1
|
Weima SAM, Norouzikudiani R, Baek J, Peixoto JA, Slot TK, Broer DJ, DeSimone A, Liu D. Human interactive liquid crystal fiber arrays. SCIENCE ADVANCES 2024; 10:eadp0421. [PMID: 39241076 PMCID: PMC11378903 DOI: 10.1126/sciadv.adp0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
This paper presents interactive liquid crystal fiber arrays that can actuate in a way perceptible by human touch. The fibers are actuated via a computer interface, enabling precise control over actuation direction, magnitude, and frequency. Unlike conventional methods, our technique initiates the actuation at the base of the fibers, which is enabled by fabricating the fibers directly onto an electrical circuit. Fiber actuation is achieved by localized addressing of an in situ formed radially aligned segment. This induces reduction in the scalar order parameter and leads to deformation of the fiber base, causing bending toward the activated region. Extensive modeling validates this actuation mechanism and identifies optimal conditions and actuation strategies for achieving the desired responses. The actuation process is rapid, is highly reversible, and maintains excellent performance over repeated (>200) cycles. These liquid crystal fiber arrays provide a safe contact with humans or other objects, making them highly suitable for applications in smart wearable devices and immersive interfaces.
Collapse
Affiliation(s)
- Samuël A M Weima
- Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| | - Reza Norouzikudiani
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio, 34, Pontedera 56025, Italy
| | - Jaeryang Baek
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jacques A Peixoto
- Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| | - Thierry K Slot
- Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dirk J Broer
- Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio, 34, Pontedera 56025, Italy
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy
| | - Danqing Liu
- Laboratory of Human Interactive Materials (HIM), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, Netherlands
| |
Collapse
|
2
|
Gao Y, Wang X, Chen Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv 2024; 14:14278-14288. [PMID: 38694551 PMCID: PMC11062240 DOI: 10.1039/d4ra00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
In the daily life of mankind, microrobots can respond to stimulations received and perform different functions, which can be used to complete repetitive or dangerous tasks. Magnetic driving works well in robots that are tens or hundreds of microns in size, but there are big challenges in driving microrobots that are just a few microns in size. Therefore, it is impossible to guarantee the precise drive of microrobots to perform tasks. Acoustic driven micro-nano robot can achieve non-invasive and on-demand movement, and the drive has good biological compatibility, but the drive mode has low resolution and requires expensive experimental equipment. Light-driven robots move by converting light energy into other forms of energy. Light is a renewable, powerful energy source that can be used to transmit energy. Due to the gradual maturity of beam modulation and optical microscope technology, the application of light-driven microrobots has gradually become widespread. Light as a kind of electromagnetic wave, we can change the energy of light by controlling the wavelength and intensity of light. Therefore, the light-driven robot has the advantages of programmable, wireless, high resolution and accurate spatio-temporal control. According to the types of robots, light-driven robots are subdivided into three categories, namely light-driven soft microrobots, photochemical microrobots and 3D printed hard polymer microrobots. In this paper, the driving materials, driving mechanisms and application scenarios of light-driven soft microrobots are reviewed, and their advantages and limitations are discussed. Finally, we prospected the field, pointed out the challenges faced by light-driven soft micro robots and proposed corresponding solutions.
Collapse
Affiliation(s)
- Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| | - Yibao Chen
- School of Electromechanical and Automotive Engineering, Yantai University Yantai 264005 China
| |
Collapse
|
3
|
Saeed MH, Choi MY, Kim K, Lee JH, Kim K, Kim D, Kim SU, Kim H, Ahn SK, Lan R, Na JH. Electrostatically Powered Multimode Liquid Crystalline Elastomer Actuators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56285-56292. [PMID: 37991738 DOI: 10.1021/acsami.3c13140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Soft actuators based on liquid crystalline elastomers (LCEs) are captivating significant interest because of their unique properties combining the programmable liquid crystalline molecular order and elasticity of polymeric materials. For practical applications, the ability to perform multimodal shape changes in a single LCE actuator at a subsecond level is a bottleneck. Here, we fabricate a monodomain LCE powered by electrostatic force, which enables fast multidirectional bending, oscillation, rotation, and complex actuation with a high degree of freedom. By tuning the dielectric constant and resistivity in LCE gels, a complete cycle of oscillation and rotation only takes 0.1 s. In addition, monodomain actuators exhibit anisotropic actuation behaviors that promise a more complex deployment in a potential electromechanical system. The presented study will pave the way for electrostatically controllable isothermal manipulation for a fast and multimode soft actuator.
