1
|
Priyanka C, Madhu D, Gangadhar PS, Giribabu L, Punna N. Cross-conjugated vinylogous annulation of π-CF 3-allyl Pd-complexes with 4-methyl-3-trifluoroacetyl-quinolones. Chem Commun (Camb) 2024; 60:12233-12236. [PMID: 39360402 DOI: 10.1039/d4cc03953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, we disclose the hitherto unknown cross-conjugated vinylogous annulation of π-CF3-allyl Pd complexes with 4-methyl-3-trifluoroacetyl-quinolones to access phenanthridones. The CF3 group in the Pd-π-allyl complex is key for exclusive γ-regioselectivity and further annulation. The solvent switch orchestrates the dihydro-phenanthridones (CH3CN) and hydroxy-phenanthridones (DMF) in good yields, and also showed excellent optoelectronic properties.
Collapse
Affiliation(s)
- Chiliveru Priyanka
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Desagoni Madhu
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Palivela Siva Gangadhar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Lingamallu Giribabu
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana, India
| | - Nagender Punna
- Fluoro-Agro chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Han Z, Xue Y, Xie H, Shang P, Sun J, Huang H. Type of Tetrahydronaphthalene-Fused 1,5-Dipoles and Their Application in Polycyclic Compounds Synthesis. J Org Chem 2024; 89:10551-10556. [PMID: 39016040 DOI: 10.1021/acs.joc.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Palladium-catalyzed dipolar cycloaddition reactions represent an efficient strategy for the construction of cyclic compounds, with the development of novel dipolar precursors being a key focus. In this study, a new type of dipolar precursor was synthesized through the assembly of the vinylethylene carbonate unit and the tetrahydronaphthalene skeleton. This dipolar precursor can undergo [3 + 2], [5 + 4], and [5 + 2] cycloaddition reactions, leading to the construction of tetrahydronaphthalene-fused oxazolidin-2-ones, 1,5-oxazonines, and tetrahydrooxepines. In general, all of these reactions exhibited good reaction efficiency and functional group tolerance.
Collapse
Affiliation(s)
- Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yu Xue
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Peinan Shang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
3
|
Li X, Xu Z. Skeletal Editing: Ring Insertion for Direct Access to Heterocycles. Molecules 2024; 29:1920. [PMID: 38731412 PMCID: PMC11085720 DOI: 10.3390/molecules29091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Skeleton editing has rapidly advanced as a synthetic methodology in recent years, significantly streamlining the synthesis process and gaining widespread acceptance in drug synthesis and development. This field encompasses diverse ring reactions, many of which exhibit immense potential in skeleton editing, facilitating the generation of novel ring skeletons. Notably, reactions that involve the cleavage of two distinct rings followed by the reformation of new rings through ring insertion play a pivotal role in the construction of novel ring skeletons. This article aims to compile and systematize this category of reactions, emphasizing the two primary reaction types and offering a thorough exploration of their associated complexities and challenges. Our endeavor is to furnish readers with comprehensive reaction strategies, igniting research interest and injecting fresh impetus into the advancement of this domain.
