1
|
Trevenen S, Rahman MA, Hamilton HS, Ribbe AE, Bradley LC, Beltramo PJ. Nanoscale Porosity in Microellipsoids Cloaks Interparticle Capillary Attraction at Fluid Interfaces. ACS NANO 2023; 17:11892-11904. [PMID: 37272708 PMCID: PMC10312195 DOI: 10.1021/acsnano.3c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Anisotropic particles pinned at fluid interfaces tend toward disordered multiparticle configurations due to large, orientationally dependent, capillary forces, which is a significant barrier to exploiting these particles to create functional self-assembled materials. Therefore, current interfacial assembly methods typically focus on isotropic spheres, which have minimal capillary attraction and no dependence on orientation in the plane of the interface. In order to create long-range ordered structures with complex configurations via interfacially trapped anisotropic particles, control over the interparticle interaction energy via external fields and/or particle engineering is necessary. Here, we synthesize colloidal ellipsoids with nanoscale porosity and show that their interparticle capillary attraction at a water-air interface is reduced by an order of magnitude compared to their smooth counterparts. This is accomplished by comparing the behavior of smooth, rough, and porous ellipsoids at a water-air interface. By monitoring the dynamics of two particles approaching one another, we show that the porous particles exhibit a much shorter-range capillary interaction potential, with scaling intriguingly different than theory describing the behavior of smooth ellipsoids. Further, interferometry measurements of the fluid deformation surrounding a single particle shows that the interface around porous ellipsoids does not possess the characteristic quadrupolar symmetry of smooth ellipsoids, and quantitatively confirms the decrease in capillary interaction energy. By engineering nanostructured surface features in this fashion, the interfacial capillary interactions between particles may be controlled, informing an approach for the self-assembly of complex two-dimensional microstructures composed of anisotropic particles.
Collapse
Affiliation(s)
- Samuel Trevenen
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Md Anisur Rahman
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Heather S.C. Hamilton
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alexander E. Ribbe
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Laura C. Bradley
- Department
of Polymer Science and Engineering, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J. Beltramo
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Nickel AC, Kratzenberg T, Bochenek S, Schmidt MM, Rudov AA, Falkenstein A, Potemkin II, Crassous JJ, Richtering W. Anisotropic Microgels Show Their Soft Side. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5063-5080. [PMID: 34586813 DOI: 10.1021/acs.langmuir.1c01748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropic, submicrometer-sized particles are versatile systems providing interesting features in creating ordering in two-dimensional systems. Combining hard ellipsoids with a soft shell further enhances the opportunities to trigger and control order and alignment. In this work, we report rich 2D phase behavior and show how softness affects the ordering of anisotropic particles at fluid oil-water interfaces. Three different core-shell systems were synthesized such that they have the same elliptical hematite-silica core but differ with respect to thickness and stiffness of the soft microgel shell. Compression isotherms, the shape of individual core-shell microgels, and their 2D order at a decane-water interface are investigated by means of the Langmuir-Blodgett technique combined with ex-situ atomic force microscopy (AFM) imaging as well as dissipative particle dynamics (DPD) simulations. We show how the softness, size, and anisotropy of the microgel shell affect the side-to-side vs tip-to-tip ordering of anisotropic hybrid microgels as well as the alignment with respect to the direction of compression in the Langmuir trough. A large, soft microgel shell leads to an ordered structure with tip-to-tip alignment directed perpendicular to the direction of compression. In contrast, a thin and harder microgel shell leads to side-to-side ordering orientated parallel to the compression direction. In addition, the thin and harder microgel shell induces clustering of the microgels in the dilute state, indicating the presence of strong capillary interactions. Our findings highlight the relevance of softness for the complex ordering of anisotropic hybrid microgels at interfaces.
