the second near-infrared (NIR-II) window (1000-1700 nm) serve as promising candidates for theranostics. However, developing such versatile agents for fluorescence-guided photodynamic/photothermal therapy remains a demanding task stirred by competitive energy dissipation pathways, including radiative decay, internal conversion, and intersystem crossing. To the best of current knowledge, the current paradigm for addressing the issue has deliberately approached the optimum balance among three deactivation processes through offsetting from each other, possibly leading to a comprehensively compromised theranostic efficacy. Few reports aim to modulate the three deactivation pathways excluding sacrificing any one of them. Herein, a molecular design strategy to construct a phototherapeutic organic fluorophore CCNU-1060, armed with NIR-II luorescence-guided phototherapeutic properties, is rationally developed. With a flexible motor, tetraphenylethene, bridged to the rigidified coplanar core boron-azadipyrromethene, the desired CCNU-1060 is subsequently encapsulated into an amphiphilic matrix to form CCNU-1060 nanoparticles (NPs), which match or transcend its precursor NJ-1060 NPs in the three energy dissipation processes. CCNU-1060 NPs are utilized to realize high-spatial vessel imaging and effective NIR-II fluorescence-guided phototherapeutic tumor ablation. This study unlocks a viewpoint of molecular engineering that simultaneously regulates multiple energy dissipation pathways for the construction of versatile phototherapy agents.
Collapse
Affiliation(s)
- Weijing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine Ministry of Education College of Chemistry and Molecular Science Wuhan University Wuhan 430079 China
| | - Huocheng Yang
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan 430079 China
| | - Zongxing Hu
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan 430079 China
| | - Yifan Fan
- Fujian Key Laboratory of Functional Marine Sensing Materials Minjiang University Fuzhou 350108 China
| | - Xiaofang Guan
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Wenqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine Ministry of Education College of Chemistry and Molecular Science Wuhan University Wuhan 430079 China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine Ministry of Education College of Chemistry and Molecular Science Wuhan University Wuhan 430079 China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensor Technology and Health Chemical Biology Center College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
36
|
Wang Z, Wang X, Wan JB, Xu F, Zhao N, Chen M. Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103780. [PMID: 34643028 DOI: 10.1002/smll.202103780] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Optical imaging in the second near infrared region (NIR-II, 1000-1700 nm) provides higher resolution and deeper penetration depth for accurate and real-time vascular anatomy, blood dynamics, and function information, effectively contributing to the early diagnosis and curative effect assessment of vascular anomalies. Currently, NIR-II optical imaging demonstrates encouraging results including long-term monitoring of vascular injury and regeneration, real-time feedback of blood perfusion, tracking of lymphatic metastases, and imaging-guided surgery. This review summarizes the latest progresses of NIR-II optical imaging for angiography including fluorescence imaging, photoacoustic (PA) imaging, and optical coherence tomography (OCT). The development of current NIR-II fluorescence, PA, and OCT probes (i.e., single-walled carbon nanotubes, quantum dots, rare earth doped nanoparticles, noble metal-based nanostructures, organic dye-based probes, and semiconductor polymer nanoparticles), highlighting probe optimization regarding high brightness, longwave emission, and biocompatibility through chemical modification or nanotechnology, is first introduced. The application of NIR-II probes in angiography based on the classification of peripheral vascular, cerebrovascular, tumor vessel, and cardiovascular, is then reviewed. Major challenges and opportunities in the NIR-II optical imaging for vascular imaging are finally discussed.