Collapse
Affiliation(s)
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| |
Collapse
|
4
|
Wang L, Yang S, Tang Y, Li K, Lu M, Guo H. Palladium-Catalyzed [5 + 4] Cycloaddition of 4-Vinyl-4-Butyrolactones with N-Tosyl Azadienes: Construction of Nine-Membered Ring. J Org Chem 2024; 89:5019-5028. [PMID: 38502934 DOI: 10.1021/acs.joc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we reported the palladium-catalyzed formal [5 + 4] cycloaddition reactions between 4-vinyl-4-butyrolactones (VBLs) and azadienes. Under mild reaction conditions, a wide range of benzofuran-fused 9-membered heterocyclic compounds had been provided in moderate to excellent yields with exclusive regioselectivities and excellent diastereoselectivities. The practical applicability of the synthesis was demonstrated through scale-up reaction and further transformation.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Mengxi Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
5
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
6
|
Wang XL, Jiang HB, Zheng SC, Zhao XM. Rhodium-Catalyzed Tandem Asymmetric Allylic Decarboxylative Addition and Cyclization of Vinylethylene Carbonates with N-Nosylimines. Molecules 2024; 29:1019. [PMID: 38474531 DOI: 10.3390/molecules29051019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
A enantioselective tandem transformation, concerning asymmetric allylic decarboxylative addition and cyclization of N-nosylimines with vinylethylene carbonates (VECs), in the presence of [Rh(C2H4)2Cl]2, chiral sulfoxide-N-olefin tridentate ligand has been developed. The reaction of VECs with various substituted N-nosylimines proceeded smoothly under mild conditions, providing highly functionalized oxazolidine frameworks in good to high yields with good to excellent enantioselectivity.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hai-Bin Jiang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiao-Ming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
7
|
Li F, Chen X, Huang BQ, Xu HD, Zhu CF, Shen MH. Palladium-catalyzed ring-opening [5+2] annulation of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acids: rapid synthesis of 7-membered lactones. Chem Commun (Camb) 2024; 60:1774-1777. [PMID: 38252322 DOI: 10.1039/d3cc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel approach for the synthesis of unsaturated 7-membered lactones by Pd-catalyzed [5+2] dipolar cycloaddition of vinylethylene carbonates (VECs) and C5-substituted Meldrum's acid derivatives has been developed. Various Meldrum's acid derivatives worked well in this reaction under mild reaction conditions. A variety of 7-membered lactones can be accessed in a facile manner in moderate to good yields by employing easily prepared Meldrum's acid derivatives.
Collapse
Affiliation(s)
- Fei Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Ben-Qing Huang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Chi-Fan Zhu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
8
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
9
|
Guo M, Zhang P, Li EQ. Recent Advances in Palladium-Catalyzed [4 + n] Cycloaddition of Lactones, Benzoxazinanones, Allylic Carbonates, and Vinyloxetanes. Top Curr Chem (Cham) 2023; 381:33. [PMID: 37921912 DOI: 10.1007/s41061-023-00442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.
Collapse
Affiliation(s)
- Mengyan Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Er-Qing Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
10
|
Shi L, Xiong Q, Wu SY, Li Y, Shen P, Lu J, Ran GY. Enantioselective Synthesis of Ten-Membered Lactones via Palladium-Catalyzed [5 + 5] Annulation. Org Lett 2023; 25:2030-2035. [PMID: 36939298 DOI: 10.1021/acs.orglett.3c00374] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Ten-membered lactones are the core units of many biologically active natural products but with a great synthetic challenge. Based on the principle of vinylogy, novel types of cyclic vinylogous anhydrides have been designed as five-carbon carbonyl synthons, further applied in [5 + 5] annulation with vinylethylene carbonates under chiral palladium catalysis. This strategy features excellent regioselectivity, mild conditions, and broad substrate scope, affording a range of spiro ten-membered lactones bearing oxindole and pyrrolidinone motif in excellent yield (up to 99%) with moderate to high enantioselectivity (up to 89% ee).
Collapse
Affiliation(s)
- Liu Shi
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qiang Xiong
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shu-Yi Wu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yang Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Peng Shen
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ji Lu
- College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Guang-Yao Ran
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
A Lewis Acid-Promoted Michael Addition and Ring-Expansion Cascade for the Construction of Nitrogen-Containing Medium-Sized Rings. Molecules 2023; 28:molecules28041650. [PMID: 36838638 PMCID: PMC9966210 DOI: 10.3390/molecules28041650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This reaction proceeded through Michael addition and ring-expansion cascade, affording the corresponding nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The catalytic asymmetric version of this reaction has also been explored using a chiral base.