Collapse
Affiliation(s)
- Mohsin Hassan Saeed
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Moon-Young Choi
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kitae Kim
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Hyeong Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keumbee Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Kim
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyun Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Suk-Kyun Ahn
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ruochen Lan
- Institute of Advanced Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Hee Na
- Department of Electrical, Electronics and Communication Engineering Education, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T. Field-Controlled Microrobots Fabricated by Photopolymerization. CYBORG AND BIONIC SYSTEMS 2023; 4:0009. [PMID: 37287461 PMCID: PMC10243896 DOI: 10.34133/cbsystems.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2024] Open
Abstract
Field-controlled microrobots have attracted extensive research in the biological and medical fields due to the prominent characteristics including high flexibility, small size, strong controllability, remote manipulation, and minimal damage to living organisms. However, the fabrication of these field-controlled microrobots with complex and high-precision 2- or 3-dimensional structures remains challenging. The photopolymerization technology is often chosen to fabricate field-controlled microrobots due to its fast-printing velocity, high accuracy, and high surface quality. This review categorizes the photopolymerization technologies utilized in the fabrication of field-controlled microrobots into stereolithography, digital light processing, and 2-photon polymerization. Furthermore, the photopolymerized microrobots actuated by different field forces and their functions are introduced. Finally, we conclude the future development and potential applications of photopolymerization for the fabrication of field-controlled microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
5
|
Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent Advances in 4D Printing of Liquid Crystal Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209566. [PMID: 36461147 DOI: 10.1002/adma.202209566] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Indexed: 06/09/2023]
Abstract
Liquid crystal elastomers (LCEs) are renowned for their large, reversible, and anisotropic shape change in response to various external stimuli due to their lightly cross-linked polymer networks with an oriented mesogen direction, thus showing great potential for applications in robotics, bio-medics, electronics, optics, and energy. To fully take advantage of the anisotropic stimuli-responsive behaviors of LCEs, it is preferable to achieve a locally controlled mesogen alignment into monodomain orientations. In recent years, the application of 4D printing to LCEs opens new doors for simultaneously programming the mesogen alignment and the 3D geometry, offering more opportunities and higher feasibility for the fabrication of 4D-printed LCE objects with desirable stimuli-responsive properties. Here, the state-of-the-art advances in 4D printing of LCEs are reviewed, with emphasis on both the mechanisms and potential applications. First, the fundamental properties of LCEs and the working principles of the representative 4D printing techniques are briefly introduced. Then, the fabrication of LCEs by 4D printing techniques and the advantages over conventional manufacturing methods are demonstrated. Finally, perspectives on the current challenges and potential development trends toward the 4D printing of LCEs are discussed, which may shed light on future research directions in this new field.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lichun Bai
- School of Traffic and Transportation Engineering, Central South University, Changsha, 410075, China
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
6
|
Raw Materials, Technology, Healthcare Applications, Patent Repository and Clinical Trials on 4D Printing Technology: An Updated Review. Pharmaceutics 2022; 15:pharmaceutics15010116. [PMID: 36678745 PMCID: PMC9865937 DOI: 10.3390/pharmaceutics15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 01/01/2023] Open
Abstract
After the successful commercial exploitation of 3D printing technology, the advanced version of additive manufacturing, i.e., 4D printing, has been a new buzz in the technology-driven industries since 2013. It is a judicious combination of 3D printing technologies and smart materials (stimuli responsive), where time is the fourth dimension. Materials such as liquid crystal elastomer (LCE), shape memory polymers, alloys and composites exhibiting properties such as self-assembling and self-healing are used in the development/manufacturing of these products, which respond to external stimuli such as solvent, temperature, light, etc. The technologies being used are direct ink writing (DIW), fused filament fabrication (FFF), etc. It offers several advantages over 3D printing and has been exploited in different sectors such as healthcare, textiles, etc. Some remarkable applications of 4D printing technology in healthcare are self-adjusting stents, artificial muscle and drug delivery applications. Potential of applications call for further research into more responsive materials and technologies in this field. The given review is an attempt to collate all the information pertaining to techniques employed, raw materials, applications, clinical trials, recent patents and publications specific to healthcare products. The technology has also been evaluated in terms of regulatory perspectives. The data garnered is expected to make a strong contribution to the field of technology for human welfare and healthcare.