Collapse
Affiliation(s)
- Zi'an Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Fujian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100000, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
37
|
Xie N, Hou Y, Wang S, Ai X, Bai J, Lai X, Zhang Y, Meng X, Wang X. Second near-infrared (NIR-II) imaging: a novel diagnostic technique for brain diseases. Rev Neurosci 2021; 33:467-490. [PMID: 34551223 DOI: 10.1515/revneuro-2021-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Imaging in the second near-infrared II (NIR-II) window, a kind of biomedical imaging technology with characteristics of high sensitivity, high resolution, and real-time imaging, is commonly used in the diagnosis of brain diseases. Compared with the conventional visible light (400-750 nm) and NIR-I (750-900 nm) imaging, the NIR-II has a longer wavelength of 1000-1700 nm. Notably, the superiorities of NIR-II can minimize the light scattering and autofluorescence of biological tissue with the depth of brain tissue penetration up to 7.4 mm. Herein, we summarized the main principles of NIR-II in animal models of traumatic brain injury, cerebrovascular visualization, brain tumor, inflammation, and stroke. Simultaneously, we encapsulated the in vivo process of NIR-II probes and their in vivo and in vitro toxic effects. We further dissected its limitations and following optimization measures.
Collapse
Affiliation(s)
- Na Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Ya Hou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Shaohui Wang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaopeng Ai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Jinrong Bai
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianrong Lai
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
38
|
Pham NNT, Han SH, Park JS, Lee SG. Optical and Electronic Properties of Organic NIR-II Fluorophores by Time-Dependent Density Functional Theory and Many-Body Perturbation Theory: GW-BSE Approaches. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2293. [PMID: 34578610 PMCID: PMC8466807 DOI: 10.3390/nano11092293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Organic-molecule fluorophores with emission wavelengths in the second near-infrared window (NIR-II, 1000-1700 nm) have attracted substantial attention in the life sciences and in biomedical applications because of their excellent resolution and sensitivity. However, adequate theoretical levels to provide efficient and accurate estimations of the optical and electronic properties of organic NIR-II fluorophores are lacking. The standard approach for these calculations has been time-dependent density functional theory (TDDFT). However, the size and large excitonic energies of these compounds pose challenges with respect to computational cost and time. In this study, we used the GW approximation combined with the Bethe-Salpeter equation (GW-BSE) implemented in many-body perturbation theory approaches based on density functional theory. This method was used to perform calculations of the excited states of two NIR molecular fluorophores (BTC980 and BTC1070), going beyond TDDFT. In this study, the optical absorption spectra and frontier molecular orbitals of these compounds were compared using TDDFT and GW-BSE calculations. The GW-BSE estimates showed excellent agreement with previously reported experimental results.
Collapse
Affiliation(s)
- Nguyet N. T. Pham
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Seong Hun Han
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Korea; (N.N.T.P.); (S.H.H.)
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Korea
| |
Collapse
|
39
|
Tuo W, Xu Y, Fan Y, Li J, Qiu M, Xiong X, Li X, Sun Y. Biomedical applications of Pt(II) metallacycle/metallacage-based agents: From mono-chemotherapy to versatile imaging contrasts and theranostic platforms. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Swamy MMM, Murai Y, Monde K, Tsuboi S, Jin T. Shortwave-Infrared Fluorescent Molecular Imaging Probes Based on π-Conjugation Extended Indocyanine Green. Bioconjug Chem 2021; 32:1541-1547. [PMID: 34309379 DOI: 10.1021/acs.bioconjchem.1c00253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, shortwave-infrared (SWIR) fluorescence imaging for the optical diagnostics of diseases has attracted much attention as a new noninvasive imaging modality. For this application, the development of SWIR molecular imaging probes with high biocompatibility is crucial. Although many types of biocompatible SWIR fluorescent probes based on organic dyes have been reported, there are no SWIR-emitting molecular imaging probes that can be used for the detection of specific biomolecules in vivo. To apply SWIR-emitting molecular imaging probes to biomedical fields, we developed a biocompatible SWIR fluorescent dye based on π-conjugation extended indocyanine green (ICG), where ICG is the only approved near-infrared dye by the US Food and Drug Administration (FDA) for use in the clinic. Using the π-conjugation extended ICG, we prepared SWIR molecular imaging probes that can be used for in vivo tumor imaging. Herein, we demonstrate noninvasive SWIR fluorescence imaging of human epidermal growth factor receptor 2 (HER2)-positive and epidermal growth factor receptor (EGFR)-positive breast tumors using π-conjugation extended ICG and monoclonal antibody conjugates. The presented π-conjugation extended ICG analog probes will be a breakthrough to apply SWIR fluorescence imaging in biomedical fields.