Collapse
|
12
|
Li QZ, Guan YL, Huang QW, Qi T, Xiang P, Zhang X, Leng HJ, Li JL. Temperature-Controlled Divergent Asymmetric Synthesis of Indole-Based Medium-Sized Heterocycles through Palladium Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Yi-Long Guan
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Qian-Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University, Chengdu 610106, China
| |
Collapse
|
13
|
Qin X, Zou N, Nong C, Mo D. Recent Advances on the Synthesis of Nine-Membered N-Heterocycles. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Xiao F, Liao P, Lu X, Wang J, Dong XQ, Wang CJ. Iridium-Catalyzed Asymmetric Cascade Allylation/Lactonization of Indole Esters: Access to Chiral Tricyclic Oxazinoindolones. Org Lett 2022; 24:8592-8597. [DOI: 10.1021/acs.orglett.2c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, P.R. China
| | - Peiqin Liao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiaoguang Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jin Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, P.R. China
| |
Collapse
|
15
|
Wang BC, Wei Y, Xiong FY, Qu BL, Xiao WJ, Lu LQ. Construction of enantioenriched eight-membered lactones via Pd-catalyzed asymmetric (6+2) dipolar annulation. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Xu ZY, Liu DG, Yao CY, Yu HZ, Fu Y. Mechanistic Study on Palladium-Catalyzed Cycloaddition of Vinylethylene Carbonates with α,β-Unsaturated Imines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhe-Yuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - De-Guang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Cheng-Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| | - Hai-Zhu Yu
- Department of Chemistry, Anhui University, Jiulong Road, Hefei 230601, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Center for Excellence in Molecular Synthesis of CAS, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Chang MY, Chen KT. Synthesis of sulfonyl benzocyclononadienols. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Musabirov IZ, Gataullin RR. Synthesis of 1-Tosylspiro[3,1-benzoxazine-4,1′-cycloalkan]-2-imines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Ghosh T, Biswas D, Bhakta S. Palladium-Catalyzed Synthesis of Fused Carbo- and Heterocycles: Recent Advances. Chem Asian J 2022; 17:e202200725. [PMID: 36065137 DOI: 10.1002/asia.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/03/2022] [Indexed: 11/10/2022]
Abstract
The use of palladium catalysts in fused ring synthesis has been increasingly noteworthy in recent years in organic synthesis. It has a lot of potential compared to other transition metal catalysts, because of its one-of-a-kind feature that makes them more widely applicable in a variety of disciplines application. Palladium is important in a variety of Heck processes, including intramolecular, intermolecular, and reductive Heck reactions, which produce diverse carbocycles and heterocycles of biological importance. Under optimal reaction conditions, carbocyclization or heterocyclization occurs, resulting in the production of numerous structural building blocks of naturally occurring compounds. Beside intramolecular Heck-type reactions, cycloaddition, cycloalkylation, oxidative coupling, C-H functionalization, cross-coupling reactions, and carboamidation reactions have also been employed extensively to access fused carbo- and heterocycles of immense biological importance. This review article provides a well-summarized discussion (since 2001) on fused carbo- and heterocycle ring synthesis using palladium catalysts, overviewing their applications, and mechanistic insights.
Collapse
Affiliation(s)
- Tapas Ghosh
- Maulana Abul Kalam Azad University of Technology, Applied Sciences, Simhat, Haringhata, 741249, Haringhata, INDIA
| | - Diptam Biswas
- Maulana Abul Kalam Azad University of Technology, Applied Chemistry, INDIA
| | - Sayantika Bhakta
- Maulana Abul Kalam Azad University of Technology, Applied Chemistry, INDIA
| |
Collapse
|
20
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Zhao C, Khan S, Khan I, Shah BH, Zhang YJ. Pd‐Catalyzed Asymmetric Allylic Cycloaddition of Vinylethylene Carbonates with Nitroalkenes: A Route to Tetrahydrofurans bearing Vicinal Tetrasubstituted Stereocenters. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Can Zhao
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Sardaraz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Ijaz Khan
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Babar Hussain Shah
- Shanghai Jiao Tong University School of chemistry and Chemical Engineering CHINA
| | - Yong Jian Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|
22
|
Yu C, Yu Y, Sun L, Li X, Liu Z, Ke M, Chen F. Highly diastereo- and enantioselective synthesis of multisubstituted allylic amino acid derivatives by allylic alkylation of a chiral glycine-based nickel complex and vinylethylene carbonates. Org Biomol Chem 2022; 20:4894-4899. [PMID: 35678149 DOI: 10.1039/d2ob00726f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric synthesis of multisubstituted allylic amino acid derivatives was accomplished by the allylic alkylation of a chiral glycine-based nickel complex with vinylethylene carbonates. High enantioselectivities and diastereoselectivities were obtained under mild reaction conditions. The gram-scale synthesis was carried out with a good yield and high enantioselectivity, indicating that the method is a highly efficient route to chiral multisubstituted allylic amino acid derivatives.
