1
|
Uskoković V. Calcium phosphate coated nanoparticles for drug delivery: where are we now? Expert Opin Drug Deliv 2025; 22:47-54. [PMID: 39645586 DOI: 10.1080/17425247.2024.2440100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION For three decades since the term 'biomaterial' was defined in the late 1960s, the interest of the biomaterials research community in calcium phosphates (CaPs) constantly increased. After this interest reached its peak in the mid-1990s, however, it has begun its steady decline, which lasts to this day, the reasons being manifold, many of which are explicated in this review piece. As of this turning point onwards, one solution for CaP to regain its relevance has involved its use in composite structures where properties of complementary components are intended to mitigate each other's weaknesses. A major type of such hybrid particulate structures has included CaP as a surface coating, the goal being to augment bioactivity, promote an intimate interaction with living tissues, facilitate cellular uptake and/or impart smart, pH-sensitive properties to the particles, among other intended effects. AREAS COVERED In this review article, historical remarks, recent examples, challenges and opportunities pertaining to CaP-coated nanoparticles for drug delivery are elaborated. Discussion is supplemented with a bibliographic analysis and framed within a chronological timeline. EXPERT OPINION Phenomenal properties and functions are bound to be elicited by composite structures containing CaP coatings and it is imperative that the exploration of these hybrids continues in decades that follow.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, USA
| |
Collapse
|
2
|
Sherafati Chaleshtori A, Marzhoseyni Z, Saeedi N, Azar Bahadori R, Mollazadeh S, Pourghadamyari H, Sajadimoghadam E, Abbaszadeh‐Goudarzi K, Moradi Hasan-Abad A, Sharafati Chaleshtori R. Gelatin-based nanoparticles and antibiotics: a new therapeutic approach for osteomyelitis? Front Mol Biosci 2024; 11:1412325. [PMID: 39139812 PMCID: PMC11319135 DOI: 10.3389/fmolb.2024.1412325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
The result of infection of bone with microorganisms is osteomyelitis and septic arthritis. Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for most of its cases (more than 50%). Since MRSA is resistant to many treatments, it is accompanied by high costs and numerous complications, necessitating more effective new treatments. Recently, development of gelatin nanoparticles have attracted the attention of scientists of biomedicine to itself, and have been utilized as a delivery vehicle for antibiotics because of their biocompatibility, biodegradability, and cost-effectiveness. Promising results have been reported with gelatin modification and combinations with chemical agents. Although these findings have been suggested that gelatin has the potential to be a suitable option for continuous release of antibiotics in osteomyelitis and septic arthritis treatment, they still have not become routine in clinical practices. The most deliver antibiotic using gelatin-derived composites is vancomycin which is showed the good efficacy. To date, a number of pre-clinical studies evaluated the utility of gelatin-based composites in the management of osteomyelitis. Gelatin-based composites were found to have satisfactory performance in the control of infection, as well as the promotion of bone defect repair in chronic osteomyelitis models. This review summarized the available evidence which provides a new insight into gelatin-derived composites with controlled release of antibiotics.
Collapse
Affiliation(s)
- Ali Sherafati Chaleshtori
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Orthopedics, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Negin Saeedi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Rosita Azar Bahadori
- Department of Molecular Genetics, Parand Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Pourghadamyari
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Esmaeil Sajadimoghadam
- Department of Nursing, School of Nursing and Midwifery, Bam University of Medical Sciences, Bam, Iran
| | | | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Sharafati Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
3
|
Chen L, Lin X, Wei M, Zhang B, Sun Y, Chen X, Zhang S, Zhang H, Zhang J, Yu X, Yao B, Zhao K, Tang Y, Tan Q, Wu Z. Hierarchical antibiotic delivery system based on calcium phosphate cement/montmorillonite-gentamicin sulfate with drug release pathways. Colloids Surf B Biointerfaces 2024; 238:113925. [PMID: 38657556 DOI: 10.1016/j.colsurfb.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 μg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.