Collapse
Affiliation(s)
- Mahadeva M M Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| | - Yuta Murai
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Monde
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| |
Collapse
|
41
|
Dahal D, Ray P, Pan D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1734. [PMID: 34159753 DOI: 10.1002/wnan.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Biomedical imaging techniques play a crucial role in clinical diagnosis, surgical intervention, and prognosis. Fluorescence imaging in the second biological window (second near-infrared [NIR-II]; 1000-1700 nm) has attracted attention recently. NIR-II fluorescence imaging offers unique advantages in terms of reduced photon scattering, deep tissue penetration, high sensitivity, and many others. A host of materials, including small organic molecules, single-walled carbon nanotubes, polymeric and rare-earth-doped nanoparticles, have been explored as NIR-II emitting fluorescent probes. Efficient and viable approaches to design and develop fluorescence probes with tunable photophysical properties without compromising other key features are of paramount importance. Various chemical strategies are explored to increase the quantum yield of these imaging agents without compromising their spatiotemporal resolution, specificity, and tissue penetration capabilities. This review summarizes the strategies implemented to design and synthesize NIR-II emitting nanoparticles and small organic molecule-based fluorescent probes for applications in the biomedical field. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Dipendra Dahal
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| | - Priyanka Ray
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Dipanjan Pan
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, USA.,Department of Diagnostic Radiology and Nuclear Medicine, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Sun J, Li L, Cai W, Chen A, Zhang R. Multifunctional Hybrid Nanoprobe for Photoacoustic/PET/MR Imaging-Guided Photothermal Therapy of Laryngeal Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5312-5323. [PMID: 35007012 DOI: 10.1021/acsabm.1c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Laryngeal cancer is highly aggressive and insensitive to conventional targeted therapies, which often result in poor therapeutic outcomes. Image-guided precision therapy is a promising strategy in oncology that has superior safety and efficacy versus conventional therapies. Here, we present a multifunctional theranostic nanoplatform based on melanin-coated gold nanorod (GNR) that exhibits excellent multimodal imaging ability and photothermal effects. These attributes make the platform applicable for multimodal photoacoustic (PA)/positron emission tomography (PET)/magnetic resonance (MR) image-guided photothermal treatment of laryngeal cancer. The melanin nanoparticles markedly suppress the cytotoxicity of the template cetyltrimethylammonium bromide bilayer and conferred the GNR with excellent PET/MR imaging performances, due to their native biocompatibilities and strong affinities to metal ions. Moreover, the introduction of GNR to the melanin nanoparticles greatly improved the near-infrared absorbances and passive targeting capabilities, leading to exceptional PA imaging and photothermal ablation of tumors. The nanoplatform exhibits high stability and dispersity under physiological conditions. After intravenous injection, the nanoplatform could be precisely tracked in vivo and enabled laryngopharyngeal superficial cancer to be located and imaged. Combined photothermal therapy effectively ablated tumors with negligible side effects. Thus, this work presents a unique and biocompatible nanoplatform that allows multimodal imaging, high anti-tumor PTT efficacy, and negligible side effects in the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Jinghua Sun
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Liping Li
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Anqi Chen
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
43
|
Zhang L, Shi X, Li Y, Duan X, Zhang Z, Fu H, Yang X, Tian J, Hu Z, Cui M. Visualizing Tumors in Real Time: A Highly Sensitive PSMA Probe for NIR-II Imaging and Intraoperative Tumor Resection. J Med Chem 2021; 64:7735-7745. [PMID: 34047189 DOI: 10.1021/acs.jmedchem.1c00444] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Owing to the complex anatomical structure, precise resection of a tumor while maintaining adjacent tissue is a challenge in radical prostatectomy for prostate cancer (PCa). Optical imaging in near-infrared window II (NIR-II) is a promising technology for intraoperative guidance, whereas there is no available probe for PCa yet. In this article, a novel probe (PSMA-1092) bearing two prostate-specific membrane antigen (PSMA) binding motifs was developed, displaying excellent optical properties (λmax = 1092 nm) and ultrahigh affinity (Ki = 80 pM) toward PSMA. The tumor was visualized with high resolution (tissue-to-normal tissue ratio = 7.62 ± 1.05) and clear margin by NIR-II imaging using PSMA-1092 in a mouse model. During the tumor resection, residual tumors missed by visible inspection were detected by the real-time imaging. Overall, PSMA-1092 displayed excellent performance in delineating the tumor margin and detecting residual tumors, demonstrating promising potential for precise PCa tumor resection in clinical practice.