Collapse
Affiliation(s)
- Chao Yu
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Longwu Sun
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Fener Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.,Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| |
Collapse
|
23
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
24
|
Li K, Yang S, Zheng B, Wang W, Wu Y, Li J, Guo H. A new type of δ-vinylvalerolactone for palladium-catalyzed cycloaddition: synthesis of nine-membered heterocycles. Chem Commun (Camb) 2022; 58:6646-6649. [PMID: 35593191 DOI: 10.1039/d2cc01134d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a new type of δ-vinylvalerolactone was designed and synthesized, and used as a new precursor in Pd-catalyzed [6+3] cycloaddition with azomethine imines, leading to nine-membered 1,2-dinitrogen-containing heterocycles in 77-98% yields with >20 : 1 d.r. These nine-membered ring-fused products were further transformed into unusual tetracyclic bridged-ring compounds without loss of the diastereoselectivities.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Li
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
25
|
Mao B, Xu J, Shi W, Wang W, Wu Y, Xiao Y, Guo H. Pd-Catalyzed [4 + 2] cycloaddition of methylene cyclic carbamates with dihydropyrazolone-derived alkenes: synthesis of spiropyrazolones. Org Biomol Chem 2022; 20:4086-4090. [PMID: 35545885 DOI: 10.1039/d2ob00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, a palladium-catalyzed [4 + 2] cycloaddition of 5-methylene-1,3-oxazinan-2-ones with 4-arylidene-2,4-dihydro-3H-pyrazol-3-ones has been developed to produce spiropyrazolones in high yields with excellent diastereoselectivities in nearly all cases. The cycloaddition reaction was scaled-up without significant loss of yield, and its synthetic utility has been demonstrated by further transformations of the products. The reaction type of N-Ts cyclic carbamates under palladium catalysis was extended to include [4 + 2] cycloaddition for the first time.
Collapse
Affiliation(s)
- Biming Mao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China. .,Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Jiaqing Xu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
26
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
27
|
Xiong Q, Xiao L, Dong XQ, Wang CJ. Asymmetric Synthesis of Chiral Aza-macrodiolides via Iridium-Catalyzed Cascade Allylation/Macrolactonization. Org Lett 2022; 24:2579-2584. [PMID: 35344369 DOI: 10.1021/acs.orglett.2c00942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iridium-catalyzed cascade allylation/macrolactonization between vinylethylene carbonate (VEC) and isatoic anhydride derivatives was successfully developed, readily generating a wide range of C2-symmetric chiral macrodiolides bearing 14-membered rings in moderate to good yields with excellent diastereoselectivities and enantioselectivities (generally 99% ee). Control experiments revealed that racemic VEC as the precursor of electrophilic iridium-π-allyl species underwent kinetic resolution process. This expedient protocol features easily available substrates, excellent stereoselective control, and high step economy.
Collapse
Affiliation(s)
- Qi Xiong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
28
|
Xie X, Yuan D, Ma B, Jin J, Wang E, Zhou W, Hu Y, Hu L, Wang J. Sterically and Temperature Controlled Divergent Cycloadditions of α,β‐Unsaturated Imines with Vinylethylene Carbonates: Insights from Experimental and DFT studies. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Dandan Yuan
- Nanjing University of Chinese Medicine CHINA
| | - Ben Ma
- Nanjing University of Chinese Medicine CHINA
| | - Jiaming Jin
- Nanjing University of Chinese Medicine CHINA
| | - Enpeng Wang
- Nanjing University of Chinese Medicine CHINA
| | - Wenyi Zhou
- Nanjing University of Chinese Medicine CHINA
| | - Yaowen Hu
- Nanjing University of Chinese Medicine CHINA
| | | | - Junwei Wang
- Nanjing University of Chinese Medicine CHINA
| |
Collapse
|
29
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
30
|
Xie H, Yang Z, Tang L, Han Z, Sun J, Huang H. Construction of nine-membered N,N,O-heterocycles via Pd-catalyzed [6+3] dipolar cycloaddition. Chem Commun (Camb) 2022; 58:10560-10563. [DOI: 10.1039/d2cc03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new approach for the synthesis of 9-membered N,N,O-heterocycles by Pd-catalyzed [6+3] dipolar cycloaddition of N-iminoisoquinolinium ylides and 2-vinyl oxetanes has been developed.