Collapse
Affiliation(s)
- Lei Chen
- School of Science, Xi'an University of Technology, Xi'an 710054, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xiuying Lin
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Min Wei
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Bo Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yani Sun
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Xi Chen
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Shitong Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Hao Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Jieyu Zhang
- School of Science, Xi'an University of Technology, Xi'an 710054, PR China
| | - Xiaojiao Yu
- School of Science, Xi'an University of Technology, Xi'an 710054, PR China
| | - Binghua Yao
- School of Science, Xi'an University of Technology, Xi'an 710054, PR China
| | - Kang Zhao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yufei Tang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Quanchang Tan
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zixiang Wu
- Institute of Orthopaedics, Xi'jing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
4
|
Muguruza AR, di Maio A, Hodges NJ, Blair JMA, Pikramenou Z. Chelating silica nanoparticles for efficient antibiotic delivery and particle imaging in Gram-negative bacteria. NANOSCALE ADVANCES 2023; 5:2453-2461. [PMID: 37143796 PMCID: PMC10153079 DOI: 10.1039/d2na00884j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 05/06/2023]
Abstract
The inefficacy of antibiotics against Gram-negative bacteria is a major challenge for treatment of many clinically important bacterial infections. The complex structure of the double cell membrane of Gram-negative bacteria makes it inaccessible to many key antibiotics such as vancomycin and also presents a major challenge for drug development. In this study we design of a novel hybrid silica nanoparticle system bearing membrane targeting groups with the antibiotic encapsulated together with a ruthenium luminescent tracking agent, for optical detection of the nanoparticle delivery in the bacterial cell. The hybrid system shows delivery of vancomycin and efficacy against a library of Gram negative bacterial species. Evidence of penetration of nanoparticles in bacteria cells is achieved via luminescence of the ruthenium signal. Our studies show that nanoparticles modified with aminopolycarboxylate chelating groups are an effective delivery system in bacterial growth inhibition in species whereas the molecular antibiotic is ineffective. This design provides a new platform for delivery of antibiotics that cannot alone penetrate the bacterial membrane.
Collapse
Affiliation(s)
- Asier R Muguruza
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham Edgbaston B15 2TT UK +44 (0)121 4142290
| | - Alessandro di Maio
- Birmingham Advanced Light Microscopy Facility, University of Birmingham Edgbaston B15 2TT UK
| | - Nikolas J Hodges
- School of Biosciences, University of Birmingham Edgbaston B15 2TT UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham Edgbaston B15 2TT UK +44 (0)121 4147606
| | - Zoe Pikramenou
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham Edgbaston B15 2TT UK +44 (0)121 4142290
| |
Collapse
|
5
|
Bartmański M, Rościszewska M, Wekwejt M, Ronowska A, Nadolska-Dawidowska M, Mielewczyk-Gryń A. Properties of New Composite Materials Based on Hydroxyapatite Ceramic and Cross-Linked Gelatin for Biomedical Applications. Int J Mol Sci 2022; 23:ijms23169083. [PMID: 36012345 PMCID: PMC9408892 DOI: 10.3390/ijms23169083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of the research was to develop a new biocompatible and injectable composite with the potential for application as a bone-to-implant bonding material or as a bone substitute. A composite based on hydroxyapatite, gelatin, and two various types of commercially available transglutaminase (TgBDF/TgSNF), as a cross-linking agent, was proposed. To evaluate the impacts of composite content and processing parameters on various properties of the material, the following research was performed: the morphology was examined by SEM microscopy, the chemical structure by FTIR spectroscopy, the degradation behavior was examined in simulated body fluid, the injectability test was performed using an automatic syringe pump, the mechanical properties using a nanoindentation technique, the surface wettability was examined by an optical tensiometer, and the cell viability was assayed by MTT and LDH. In all cases, a composite paste was successfully obtained. Injectability varied between 8 and 15 min. The type of transglutaminase did not significantly affect the surface topography or chemical composition. All samples demonstrated proper nanomechanical properties with Young's modulus and the hardness close to the values of natural bone. BDF demonstrated better hydrophilic properties and structural stability over 7 days in comparison with SNF. In all cases, the transglutaminase did not lead to cell necrosis, but cellular proliferation was significantly inhibited, especially for the BDF agent.