Collapse
|
7
|
van Raak RJH, Broer DJ. Biomimetic Liquid Crystal Cilia and Flagella. Polymers (Basel) 2022; 14:polym14071384. [PMID: 35406258 PMCID: PMC9003437 DOI: 10.3390/polym14071384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are a vital part of many organisms. Protozoa such as paramecia rely on the collective and coordinated beating of tubular cilia or flagella for their transport, while mammals depend on the ciliated linings of their bronchia and female reproductive tracts for the continuity of breathing and reproduction, respectively. Over the years, man has attempted to mimic these natural cilia using synthetic materials such as elastomers doped with magnetic particles or light responsive liquid crystal networks. In this review, we will focus on the progress that has been made in mimicking natural cilia and flagella using liquid crystal polymers. We will discuss the progress that has been made in mimicking natural cilia and flagella with liquid crystal polymers using techniques such as fibre drawing, additive manufacturing, or replica moulding, where we will put additional focus on the emergence of asymmetrical and out-of-plane motions.
Collapse
Affiliation(s)
- Roel J. H. van Raak
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
| | - Dirk J. Broer
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Devices Integrated Responsive Materials, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
8
|
Zhao N, Wang X, Yao L, Yan H, Qin B, Li C, Zhang J. Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers. SOFT MATTER 2022; 18:1264-1274. [PMID: 35044410 DOI: 10.1039/d1sm01356d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid crystalline elastomer (LCE) materials have been developed and investigated for several decades. One important obstacle, which impedes the practical industrial application of LCE materials, is their modest robustness as actuator materials. In this work, we developed a LCE composite which was fabricated by incorporating eiderdown fibers into a polysiloxane-based main-chain LCE matrix. The eiderdown fibers were used as the flexible reinforcement phase suitable for the shape-morphing performance of LCE materials upon being stimulated. Due to the long fiber property, specific structure and surface characteristics of the eiderdown fibers, they constructed a reinforcement network in the LCE matrix and formed tight interfacial adhesion with the matrix. The LCE composite demonstrated enhanced actuation mechanical properties and robust actuation performance. Its actuation blocking stress and modulus were increased due to the reinforcement effect of the eiderdown fibers. The tensile strength and the performance of anti-fatigue failure under repeated actuation cycles and high loadings were greatly improved due to the crack-resisting effect and bridging effect of the eiderdown fibers. While other properties, such as the liquid crystalline phase structure, the stimulus deformation ratio, phase transition temperature of the LCE matrix, etc., did not deteriorate or change due to the high flexibility, thermal stability and chemical stability of the eiderdown fibers.
Collapse
Affiliation(s)
- Nan Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Xiuxiu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liru Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Huixuan Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Ban Qin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chensha Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|
9
|
Lin X, Zou W, Terentjev EM. Double Networks of Liquid-Crystalline Elastomers with Enhanced Mechanical Strength. Macromolecules 2022; 55:810-820. [PMID: 35572091 PMCID: PMC9097525 DOI: 10.1021/acs.macromol.1c02065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/06/2022] [Indexed: 11/28/2022]
Abstract
![]()
Liquid-crystalline elastomers (LCEs)
are frequently used in soft
actuator development. However, applications are limited because LCEs
are prone to mechanical failure when subjected to heavy loads and
high temperatures during the working cycle. A mechanically tough LCE
system offers larger work capacity and lower failure rate for the
actuators. Herein, we adopt the double-network strategy, starting
with a siloxane-based exchangeable LCE and developing a series of
double-network liquid-crystalline elastomers (DN-LCEs) that are mechanically
tougher than the initial elastomer. We incorporate diacrylate reacting
monomers to fabricate DN-LCEs, some of which have the breaking stress
of 40 MPa. We incorporate thermoplastic polyurethane to fabricate
a DN-LCE, achieving an enormous ductility of 90 MJ/m3.