Collapse
Affiliation(s)
- Hongling Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhenkun Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Luning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| |
Collapse
|
31
|
Wang Y, Xu Y, Khan S, Zhang Z, Khan A. Selective approach to N-substituted tertiary 2-pyridones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Commercially available 2-hydroxypyridines are converted into enantiomerically enriched allylic 2-pyridones with elusive N-substituted tertiary carbon by means of Pd-catalyzed allylic amination of vinyl cyclic carbonates.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Yaoyao Xu
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Shahid Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Zhunjie Zhang
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| | - Ajmal Khan
- Department of Chemistry, School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry and MOE Key Laboratory for Nonequilibrium and Modulation of Condensed Matter, Xi’an Jiao Tong University, Xi’an, 710049, P. R. China
| |
Collapse
|
32
|
Transition-metal-catalyzed switchable divergent cycloaddition of para-quinone methides and vinylethylene carbonates: Access to different sized medium-sized heterocycles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Fan Y, Li QZ, Li JL, Zhang B, Dai Z, Xie K, Zeng R, Zou L, Zhang X. Palladium-catalysed stereoselective [3 + 2] annulation of vinylethylene carbonates and tryptanthrin-based ketones. Org Chem Front 2022. [DOI: 10.1039/d1qo01543e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of palladium-catalysed [3 + 2] annulation of VECs and ketones has been developed, allowing the efficient synthesis of indoloquinazolinones in generally excellent yields with good stereoselectivity.
Collapse
Affiliation(s)
- Yang Fan
- College of Pharmacy, Dali University, Dali 671003, PR China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bin Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Zhen Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Ke Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| |
Collapse
|
34
|
Construction of poly-N-heterocyclic scaffolds via the controlled reactivity of Cu-allenylidene intermediates. Commun Chem 2021; 4:158. [PMID: 36697740 PMCID: PMC9814594 DOI: 10.1038/s42004-021-00596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
Controlling the sequence of the three consecutive reactive carbon centres of Cu-allenylidene remains a challenge. One of the impressive achievements in this area is the Cu-catalyzed annulation of 4-ethynyl benzoxazinanones, which are transformed into zwitterionic Cu-stabilized allenylidenes that are trapped by interceptors to provide the annulation products. In principle, the reaction proceeds via a preferential γ-attack, while annulation reactions via an α- or β-attack are infrequent. Herein, we describe a method for controlling the annulation mode, by the manipulation of a CF3 or CH3 substituent, to make it proceed via either a γ-attack or an α- or β-attack. The annulation of CF3-substituted substrates with sulfamate-imines furnished densely functionalized N-heterocycles with excellent enantioselectivity via a cascade of an internal β-attack and an external α-attack. CH3-variants were transformed into different heterocycles that possess a spiral skeleton, via a cascade of an internal β-attack and a hydride α-migration followed by a Diels-Alder reaction.
Collapse
|
35
|
Ming S, Qurban S, Du Y, Su W. Asymmetric Synthesis of Multi-Substituted Tetrahydrofurans via Palladium/Rhodium Synergistic Catalyzed [3+2] Decarboxylative Cycloaddition of Vinylethylene Carbonates. Chemistry 2021; 27:12742-12746. [PMID: 34197006 DOI: 10.1002/chem.202102024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/10/2022]
Abstract
Unlike the comprehensive development of tandem multi-metallic catalysis, bimetallic synergistic catalysis has been challenging to achieve high stereoselectivity with the generation of multi-stereogenic centers. Herein, an efficient synergistic catalysis for the diastereo- and enantioselective synthesis of multi-substituted tetrahydrofuran derivatives has been developed. Under mild reaction conditions, a series of target molecules with three consecutive stereocenters were synthesized by a palladium(0)/rhodium(III) bimetal-catalyzed asymmetric decarboxylative [3+2]-cycloaddition of vinylethylene carbonates with α,β-unsaturated carbonyl compounds. The corresponding adducts were obtained with moderate to high yields (67 %∼98 %) and excellent stereoselectivities (>20 : 1 d.r., up to 99 % ee).