Collapse
Affiliation(s)
- Anne C Nickel
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Timon Kratzenberg
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Steffen Bochenek
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Maximilian M Schmidt
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
- DWI Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
| | - Andreas Falkenstein
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russia
- DWI Leibniz-Institute for Interactive Materials, 52056 Aachen, Germany, European Union
- National Research South Ural State University, Chelyabinsk 454080, Russia
| | - Jérôme J Crassous
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany, European Union
| |
Collapse
|
3
|
Pal A, De Filippo CA, Ito T, Kamal MA, Petukhov AV, De Michele C, Schurtenberger P. Shape Matters in Magnetic-Field-Assisted Assembly of Prolate Colloids. ACS NANO 2022; 16:2558-2568. [PMID: 35138802 PMCID: PMC8867904 DOI: 10.1021/acsnano.1c09208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
An anisotropic colloidal shape in combination with an externally tunable interaction potential results in a plethora of self-assembled structures with potential applications toward the fabrication of smart materials. Here we present our investigation on the influence of an external magnetic field on the self-assembly of hematite-silica core-shell prolate colloids for two aspect ratios ρ = 2.9 and 3.69. Our study shows a rather counterintuitive but interesting phenomenon, where prolate colloids self-assemble into oblate liquid crystalline (LC) phases. With increasing concentration, particles with smaller ρ reveal a sequence of LC phases involving para-nematic, nematic, smectic, and oriented glass phases. The occurrence of a smectic phase for colloidal ellipsoids has been neither predicted nor reported before. Quantitative shape analysis of the particles together with extensive computer simulations indicate that in addition to ρ, a subtle deviation from the ideal ellipsoidal shape dictates the formation of this unusual sequence of field-induced structures. Particles with ρ = 2.9 exhibit a hybrid shape containing features from both spherocylinders and ellipsoids, which make their self-assembly behavior richer than that observed for either of the "pure" shapes. The shape of the particles with higher ρ matches closely with the ideal ellipsoids, as a result their phase behavior follows the one expected for a "pure" ellipsoidal shape. Using anisotropic building blocks and external fields, our study demonstrates the ramifications of the subtle changes in the particle shape on the field-directed self-assembled structures with externally tunable properties.
Collapse
Affiliation(s)
- Antara Pal
- Division
of Physical Chemistry, Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Carlo Andrea De Filippo
- Dipartimento
di Scienze, Università degli Studi
Roma Tre, Via della Vasca
Navale, 84, 00146 Rome, Italy
| | - Thiago Ito
- Division
of Physical Chemistry, Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Md. Arif Kamal
- Centre
Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille University, Campus de Luminy − Case 913, 13288 CEDEX 09 Marseille, France
| | - Andrei V. Petukhov
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Utrecht University, Utrecht 3584 CH, The Netherlands
- Laboratory
of Physical Chemistry, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | | | - Peter Schurtenberger
- Division
of Physical Chemistry, Department of Chemistry, Lund University, Lund SE-22100, Sweden
- Lund Institute
of Advanced Neutron and X-ray Science LINXS, Lund University, Lund SE-22370, Sweden
| |
Collapse
|
4
|
Kao PK, Solomon MJ, Ganesan M. Microstructure and elasticity of dilute gels of colloidal discoids. SOFT MATTER 2022; 18:1350-1363. [PMID: 34932058 DOI: 10.1039/d1sm01605a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The linear elasticity of dilute colloidal gels formed from discoidal latex particles is quantified as a function of aspect ratio and modeled by confocal microscopy characterization of their fractal cluster microstructure. Colloidal gels are of fundamental interest because of their widespread use to stabilize complex fluids in industry. Technological interest in producing gels of desired moduli using the least number of particles drives formulators to produce gels at dilute concentrations. However, dilute gels self-assembled from isotropic spheres offer limited scope for rheological tunability due to the universal characteristics of their fractal microstructure. Our results show that changing the building block shape from sphere to discoid yields very large shifts in gel elasticity relative to the universal behavior reported for spheres. This shift - tunable through aspect ratio - yields up to a 100-fold increase in elastic modulus at a fixed volume fraction. From modeling the results using the theory for fractal cluster gel rheology, which is applicable at the dilute conditions of this study, we reveal that the efficient generation of elasticity by the colloidal discoids is the consequence of the combined effects of shape anisotropy on the fractal microstructure of the gel network, the anisotropy of the attractive interparticle pair potentials, and the volumetric compactness of the fractal cluster. These results extend prior characterizations of the rheology of non-spherical particulate gels by providing quantitative estimates of how the specific mechanisms of fractality, pair potential, and clustering mediate the profound effects of particle shape anisotropy on the elastic rheology of colloidal gels.
Collapse
Affiliation(s)
- Peng-Kai Kao
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, Michigan 48109, USA.
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, Michigan 48109, USA.
| | - Mahesh Ganesan
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
5
|
Kao PK, VanSaders BJ, Glotzer SC, Solomon MJ. Accelerated annealing of colloidal crystal monolayers by means of cyclically applied electric fields. Sci Rep 2021; 11:11042. [PMID: 34040047 PMCID: PMC8155009 DOI: 10.1038/s41598-021-90310-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/06/2021] [Indexed: 11/09/2022] Open
Abstract
External fields are commonly applied to accelerate colloidal crystallization; however, accelerated self-assembly kinetics can negatively impact the quality of crystal structures. We show that cyclically applied electric fields can produce high quality colloidal crystals by annealing local disorder. We find that the optimal off-duration for maximum annealing is approximately one-half of the characteristic melting half lifetime of the crystalline phase. Local six-fold bond orientational order grows more rapidly than global scattering peaks, indicating that local restructuring leads global annealing. Molecular dynamics simulations of cyclically activated systems show that the ratio of optimal off-duration for maximum annealing and crystal melting time is insensitive to particle interaction details. This research provides a quantitative relationship describing how the cyclic application of fields produces high quality colloidal crystals by cycling at the fundamental time scale for local defect rearrangements; such understanding of dynamics and kinetics can be applied for reconfigurable colloidal assembly.
