1
|
Tao Y, Jin Y, Cui Y, Yu T, Ji J, Zhu W, Fang M, Li C. A novel fluorescent probe based on carbazole-thiophene for the recognition of hypochlorite and its applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123912. [PMID: 38266605 DOI: 10.1016/j.saa.2024.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 μM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.
Collapse
Affiliation(s)
- Yana Tao
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yu Jin
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yuanyuan Cui
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Taotao Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Jiayu Ji
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Weiju Zhu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| | - Min Fang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, PR China; Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University, Hefei 230601, PR China
| | - Cun Li
- AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China; School of Materials Science and Engineering, Anhui University, Hefei 230601, PR China
| |
Collapse
|
2
|
Huang C, Yang Y, Li Y, Lv G. A two-photon fluorescent lipid raft probe derived from dicyanostilbene and similar to cholesterol’s structure. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Huang C, Kang S, Pan Q, Lv G. A Dicyanocarbazolylstilbene‐Derived Two‐Photon Fluorescence Probe for Lipid Raft with a Large Two‐Photon Action Cross Section. ChemistrySelect 2021. [DOI: 10.1002/slct.202100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chibao Huang
- School of Information Engineering Zunyi Normal University Zunyi 563002 China
- Henry Fok School of Biology and Agriculture Shaoguan University Shaoguan 512005 China
| | - Shuai Kang
- School of Information Engineering Zunyi Normal University Zunyi 563002 China
| | - Qi Pan
- School of Information Engineering Zunyi Normal University Zunyi 563002 China
| | - Guoling Lv
- School of Information Engineering Zunyi Normal University Zunyi 563002 China
| |
Collapse
|
4
|
Zhao C, Liu Y, Wang W, Wang Z, Lin W. Tracking cell apoptosis based on mitochondria and cell membrane imaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Zhan C, Zhang G, Zhang D. Zincke's Salt-Substituted Tetraphenylethylenes for Fluorometric Turn-On Detection of Glutathione and Fluorescence Imaging of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12141-12149. [PMID: 29116746 DOI: 10.1021/acsami.7b14446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, we report Zincke's salt-substituted tetraphenylethylenes 1a and 1b with Cl- and PF6- as counteranions, respectively. The crystal structure of 1b was determined. Both 1a and 1b are almost nonemissive even in the aggregated states. This is attributed to the photoinduced electron transfer from 2,2-bis(4-methoxyphenyl)-1-phenylvinyl-phenyl unit to 1-(2,4-dinitrophenyl) pyridinium unit within 1a and 1b. The results demonstrate that the emissions of 1a and 1b in aqueous solution can be switched on upon either reaction with GSH or light irradiation. On the basis of the reaction between 1a and GSH, 1a can be utilized for the fluorescence turn-on detection of GSH selectively, and GSH with concentration as low as 36.9 nM can be detected. The transformation of 1b into 2 under light irradiation results in the fluorescence imaging of Hela and U2OS cells and phototoxicity toward Hela and U2OS cells after the protonation of pyridine unit in 2 because of the acidic environment of tumor cells. Aggregates of 1b can be up-taken by Hela and U2OS cells and fluorescence imaging has been successfully recorded with CLSM. Moreover, the protonated form of 2 can function as photosensitizer and 1b shows phototoxicity toward tumor cells such as Hela and U2OS cells.
Collapse
Affiliation(s)
- Chi Zhan
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guanxin Zhang
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Deqing Zhang
- CAS Key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
6
|
Zhang B, Yang X, Zhang R, Liu Y, Ren X, Xian M, Ye Y, Zhao Y. Lysosomal-Targeted Two-Photon Fluorescent Probe to Sense Hypochlorous Acid in Live Cells. Anal Chem 2017; 89:10384-10390. [PMID: 28868883 DOI: 10.1021/acs.analchem.7b02361] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A two-photon reversible fluorescent probe L1 was designed and synthesized. The fluorescence intensity of the probe solution was strong, while the fluorescence of the solution was obviously quenched and the color of the solution was changed after the addition of hypochlorous acid, indicating this is "naked-eye sensor" for the detection of HClO. The probe showed great selectivity for hypochlorous acid over other reactive oxygen species (ROS) and anions. Fluorescence titration experiments showed that the probe has a low detection limit of 0.674 μM. Because of a morpholine group introduced to the naphathalimide framework, probe L1 was successfully applied to detect intracellular HClO in lysosome.
Collapse
Affiliation(s)
- Beibei Zhang
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Xiaopeng Yang
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Rui Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450001, Henan China
| | - Yao Liu
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Xueling Ren
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450001, Henan China
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China.,The Key Laboratory for Chemical Biology of Fujian Province (Xiamen University) , Xiamen 361005, Fujian China
| | - Yufen Zhao
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China.,The Key Laboratory for Chemical Biology of Fujian Province (Xiamen University) , Xiamen 361005, Fujian China
| |
Collapse
|