Collapse
Affiliation(s)
- Siliang Ming
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Saira Qurban
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
36
|
Pan T, Gao X, Yang S, Wang L, Hu Y, Liu M, Wang W, Wu Y, Zheng B, Guo H. Palladium-Catalyzed (3+3) Annulation of Allenylethylene Carbonates with Nitrile Oxides. Org Lett 2021; 23:5750-5754. [PMID: 34286988 DOI: 10.1021/acs.orglett.1c01921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we designed and synthesized a new type of cyclic carbonates, allenylethylene carbonates (AECs). With AECs as reactive precursors, we developed palladium-catalyzed (3+3) annulation of AECs with nitrile oxides. Various AECs worked well in this reaction under mild reaction conditions. A variety of 5,6-dihydro-1,4,2-dioxazine derivatives with allenyl quaternary stereocenters can be accessed in a facile manner in high yields (≤98%).
Collapse
Affiliation(s)
- Ting Pan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Xing Gao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Lan Wang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yimin Hu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Min Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bing Zheng
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China.,Department of Nutrition and Health, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
37
|
Five-Membered Cyclic Carbonates: Versatility for Applications in Organic Synthesis, Pharmaceutical, and Materials Sciences. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the recent advances involving several applications of five-membered cyclic carbonates and derivatives. With more than 150 references, it covers the period from 2012 to 2020, with special emphasis on the use of five-membered cyclic carbonates as building blocks for organic synthesis and material elaboration. We demonstrate the application of cyclic carbonates in several important chemical transformations, such as decarboxylation, hydrogenation, and transesterification reactions, among others. The presence of cyclic carbonates in molecules with high biological potential is also displayed, together with the importance of these compounds in the preparation of materials such as urethanes, polyurethanes, and flame retardants.
Collapse
|
38
|
Vondran J, Furst MRL, Eastham GR, Seidensticker T, Cole-Hamilton DJ. Magic of Alpha: The Chemistry of a Remarkable Bidentate Phosphine, 1,2-Bis(di- tert-butylphosphinomethyl)benzene. Chem Rev 2021; 121:6610-6653. [PMID: 33961414 DOI: 10.1021/acs.chemrev.0c01254] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bidentate phosphine ligand 1,2-bis(di-tert-butylphosphinomethyl)benzene (1,2-DTBPMB) has been reported over the years as being one of, if not the, best ligands for achieving the alkoxycarbonylation of various unsaturated compounds. Bonded to palladium, the ligand provides the basis for the first step in the commercial (Alpha) production of methyl methacrylate as well as very high selectivity to linear esters and acids from terminal or internal double bonds. The present review is an overview covering the literature dealing with the 1,2-DTBPMB ligand: from its first reference, its catalysis, including the alkoxycarbonylation reaction and its mechanism, its isomerization abilities including the highly selective isomerizing methoxycarbonylation, other reactions such as cross-coupling, recycling approaches, and the development of improved, modified ligands, in which some tert-butyl ligands are replaced by 2-pyridyl moieties and which show exceptional rates for carbonylation reactions at low temperatures.