We have also attempted to utilize the aza-Michael chemistry to make
a DN-LCE that retains high plasticity because of several bond-exchange
mechanisms; however, it failed to produce a stable reprocessable LCE
system using conventional ester-based reactive mesogens. Each of these
DN-LCEs exhibits unique features and characteristics, which are compared
and discussed.
Collapse
Affiliation(s)
- Xueyan Lin
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Weike Zou
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Eugene M. Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
10
|
Mur U, Ravnik M, Seč D. Controllable shifting, steering, and expanding of light beam based on multi-layer liquid-crystal cells. Sci Rep 2022; 12:352. [PMID: 35013419 PMCID: PMC8748706 DOI: 10.1038/s41598-021-04164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/16/2021] [Indexed: 12/05/2022] Open
Abstract
Shaping and steering of light beams is essential in many modern applications, ranging from optical tweezers, camera lenses, vision correction to 3D displays. However, current realisations require increasingly greater tunability and aim for lesser specificity for use in diverse applications. Here, we demonstrate tunable light beam control based on multi-layer liquid-crystal cells and external electric field, capable of extended beam shifting, steering, and expanding, using a combination of theory and full numerical modelling, both for liquid crystal orientations and the transmitted light. Specifically, by exploiting three different function-specific and tunable birefringent nematic layers, we show an effective liquid-crystal beam control device, capable of precise control of outgoing light propagation, with possible application in projectors or automotive headlamps.
Collapse
Affiliation(s)
- Urban Mur
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
- J. Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - David Seč
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
- Adria Tehnik d.o.o., Na jasi 12, Tržič, Slovenia.
| |
Collapse
|
11
|
Martella D, Nocentini S, Parmeggiani C, Wiersma DS. Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discuss 2021; 223:216-232. [PMID: 32716468 DOI: 10.1039/d0fd00032a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Light responsive shape-changing polymers are able to mimic the function of biological muscles accomplishing mechanical work in response to selected stimuli. A variety of manufacturing techniques and chemical processes can be employed to shape these materials to different length scales, from centimeter fibers and films to 3D printed micrometric objects trying to replicate biological functions and operations. Controlled deformations shown to mimick basic animal operations such as walking, swimming or grabbing objects, while also controlling the refractive index and the geometry of devices, opens up the potential to implement tunable optical properties. Another possibility is that of combining artificial polymers with cells or biological tissue (such as intact cardiac trabeculae) with the aim to improve tissue formation in vitro or to support the mechanical function of damaged biological muscles. Such versatility is afforded by chemistry. New customized liquid crystalline monomers are presented here that modulate material properties for different applications. The role of synthetic material composition is highlighted as we demonstrate how using apparently similar molecular formulations, that liquid crystalline polymers can be adapted to different technological and medical challenges.
Collapse
Affiliation(s)
- Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy and Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Diederik S Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy. and Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy and Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce 91, 10135 Turin, Italy
| |
Collapse
|
12
|
Lin X, Saed MO, Terentjev EM. Continuous spinning aligned liquid crystal elastomer fibers with a 3D printer setup. SOFT MATTER 2021; 17:5436-5443. [PMID: 33970980 PMCID: PMC8170681 DOI: 10.1039/d1sm00432h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Fibrous liquid crystalline elastomers (LCE) are an attractive variant of LCE-based actuators due to their small thickness, leading to faster response times to stimuli, as well as the increased mechanical strength. Fabrication of LCE fibers has been attempted by various research groups using electro-spinning or micro-fluidic techniques, without much success. Here we propose an alternative way to achieve single-step continuous spinning LCE fibers in a more scalable and robust way, based on a liquid-ink 3D printer. We demonstrate this technique in our home-made device by dynamically extruding/stretching liquid crystalline oligomer mixed with photo-reactive cross-linker, to fix the aligned network under UV light after extrusion. The report also describes a protocol for material synthesis and identifies optimal conditions for the stable fiber spinning process. Microns-thick LCE fibers with two different compositions have been successfully spun, and demonstrated enhanced mechanical properties with the inherited thermal-actuation capability. This technique also demonstrates the potential to fine-tune the mechanical properties of fibers to enable further development in fiber-based LCE applications.