Collapse
Affiliation(s)
- Peng-Kai Kao
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Bryan J VanSaders
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael J Solomon
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Gradient stretching to produce variable aspect ratio colloidal ellipsoids. J Colloid Interface Sci 2021; 583:385-393. [PMID: 33011408 DOI: 10.1016/j.jcis.2020.09.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022]
Abstract
Developing reliable synthetic methods for producing shape-anisotropic polymer colloids is essential for their use in novel functional materials. In designing such materials from ellipsoidal particles, it is often necessary to screen a wide range of particle sizes and aspect ratios to appropriately understand how microscopic particle characteristics dictate macroscopic material response. Here, we describe a technique to simultaneously produce a broad range of aspect ratio polymer ellipsoid samples from a single synthetic step. The technique extends the traditional film-stretching approach to create ellipsoids by introducing a gradient in strain and film cooling, which results in varying degrees of particle stretching. We empirically calibrate the device such that the final particle elongation may be predicted from the film characteristics, enabling the selective harvesting of ellipsoids with desired dimensions and which can be isolated by aspect ratio. The method is applied successfully to a wide range of seed particle diameters (500 nm - 10 μm) and enables the rapid synthesis of variable aspect ratio particles for systematic studies of anisotropic particles.
Collapse
|
7
|
Roller J, Laganapan A, Meijer JM, Fuchs M, Zumbusch A. Observation of liquid glass in suspensions of ellipsoidal colloids. Proc Natl Acad Sci U S A 2021; 118:e2018072118. [PMID: 33397813 PMCID: PMC7826331 DOI: 10.1073/pnas.2018072118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite the omnipresence of colloidal suspensions, little is known about the influence of colloid shape on phase transformations, especially in nonequilibrium. To date, real-space imaging results at high concentrations have been limited to systems composed of spherical colloids. In most natural and technical systems, however, particles are nonspherical, and their structural dynamics are determined by translational and rotational degrees of freedom. Using confocal microscopy of fluorescently labeled core-shell particles, we reveal that suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in which rotations are frozen while translations remain fluid. Image analysis unveils hitherto unknown nematic precursors as characteristic structural elements of this state. The mutual obstruction of these ramified clusters prevents liquid crystalline order. Our results give insight into the interplay between local structures and phase transformations. This helps to guide applications such as self-assembly of colloidal superstructures and also gives evidence of the importance of shape on the glass transition in general.
Collapse
Affiliation(s)
- Jörg Roller
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Aleena Laganapan
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
| | - Janne-Mieke Meijer
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
- Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Matthias Fuchs
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany;
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany;
| |
Collapse
|
8
|
Voggenreiter M, Roller J, Geiger J, Ebner L, Zumbusch A, Meijer JM. Preparation and Tracking of Oblate Core-Shell Polymethyl-Methacrylate Ellipsoids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13087-13095. [PMID: 33085481 DOI: 10.1021/acs.langmuir.0c02597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although single-particle level studies on prolate ellipsoidal colloids are relatively abundant, similar studies on oblate ellipsoids are rare because suitable model systems are scarcely available. Here, we present the preparation of monodisperse hard core-shell oblate ellipsoids that can be imaged and tracked in 3D with confocal laser scanning microscopy. Using a thermomechanical squeezing method, we transform spherical core-shell polymethyl-methacrylate (PMMA) particles into oblate ellipsoids. We show how the shape polydispersity as well as the aspect ratio of the obtained oblate ellipsoids can be controlled. In addition, we discuss how the core-shell geometry limits the range of aspect ratios because of the different viscoelastic properties of the cross-linked PMMA core and linear PMMA shell. We further demonstrate imaging of the core-shell oblate dispersions on a single-particle level in real space and time and the tracking of position and orientation using our recently developed tracking algorithm for anisotropic core-shell colloids. Our results thus provide the tools for the future investigation of the behavior of oblate ellipsoids, especially in dense suspensions.