Collapse
Affiliation(s)
- Johanna Vondran
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Marc R L Furst
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K.,Athénée du Luxembourg, 24, Boulevard Pierre Dupong, L-1430 Luxembourg, Luxembourg
| | | | - Thomas Seidensticker
- Laboratory for Industrial Chemistry, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - David J Cole-Hamilton
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST Scotland, U.K
| |
Collapse
|
39
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021; 60:12775-12780. [DOI: 10.1002/anie.202102061] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/28/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
40
|
Yang G, Ke Y, Zhao Y. Stereoselective Access to Polyfunctionalized Nine‐Membered Heterocycles by Sequential Gold and Palladium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guoqiang Yang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Ya‐Ming Ke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Yu Zhao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
41
|
Uno H, Fujimoto D, Harada K, Tanaka C, Shibata N. Synthesis of Tetra-Substituted Trifluoromethyl-3,1-Benzoxazines by Transition-Metal-Catalyzed Decarboxylative Cyclization of N-Benzoyl Benzoxazinones. ChemistryOpen 2021; 10:518-522. [PMID: 33605087 PMCID: PMC8095294 DOI: 10.1002/open.202000360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Efficient synthesis of N,O-heterocyclic tetra-substituted trifluoromethyl-3,1-benzoxazines via a transition-metal-catalyzed decarboxylative intramolecular cyclization was achieved. The decarboxylation of N-benzoyl trifluoromethyl-benzoxazinones generated the amide oxygen nucleophile, allowing a selective internal C1 -attack on Pd- or Cu-coordinated zwitterions, affording medicinally attractive tetra-substituted vinyl- or ethynyl-trifluoromethyl-3,1-benzoxazines. This protocol can be applied to the synthesis of perfluoroalkyl- and non-fluorinated 3,1-benzoxazines.
Collapse
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
| | - Daichi Fujimoto
- Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
| | - Kyosuke Harada
- Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
| | - Chika Tanaka
- Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
| | - Norio Shibata
- Department of Nanopharmaceutical SciencesNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
- Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-kuNagoya466-8555Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University688 Yingbin Avenue321004JinhuaP. R. China
| |
Collapse
|
42
|
Ke M, Liu Z, Zhang K, Zuo S, Chen F. Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
43
|
Lee KR, Ahn S, Lee SG. Synergistic Pd(0)/Rh(II) Dual Catalytic [6 + 3] Dipolar Cycloaddition for the Synthesis of Monocyclic Nine-Membered N,O-Heterocycles and Their Alder-ene Rearrangement to Fused Bicyclic Compounds. Org Lett 2021; 23:3735-3740. [PMID: 33913334 DOI: 10.1021/acs.orglett.1c01135] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic construction of a monocyclic medium-sized N,O-heterocyclic ring represents a formidable challenge in organic synthesis. Herein we report the synergistic palladium(0)/rhodium(II) dual catalytic cycloaddition of vinylpropylene carbonates with N-sulfonyl-1,2,3-triazoles to afford monocyclic nine-membered N,O-heterocycles. The catalytically generated 1,6-dipole-equivalent zwitterionic π-allyl palladium(II) complex and the 1,3-dipole-equivalent α-imino rhodium(II) carbenoid intermediate react with each other in a formal [6 + 3] dipolar cycloaddition to furnish nine-membered oxazonines, which can be transformed into cis-fused [4.3.0] bicyclic compounds via a transannular Alder-ene rearrangement. The tandem one-pot cycloaddition/Alder-ene rearrangement sequence is also possible.
Collapse
Affiliation(s)
- Kyu Ree Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| | - Subin Ahn
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760 Seoul, Korea
| |
Collapse
|
44
|
Wu HH, Fan XZ, Tang Z, Zhang H, Cai LY, Bi XF, Zhao HW. Palladium-Catalyzed Formal (5 + 6) Cycloaddition of Vinylethylene Carbonates with Isatoic Anhydrides for the Synthesis of Medium-Sized N, O-Containing Heterocycles. Org Lett 2021; 23:2802-2806. [PMID: 33739841 DOI: 10.1021/acs.orglett.1c00729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under the reaction conditions of Pd(PPh3)4 (2.5 mol %) and PPh3 (10 mol %) in EtOAc at 60 °C, the formal (5 + 6) cycloaddition of vinylethylene carbonates with isatoic anhydrides proceeded smoothly and furnished medium-sized N,O-containing heterocycles in reasonable chemical yields. The chemical structures of the title products were clearly identified by X-ray diffraction analysis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Zu Fan
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Zhe Tang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Heng Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Lu-Yu Cai
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Xiao-Fan Bi
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| | - Hong-Wu Zhao
- College of Life Science and Bioengineering, Beijing University of Technology, No.100 Pingleyuan, Chaoyang District, Beijing 100124, P. R. China
| |
Collapse
|
45
|
Scuiller A, Karnat A, Casaretto N, Archambeau A. Vinylcyclopropanes as All-Carbon 1,5-Dipoles: A Reactivity Switch for Palladium-Catalyzed (5 + 4) Cycloadditions. Org Lett 2021; 23:2332-2336. [PMID: 33660513 DOI: 10.1021/acs.orglett.1c00477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azonanes were prepared by a palladium-catalyzed (5 + 4) cycloaddition between activated vinylcyclopropanes and 1-azadienes. During this process, the vinylcyclopropane partner displayed an unusual reactivity and behaved as an all-carbon 1,5-dipole. A N,N-bidentate ligand was required to inhibit the formation of thermodynamic (3 + 2) cycloadducts.