Collapse
Affiliation(s)
- Xueyan Lin
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Mohand O Saed
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Eugene M Terentjev
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
13
|
Kim K, Guo Y, Bae J, Choi S, Song HY, Park S, Hyun K, Ahn SK. 4D Printing of Hygroscopic Liquid Crystal Elastomer Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100910. [PMID: 33938152 DOI: 10.1002/smll.202100910] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Liquid crystal elastomers (LCEs) are broadly recognized as programmable actuating materials that are responsive to external stimuli, typically heat or light. Yet, soft LCEs that respond to changes in environmental humidity are not reported, except a few examples based on rigid liquid crystal networks with limited processing. Herein, a new class of highly deformable hygroscopic LCE actuators that can be prepared by versatile processing methods, including surface alignment as well as 3D printing is presented. The dimethylamino-functionalized LCE is prepared by the aza-Michael addition reaction between a reactive LC monomer and N,N'-dimethylethylenediamine as a chain extender, followed by photopolymerization. The humidity-responsive properties are introduced by activating one of the LCE surfaces with an acidic solution, which generates cations on the surface and provides asymmetric hydrophilicity to the LCE. The resulting humidity-responsive LCE undergoes programmed and reversible hygroscopic actuation, and its shape transformation can be directed by the cut angle with respect to a nematic director or by localizing activation regions in the LCE. Most importantly, various hygroscopic LCE actuators, including (porous) bilayers, a flower, a concentric square array, and a soft gripper, are successfully fabricated by using LC inks in UV-assisted direct-ink-writing-based 3D printing.
Collapse
Affiliation(s)
- Keumbee Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yuanhang Guo
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehee Bae
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subi Choi
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeong Yong Song
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sungmin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suk-Kyun Ahn
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
14
|
Zmyślony M, Dradrach K, Haberko J, Nałęcz-Jawecki P, Rogóż M, Wasylczyk P. Optical Pliers: Micrometer-Scale, Light-Driven Tools Grown on Optical Fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002779. [PMID: 32627876 DOI: 10.1002/adma.202002779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The ability to grip and handle small objects, from sub-millimeter electronic components to single-micrometer living cells, is vital for numerous ever-shrinking technologies. Mechanical grippers, powered by electric, pneumatic, hydraulic or piezoelectric servos, are well suited for the job at larger scales, but their complexity and need for force transmission prevent their miniaturization and remote control in tight spaces. Using liquid crystal elastomer microstructures that can change shape quickly and reversibly in response to light, a light-powered gripping tool-optical pliers-is built by growing two bending jaws on the tips of optical fibers. By delivering UV light to trigger polymerization via a micrometer-size fiber core, structures of similar size can be made without resorting to any microfabrication technology, such as laser photolithography. The tool is operated using visible light energy supplied through the fibers, with no force transmission. The elastomer growth technique readily offers micrometer-scale, remotely controlled functional structures with different modes of actuation as building blocks for the microtoolbox.
Collapse
Affiliation(s)
- Michał Zmyślony
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland
| | - Klaudia Dradrach
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland
| | - Jakub Haberko
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, Kraków, 30-059, Poland
| | - Paweł Nałęcz-Jawecki
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland
| | - Mikołaj Rogóż
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland
| | - Piotr Wasylczyk
- Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland
| |
Collapse
|
15
|
Sitti M, Wiersma DS. Pros and Cons: Magnetic versus Optical Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906766. [PMID: 32053227 DOI: 10.1002/adma.201906766] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Indexed: 05/21/2023]
Abstract
Mobile microrobotics has emerged as a new robotics field within the last decade to create untethered tiny robots that can access and operate in unprecedented, dangerous, or hard-to-reach small spaces noninvasively toward disruptive medical, biotechnology, desktop manufacturing, environmental remediation, and other potential applications. Magnetic and optical actuation methods are the most widely used actuation methods in mobile microrobotics currently, in addition to acoustic and biological (cell-driven) actuation approaches. The pros and cons of these actuation methods are reported here, depending on the given context. They can both enable long-range, fast, and precise actuation of single or a large number of microrobots in diverse environments. Magnetic actuation has unique potential for medical applications of microrobots inside nontransparent tissues at high penetration depths, while optical actuation is suitable for more biotechnology, lab-/organ-on-a-chip, and desktop manufacturing types of applications with much less surface penetration depth requirements or with transparent environments. Combining both methods in new robot designs can have a strong potential of combining the pros of both methods. There is still much progress needed in both actuation methods to realize the potential disruptive applications of mobile microrobots in real-world conditions.