Collapse
Affiliation(s)
- Markus Voggenreiter
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg Roller
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - John Geiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Lukas Ebner
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Janne-Mieke Meijer
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Wang M, Falke S, Schubert R, Lorenzen K, Cheng QD, Exner C, Brognaro H, Mudogo CN, Betzel C. Pulsed electric fields induce modulation of protein liquid-liquid phase separation. SOFT MATTER 2020; 16:8547-8553. [PMID: 32909579 DOI: 10.1039/d0sm01478h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The time-resolved dynamic assembly and the structures of protein liquid dense clusters (LDCs) were analyzed under pulsed electric fields (EFs) applying complementary polarized and depolarized dynamic light scattering (DLS/DDLS), optical microscopy, and transmission electron microscopy (TEM). We discovered that pulsed EFs substantially affected overall morphologies and spatial distributions of protein LDCs and microcrystals, and affected the phase diagrams of LDC formation, including enabling protein solutions to overcome the diffusive flux energy barrier to phase separate. Data obtained from DLS/DDLS and TEM showed that LDCs appeared as precursors of protein crystal nuclei, followed by the formation of ordered structures within LDCs applying a pulsed EF. Experimental results of circular dichroism spectroscopy provided evidence that the protein secondary structure content is changing under EFs, which may consequently modulate protein-protein interactions, and the morphology, dimensions, and internal structure of LDCs. Data and results obtained unveil options to modulate the phase diagram of crystallization, and physical morphologies of protein LDCs and microcrystals by irradiating sample suspensions with pulsed EFs.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Sven Falke
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Qing-di Cheng
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Christian Exner
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Hévila Brognaro
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| | - Célestin Nzanzu Mudogo
- Department of Basic Sciences, School of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Build. 22a, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
10
|
Jin W, Chan HK, Zhong Z. Shape-Anisotropy-Induced Ordered Packings in Cylindrical Confinement. PHYSICAL REVIEW LETTERS 2020; 124:248002. [PMID: 32639829 DOI: 10.1103/physrevlett.124.248002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Densest possible packings of identical spheroids in cylindrical confinement have been obtained through Monte Carlo simulations. By varying the shape anisotropy of spheroids and also the cylinder-to-spheroid size ratio, a variety of densest possible crystalline structures have been discovered, including achiral structures with specific orientations of particles and chiral helical structures with rotating orientations of particles. Our findings reveal a transition between confinement-induced chiral ordering and shape-anisotropy-induced orientational ordering and would serve as a guide for the fabrication of crystalline wires using anisotropic particles.
Collapse
Affiliation(s)
- Weiwei Jin
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ho-Kei Chan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zheng Zhong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
11
|
Liu T, VanSaders B, Glotzer SC, Solomon MJ. Effect of Defective Microstructure and Film Thickness on the Reflective Structural Color of Self-Assembled Colloidal Crystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9842-9850. [PMID: 31990514 DOI: 10.1021/acsami.9b22913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Structural color arises from geometric diffraction; it has potential applications in optical materials because it is more resistant to environmental degradation than coloration mechanisms that are of chemical origin. Structural color can be produced from self-assembled films of colloidal size particles. While the relationship between the crystal structure and structural color reflection peak wavelength is well studied, the connection between assembly quality and the degree of reflective structural color is less understood. Here, we study this connection by investigating the structural color reflection peak intensity and width as a function of defect density and film thickness using a combined experimental and computational approach. Polystyrene microspheres are self-assembled into defective colloidal crystals via solvent evaporation. Colloidal crystal growth via sedimentation is simulated with molecular dynamics, and the reflection spectra of simulated structures are calculated by using the finite-difference time-domain algorithm. We examine the impact of commonly observed defect types (vacancies, stacking fault tetrahedra, planar faults, and microcracks) on structural color peak intensity. We find that the reduction in peak intensity scales with increased defect density. The reduction is less sensitive to the type of defect than to its volume. In addition, the reflectance of structural color increases as a function of the crystal thickness, until a plateau is reached at thicknesses greater than about 9.0 μm. The maximum reflection is 78.8 ± 0.9%; this value is significantly less than the 100% reflectivity predicted for a fully crystalline, defect-free material. Furthermore, we find that colloidal crystal films with small quantities of defects may be approximated as multilayer reflective materials. These findings can guide the design of optical materials with variable structural color intensity.