Collapse
Affiliation(s)
- Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zeyu Zhang
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.,Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China
| |
Collapse
|
44
|
Wongso H, Yamasaki T, Kumata K, Ono M, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Design, Synthesis, and Biological Evaluation of Novel Fluorescent Probes Targeting the 18-kDa Translocator Protein. ChemMedChem 2021; 16:1902-1916. [PMID: 33631047 DOI: 10.1002/cmdc.202000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Indexed: 12/20/2022]
Abstract
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11 C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki ) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Bandung, 40132, Indonesia
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
45
|
Yang RQ, Lou KL, Wang PY, Gao YY, Zhang YQ, Chen M, Huang WH, Zhang GJ. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. SMALL METHODS 2021; 5:e2001066. [PMID: 34927825 DOI: 10.1002/smtd.202001066] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/30/2020] [Indexed: 06/14/2023]
Abstract
Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.
Collapse
Affiliation(s)
- Rui-Qin Yang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Kang-Liang Lou
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Pei-Yuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350000, China
| | - Yi-Yang Gao
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Yong-Qu Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Min Chen
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| | - Wen-He Huang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
| | - Guo-Jun Zhang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361000, China
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, Fujian, 361000, China
| |
Collapse
|
46
|
Liu S, Li Y, Zhang J, Zhang H, Wang Y, Chuah C, Tang Y, Lam J, Kwok R, Ou H, Ding D, Tang B. A two-in-one Janus NIR-II AIEgen with balanced absorption and emission for image-guided precision surgery. Mater Today Bio 2021; 10:100087. [PMID: 33889836 PMCID: PMC8050777 DOI: 10.1016/j.mtbio.2020.100087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Fluorescence imaging in the near-infrared II (NIR-II, 1000-1700 nm) region opens up new avenues for biological systems due to suppressed scattering and low autofluorescence at longer-wavelength photons. Nonetheless, the development of organic NIR-II fluorophores is still limited mainly due to the shortage of efficient molecular design strategy. Herein, we propose an approach of designing Janus NIR-II fluorophores by introducing electronic donors with distinct properties into one molecule. As a proof-of-concept, fluorescent dye 2 TT-m, oC6B with both twisted and planar electronic donors displayed balanced absorption and emission which were absent in its parent compound. The key design strategy for Janus molecule is that it combines the merits of intense absorption from planar architecture and high fluorescence quantum yield from twisted motif. The resulting 2 TT-m, oC6B nanoparticles exhibit a high molar absorptivity of 1.12 ⨯104 M-1 cm-1 at 808 nm and a NIR-II quantum yield of 3.7%, displaying a typical aggregation-induced emission (AIE) attribute. The highly bright and stable 2 TT-m, oC6B nanoparticles assured NIR-II image-guided cancer surgery to resect submillimeter tumor nodules. The present study may inspire further development of molecular design philosophy for highly bright NIR-II fluorophores for biomedical applications.