Collapse
Affiliation(s)
- Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| | - Diederik S Wiersma
- LENS, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- INRIM, Strada delle Cacce 91, 10135, Torino, Italy
| |
Collapse
|
16
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
17
|
Zhang C, Lu X, Fei G, Wang Z, Xia H, Zhao Y. 4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44774-44782. [PMID: 31692319 DOI: 10.1021/acsami.9b18037] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid crystal elastomers (LCEs), a class of soft materials capable of a large and reversible change in the shape under the trigger of external stimuli, can be fabricated into diverse architectures with complicated deformation modes through four-dimensional (4D) printing. However, the printable LCE ink is only in the form of monomeric precursors and the deformation mode is limited to contraction/extension deformation. Herein, we report a novel approach to break through these limitations. We achieved 4D printing of a single-component liquid crystal polymer ink in its isotropy state through direct ink writing (DIW) technology. The drawing force imposed by the movement of nozzle in the extruded printing process was able to align the mesogen units along the specific printing path. An orientation gradient perpendicular to the printing direction was obtained due to the existence of a temperature gradient between the two sides of printed samples and could be further fixed by post-photo-cross-linking treatment through the dimerizable groups in the LCE, realizing a new actuation mode in the field of extrusion-based printing of LCE actuators. The printed film was able to change reversibly from a strip to a tightly hollow cylinder and could reversibly lift up an object with roughly 600 times its own weight. The orientation gradient can be patterned through liquid-assistant printing or programmed structure design to integrate both bending and contraction actuation modes on the same printed sample, leading to complex deformation and two-dimensional (2D) planar porous structure to three-dimensional (3D) porous cylinder transition. This study opens up a new prospect to directly print a wide variety of LCE actuators with versatile actuation modes.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Yue Zhao
- Département de chimie Université de Sherbrooke Sherbrooke , Québec J1K 2R1 , Canada
| |
Collapse
|
18
|
Zeng H, Lahikainen M, Liu L, Ahmed Z, Wani OM, Wang M, Yang H, Priimagi A. Light-fuelled freestyle self-oscillators. Nat Commun 2019; 10:5057. [PMID: 31700006 PMCID: PMC6838320 DOI: 10.1038/s41467-019-13077-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/17/2019] [Indexed: 02/04/2023] Open
Abstract
Self-oscillation is a phenomenon where an object sustains periodic motion upon non-periodic stimulus. It occurs commonly in nature, a few examples being heartbeat, sea waves and fluttering of leaves. Stimuli-responsive materials allow creating synthetic self-oscillators fuelled by different forms of energy, e.g. heat, light and chemicals, showing great potential for applications in power generation, autonomous mass transport, and self-propelled micro-robotics. However, most of the self-oscillators are based on bending deformation, thereby limiting their possibilities of being implemented in practical applications. Here, we report light-fuelled self-oscillators based on liquid crystal network actuators that can exhibit three basic oscillation modes: bending, twisting and contraction-expansion. We show that a time delay in material response dictates the self-oscillation dynamics, and realize a freestyle self-oscillator that combines numerous oscillation modes simultaneously by adjusting the excitation beam position. The results provide new insights into understanding of self-oscillation phenomenon and offer new designs for future self-propelling micro-robots.
Collapse
Affiliation(s)
- Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland.
| | - Markus Lahikainen
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Li Liu
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Zafar Ahmed
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Owies M Wani
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland.