Collapse
|
12
|
Roller J, Geiger JD, Voggenreiter M, Meijer JM, Zumbusch A. Formation of nematic order in 3D systems of hard colloidal ellipsoids. SOFT MATTER 2020; 16:1021-1028. [PMID: 31854439 DOI: 10.1039/c9sm01926j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Suspensions of hard ellipsoidal particles exhibit complex phase behavior as shown by theoretical predictions and simulations of phase diagrams. Here, we report quantitative confocal microscopy experiments of hard prolate colloidal ellipsoids with different aspect ratio a/b. We studied different volume fractions φ of ellipsoids in density and refractive index matched suspensions. Large 3D sample volumes were investigated and the positions as well as the orientations of all ellipsoids were extracted by image analysis routines. By evaluating the translational and orientational order in the system we determined the presence of isotropic and nematic phases. For ellipsoids with a/b = 2.0 we found that isotropic phases form at all φ, while ellipsoids with a/b = 7.0 formed nematic phases at high φ, as expected from theory and simulations. For a/b = 3.5 and a/b = 4.1, however, we observed the absence of long-range orientational order even at φ where nematic phases are expected. We show that local orientational order formed with the emergence of nematic precursors for a/b = 3.5 and short-ranged nematic domains for a/b = 4.1. Our results provide novel insight into the phase behavior and orientational order of ellipsoids with different aspect ratios.
Collapse
Affiliation(s)
- Jörg Roller
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| | - John David Geiger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| | - Markus Voggenreiter
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| | - Janne-Mieke Meijer
- Department of Physics, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany and University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, Konstanz, Germany.
| |
Collapse
|
13
|
Kao PK, VanSaders BJ, Durkin MD, Glotzer SC, Solomon MJ. Anisotropy effects on the kinetics of colloidal crystallization and melting: comparison of spheres and ellipsoids. SOFT MATTER 2019; 15:7479-7489. [PMID: 31513214 DOI: 10.1039/c9sm00887j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use alternating current (AC) electric field assisted self-assembly to produce two-dimensional, millimeter scale arrays of ellipsoidal colloids and study the kinetics of their phase reconfiguration by means of confocal microscopy, light scattering, and computer simulation. We find that the kinetics of orientational and positional ordering can be manipulated by changing the shape of the colloids: ellipsoids with aspect ratio 2.0 melt into disordered structures 5.7 times faster compared to spheres. On the other hand, ellipsoids self-assemble into ordered crystals at a similar rate to spheres. Confocal microscopy is used to directly visualize defects in the self-assembled structures. Small-angle light scattering (SALS) quantifies the light diffraction response, which is sensitive to the kinetics of positional and orientational ordering in the self-assembled anisotropic structures. We find three different light diffraction patterns: a phase with high orientational order (with chain-like structure in real space), a phase with high positional and orientational order (characteristic of a close-packed structure), and a phase that is disordered in position but with intermediate orientational order. The large influence of aspect ratio on the kinetics of the positionally and orientationally ordered phase is explored through simulation; it is found that the number of particle degrees of freedom controls the difference between the melting rates of the ellipsoids and spheres. This research contributes to the understanding of reconfiguration kinetics and optical properties of colloidal crystals produced from anisotropic colloids.
Collapse
Affiliation(s)
- Peng-Kai Kao
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, Building 10 - A151, 2800 Plymouth Road, Ann Arbor, Michigan, USA.
| | | | | | | | | |
Collapse
|
14
|
Nehring A, Shendruk TN, de Haan HW. Morphology of depletant-induced erythrocyte aggregates. SOFT MATTER 2018; 14:8160-8171. [PMID: 30260361 DOI: 10.1039/c8sm01026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Red blood cells suspended in quiescent plasma tend to aggregate into multicellular assemblages, including linearly stacked columnar rouleaux, which can reversibly form more complex clusters or branching networks. While these aggregates play an essential role in establishing hemorheological and pathological properties, the biophysics behind their self-assembly into dynamic mesoscopic structures remains under-explored. We employ coarse-grained molecular simulations to model low-hematocrit erythrocytes subject to short-range implicit depletion forces, and demonstrate not only that depletion interactions are sufficient to account for a sudden dispersion-aggregate transition, but also that the volume fraction of depletant macromolecules controls small aggregate morphology. We observe a sudden transition from a dispersion to a linear column rouleau, followed by a slow emergence of disorderly amorphous clusters of many short rouleaux at larger volume fractions. This work demonstrates how discocyte topology and short-range, non-specific, physical interactions are sufficient to self-assemble erythrocytes into various aggregate structures, with markedly different morphologies and biomedical consequences.
Collapse
Affiliation(s)
- Austin Nehring
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| | - Tyler N Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Hendrick W de Haan
- University of Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada.
| |
Collapse
|
15
|
Solomon MJ. Tools and Functions of Reconfigurable Colloidal Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11205-11219. [PMID: 29397742 DOI: 10.1021/acs.langmuir.7b03748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
Collapse
|