Collapse
Affiliation(s)
- S. Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Y. Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - J. Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - H. Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Y. Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - C. Chuah
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Y. Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - J.W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - R.T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - H. Ou
- Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - D. Ding
- Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - B.Z. Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
47
|
Su Y, Yu B, Wang S, Cong H, Shen Y. NIR-II bioimaging of small organic molecule. Biomaterials 2021; 271:120717. [PMID: 33610960 DOI: 10.1016/j.biomaterials.2021.120717] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
In recent years, people have been actively exploring new imaging methods with high biological imaging performance because the clinical image definition and depth in vivo cannot meet the requirements of early diagnosis and prognosis. Based on the traditional near-infrared region I (NIR-I), the molecular probe of the near-infrared region II (NIR-II) is further explored and developed. In the NIR-II region due to the wavelength is longer than the NIR-I region can effectively reduce the molecular scattering, optical absorption of the organization, the organization of spontaneous fluorescence negligible, thus the NIR-II Fluorescence imaging (FI) can get deeper penetration depth, higher signal-to-background ratio (SBR) and better spatiotemporal resolution, FI in NIR-II region are an important and rapidly developing research region for future imaging. In the NIR-II fluorophore, small organic molecule fluorophore has attracted much attention because of its good biocompatibility and good pharmacokinetic properties. In this review, we briefly introduced the existing NIR-II organic small molecule fluorophores, and introduced the existing relatively mature methods for improving quantum yield and water solubility, and the small molecule dyes on FI of various improvement methods, also briefly introduces the small molecules of photoacoustic imaging (PAI), and a brief introduction of imaging-guided surgery (IGS) for some small organic molecules, finally, a reasonable prospect is made for the development of small organic molecules.
Collapse
Affiliation(s)
- Yingbin Su
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
48
|
Dang H, Yan L. Organic fluorescent nanoparticles with NIR-II emission for bioimaging and therapy. Biomed Mater 2021; 16:022001. [PMID: 33186922 DOI: 10.1088/1748-605x/abca4a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescence imaging technology in the second near-infrared bio-channel (NIR-II) has the advantages of low light scattering and weak autofluorescence. It can obtain high spatial resolution imaging in deeper biological tissues and realize accurate diagnosis in the lesion. As a new cancer treatment method, photothermal therapy has the characteristics of obvious curative effect and small side effects. However, the hydrophobicity and non-selectivity of many fluorescent materials, aggregation-induced fluorescence quenching, and other problems lead to undesirable imaging results. Here, we reviewed the structure of the NIR-II fluorescent molecules and these dyes whose fluorescence tail emission is in the NIR-II bio-channel, discussed in detail how to realize the redshift of the dye wavelength, including modifying the push-pull electron system, extending the conjugated chain, and forming J-aggregates and other methods. We also summarize some strategies to improve brightness, including responsiveness, targeting, adjustment of aggregation mode, and aggregation-induced emission effect, thereby improving the imaging performance and therapeutic effect of NIR-II fluorescent dyes.
Collapse
Affiliation(s)
- Huiping Dang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Jinzai Road 96# 230026, People's Republic of China
| | | |
Collapse
|
49
|
Gupta N, Chan YH, Saha S, Liu MH. Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. Chem Asian J 2021; 16:175-184. [PMID: 33331122 DOI: 10.1002/asia.202001348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Fluorescence imaging, particularly in the NIR-II region (1000-1700 nm), has become an unprecedented tool for deep-tissue in vivo imaging. Among the fluorescent nanoprobes, semiconducting polymer nanoparticles (Pdots) appear to be a promising agent because of their tunable optical and photophysical properties, ultrahigh brightness, minimal autofluorescence, narrow-size distribution, and low cytotoxicity. This review elucidates the recent advances in Pdots for deep-tissue fluorescence imaging and the facing future translation to clinical use.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, Centre of Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, 30010, Hsinchu City, Taiwan
| |
Collapse
|
50
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|