| |
Collapse
|
19
|
Martella D, Nocentini S, Antonioli D, Laus M, Wiersma DS, Parmeggiani C. Opposite Self-Folding Behavior of Polymeric Photoresponsive Actuators Enabled by a Molecular Approach. Polymers (Basel) 2019; 11:polym11101644. [PMID: 31658752 PMCID: PMC6835338 DOI: 10.3390/polym11101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
The ability to obtain 3D polymeric objects by a 2D-to-3D shape-shifting method is very appealing for polymer integration with different materials, from metals in electronic devices to cells in biological studies. Such functional reshaping can be achieved through self-folding driven by a strain pattern designed into the molecular network. Among polymeric materials, liquid crystalline networks (LCNs) present an anisotropic molecular structure that can be exploited to tailor internal strain, resulting in a natural non-planar geometry when prepared in the form of flat films. In this article, we analyze the influence of different molecular parameters of the monomers on the spontaneous shape of the polymeric films and their deformation under different stimuli, such as heating or light irradiation. Modifying the alkilic chains of the crosslinkers is a simple and highly effective way to increase the temperature sensitivity of the final actuator, while modifying ester orientation on the aromatic core interestingly acts on the bending direction. Combining such effects, we have demonstrated that LCN stripes made of different monomeric mixtures originate complex non-symmetric deformation under light activation, thus opening up new applications in photonic and robotics.
Collapse
Affiliation(s)
- Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
- National Institute of Optics, CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
| | - Sara Nocentini
- European Laboratory for Non-Linear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
- National Institute of Optics, CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
| | - Diego Antonioli
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Universitá del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - Diederik S Wiersma
- European Laboratory for Non-Linear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
- Department of Physics and Astrophysics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy.
- Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce, 91, 10135 Turin, Italy.
| | - Camilla Parmeggiani
- European Laboratory for Non-Linear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
- National Institute of Optics, CNR-INO, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
- Istituto Nazionale di Ricerca Metrologica INRiM, Strada delle Cacce, 91, 10135 Turin, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, via N. Carrara 3-13, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
20
|
Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments. CRYSTALS 2019. [DOI: 10.3390/cryst9060292] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Continuous, wide field-of-view, high-efficiency, and fast-response beam steering devices are desirable in a plethora of applications. Liquid crystals (LCs)—soft, bi-refringent, and self-assembled materials which respond to various external stimuli—are especially promising for fulfilling these demands. In this paper, we review recent advances in LC beam steering devices. We first describe the general operation principles of LC beam steering techniques. Next, we delve into different kinds of beam steering devices, compare their pros and cons, and propose a new LC-cladding waveguide beam steerer using resistive electrodes and present our simulation results. Finally, two future development challenges are addressed: Fast response time for mid-wave infrared (MWIR) beam steering, and device hybridization for large-angle, high-efficiency, and continuous beam steering. To achieve fast response times for MWIR beam steering using a transmission-type optical phased array, we develop a low-loss polymer-network liquid crystal and characterize its electro-optical properties.
Collapse
|
21
|
Kuenstler AS, Kim H, Hayward RC. Liquid Crystal Elastomer Waveguide Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901216. [PMID: 31012181 DOI: 10.1002/adma.201901216] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/04/2019] [Indexed: 06/09/2023]
Abstract
While most photomechanical materials developed to date have relied on free-space illumination to drive actuation, this strategy fails when direct line-of-site access is precluded. In this study, waveguided light is harnessed by liquid crystal elastomer (LCE) nanocomposites to drive actuation. Using photo-chemical reduction of gold salts to plasmonic nanoparticles, prescription of photoresponsive regions within fibers of mono-domain LCEs is demonstrated with control over both the location along the fiber axis, as well as in the azimuthal direction. Due to localized photothermal heating provided by plasmonic absorption of waveguided light and resulting inhomogeneous thermally induced deformation of the LCE, reversible bending along multiple axes is demonstrated.
Collapse
Affiliation(s)
- Alexa S Kuenstler
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hyunki Kim
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ryan C Hayward
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
22
|
Martella D, Nocentini S, Micheletti F, Wiersma DS, Parmeggiani C. Polarization-dependent deformation in light responsive polymers doped by dichroic dyes. SOFT MATTER 2019; 15:1312-1318. [PMID: 30512019 DOI: 10.1039/c8sm01954a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Light represents a very versatile stimulus and its use to control the deformation in shape-changing polymers can take advantage of multiple parameters (such as wavelength, intensity and polarization) to be explored in order to obtain differentiated responses. Polymers with selected color responsiveness are commonly prepared by using different dyes, while a polarization-dependent control can be introduced exploiting trans-cis isomerization of azobenzenes. As shape-changing polymers driven by a photothermal effect are gaining more and more attention in many application fields, exploring polarization to modulate their response could enlarge the tuning parameter space and provide an insight into the material optical properties. In this work, we demonstrate the effect of light polarization on the deformation of liquid crystalline networks doped by a small amount of a push-pull azobenzene. We demonstrate how enhancing the dye alignment in the polymeric matrix leads to different deformations by orthogonal polarizations. These results demonstrate polarization as a convenient further degree of freedom besides wavelength and intensity of the light stimulus.