Collapse
Affiliation(s)
- Anaïs Scuiller
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA ParisTech, CNRS, Palaiseau 91128 Cedex, France
| | - Alexandre Karnat
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA ParisTech, CNRS, Palaiseau 91128 Cedex, France
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire, UMR 9168, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex France
| | - Alexis Archambeau
- Laboratoire de Synthèse Organique, UMR 7652, Ecole Polytechnique, ENSTA ParisTech, CNRS, Palaiseau 91128 Cedex, France
| |
Collapse
|
46
|
Liu Z, Ke M, Zhang K, Zuo S, Jiang M, Chen F. Stereoselective Synthesis of (
Z
)‐Dihomoallylic Phosphonates with Quaternary Carbon Center by Palladium‐Catalyzed Bisallylation of Vinylethyene Carbonates with
β
‐Ketophosphonates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| | - Ke Zhang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 P. R. China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 P. R. China
- Institute of Pharmaceutical Science and Technology, College of Pharmaceutical Science Zhejiang University of Technology 18 Chao Wang Road Hangzhou 310014 P. R. China
| |
Collapse
|
47
|
Palladium‐Catalyzed Allylation of Vinylethylene Carbonates with
β
‐Ketophosphonates: Stereoselective Synthesis of (
Z
)‐Homoallylic Phosphonates. ChemCatChem 2021. [DOI: 10.1002/cctc.202001925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Zhao C, Shah BH, Li H, Wu X, Zhang YJ. Palladium‐Catalyzed Allylic Cycloaddition of Vinylethylene Carbonates with 3‐Nitrochromone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000714] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Can Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road 200240 Shanghai P. R. China
| | - Babar Hussain Shah
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road 200240 Shanghai P. R. China
| | - Hongfang Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road 200240 Shanghai P. R. China
- Department of Chemistry College of Science Yanbian University 977 Gongyuan Road, Yanji 133002 Jilin P. R. China
| | - Xue Wu
- Department of Chemistry College of Science Yanbian University 977 Gongyuan Road, Yanji 133002 Jilin P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road 200240 Shanghai P. R. China
| |
Collapse
|
49
|
Yan B, Zuo L, Chang X, Liu T, Cui M, Liu Y, Sun H, Chen W, Guo W. Kinetically Controllable Pd-Catalyzed Decarboxylation Enabled [5 + 2] and [3 + 2] Cycloaddition toward Carbocycles Featuring Quaternary Carbons. Org Lett 2021; 23:351-357. [DOI: 10.1021/acs.orglett.0c03856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Biwei Yan
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Linhong Zuo
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Xiaowei Chang
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Teng Liu
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Manying Cui
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Yang Liu
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Haiyu Sun
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Weipeng Chen
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| | - Wusheng Guo
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an710045, China
| |
Collapse
|
50
|
Kawai K, Uno H, Fujimoto D, Shibata N. Transition‐Metal Free Catalytic Synthesis of Trifluoromethyl Indolines by [4+1] Cycloaddition of Trifluoromethyl Benzoxazinones with Sulfur Ylides. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koki Kawai
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Hiroto Uno
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Daichi Fujimoto
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 688 Yingbin Avenue Jinhua 321004 P. R. China
| |
Collapse
|