Collapse
Affiliation(s)
- Daniele Martella
- European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
23
|
Donovan BR, Matavulj VM, Ahn SK, Guin T, White TJ. All-Optical Control of Shape. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805750. [PMID: 30417450 DOI: 10.1002/adma.201805750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Indexed: 06/09/2023]
Abstract
Photoresponsive liquid crystal elastomers (LCEs) are a unique class of anisotropic materials capable of undergoing large-scale, macroscopic deformations when exposed to light. Here, surface-aligned, azobenzene-functionalized LCEs are prepared via a radical-mediated, thiol-acrylate chain transfer reaction. A long-lived, macroscopic shape deformation is realized in an LCE composed with an o-fluorinated azobenzene (oF-azo) monomer. Under UV irradiation, the oF-azo LCE exhibits a persistent shape deformation for >72 h. By contrasting the photomechanical response of the oF-azo LCE to analogs prepared from classical and m-fluorinated azobenzene derivatives, the origin of the persistent deformation is clearly attributed to the underlying influence of positional functionalization on the kinetics of cis→trans isomerization. Informed by these studies and enabled by the salient features of light-induced deformations, oF-azo LCEs are demonstrated to undergo all-optical control of shape deformation and shape restoration.
Collapse
Affiliation(s)
- Brian R Donovan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433-7750, USA
- Azimuth Corporation, 4027 Colonel Glenn Highway, Beavercreek, OH, 45431, USA
| | - Valentina M Matavulj
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433-7750, USA
- Azimuth Corporation, 4027 Colonel Glenn Highway, Beavercreek, OH, 45431, USA
| | - Suk-Kyun Ahn
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433-7750, USA
- Azimuth Corporation, 4027 Colonel Glenn Highway, Beavercreek, OH, 45431, USA
| | - Tyler Guin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433-7750, USA
- Azimuth Corporation, 4027 Colonel Glenn Highway, Beavercreek, OH, 45431, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave., Boulder, CO, 80303, USA
| |
Collapse
|
24
|
Martella D, Parmeggiani C. Advances in Cell Scaffolds for Tissue Engineering: The Value of Liquid Crystalline Elastomers. Chemistry 2018; 24:12206-12220. [DOI: 10.1002/chem.201800477] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Martella
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| | - Camilla Parmeggiani
- Chemistry Department “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 Sesto Fiorentino Italy
- CNR-INO; European Laboratory for Non-Linear Spectroscopy (LENS); University of Florence; via Nello Carrara 1 Sesto Fiorentino Italy
| |
Collapse
|
25
|
Abstract
We present a robust method to prepare thin oriented nematic liquid crystalline elastomer-polymer (LCE-polymer) core-sheath fibers. An electrospinning setup is utilized to spin a single solution of photo-crosslinkable low molecular weight reactive mesogens and a support polymer to form the coaxial LCE-polymer fibers, where the support polymer forms the sheath via in situ phase separation as the solvent evaporates. We discuss the effect of phase separation and compare two different sheath polymers (polyvinylpyrrolidone and polylactic acid), investigating optical and morphological properties of obtained fibers, as well as the shape changes upon heating. The current fibers show only irreversible contraction, the relaxation most likely being hindered by the presence of the passive sheath polymer, increasing in stiffness on cooling. If the sheath polymer can be removed while keeping the LCE core intact, we expect LCE fibers produced in this way to have potential to be used as actuators, for instance in soft robotics and responsive textiles.
Collapse
Affiliation(s)
- Anshul Sharma
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A Avenue de la Faïencerie, 1511 Luxembourg, Luxembourg.
| | - Jan P F Lagerwall
- Physics and Materials Science Research Unit, University of Luxembourg, 162 A Avenue de la Faïencerie, 1511 Luxembourg, Luxembourg.
| |
Collapse
|