Collapse
Affiliation(s)
- Michał Bartmański
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Advanced Materials Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland
- Correspondence: ; Tel.: +48-500-034-220
| | - Magda Rościszewska
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Advanced Materials Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Advanced Materials Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Małgorzata Nadolska-Dawidowska
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Advanced Materials Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Advanced Materials Centre, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements. Bioact Mater 2022; 7:341-363. [PMID: 34466737 PMCID: PMC8379446 DOI: 10.1016/j.bioactmat.2021.05.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Thanks to their biocompatibility, biodegradability, injectability and self-setting properties, calcium phosphate cements (CPCs) have been the most economical and effective biomaterials of choice for use as bone void fillers. They have also been extensively used as drug delivery carriers owing to their ability to provide for a steady release of various organic molecules aiding the regeneration of defective bone, including primarily antibiotics and growth factors. This review provides a systematic compilation of studies that reported on the controlled release of drugs from CPCs in the last 25 years. The chemical, compositional and microstructural characteristics of these systems through which the control of the release rates and mechanisms could be achieved have been discussed. In doing so, the effects of (i) the chemistry of the matrix, (ii) porosity, (iii) additives, (iv) drug types, (v) drug concentrations, (vi) drug loading methods and (vii) release media have been distinguished and discussed individually. Kinetic specificities of in vivo release of drugs from CPCs have been reviewed, too. Understanding the kinetic and mechanistic correlations between the CPC properties and the drug release is a prerequisite for the design of bone void fillers with drug release profiles precisely tailored to the application area and the clinical picture. The goal of this review has been to shed light on these fundamental correlations.
Collapse
Affiliation(s)
- Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
- I.M. Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, United States
| |
Collapse
|
7
|
Wu VM, Huynh E, Tang S, Uskoković V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: mechanism of action. Biomed Mater 2020; 16:015018. [DOI: 10.1088/1748-605x/aba281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Wu VM, Ahmed MK, Mostafa MS, Uskoković V. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111257. [PMID: 32919627 PMCID: PMC7501993 DOI: 10.1016/j.msec.2020.111257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The use of ions as therapeutic agents has the potential to minimize the use of small-molecule drugs and biologics for the same purpose, thus providing a potentially more economic and less adverse means of treating, ameliorating or preventing a number of diseases. Hydroxyapatite (HAp) is a solid compound capable of accommodating foreign ions with a broad range of sizes and charges and its properties can dramatically change with the incorporation of these ionic additives. While most ionic substitutes in HAp have been monatomic cations, their lesser atomic weight, higher diffusivity, chaotropy and a lesser residence time on surfaces theoretically makes them prone to exert a lesser influence on the material/cell interaction than the more kosmotropic oxyanions. Selenite ion as an anionic substitution in HAp was explored in this study for its ability to affect the short-range and the long-range crystalline symmetry and solubility as well as for its ability to affect the osteoclast activity. We combined microstructural, crystallographic and spectroscopic analyses with quantum mechanical calculations to understand the structural effects of doping HAp with selenite. Integration of selenite ions into the crystal structure of HAp elongated the crystals along the c-axis, but isotropically lowered the crystallinity. It also increased the roughness of the material in direct proportion with the content of the selenite dopant, thus having a potentially positive effect on cell adhesion and integration with the host tissue. Selenite in total acted as a crystal structure breaker, but was also able to bring about symmetry at the local and global scales within specific concentration windows, indicating a variety of often mutually antagonistic crystallographic effects that it can induce in a concentration-dependent manner. Experimental determination of the lattice strain coupled with ab initio calculations on three different forms of carbonated HAp (A-type, B-type, AB-type) demonstrated that selenite ions initially substitute carbonates in the crystal structure of carbonated HAp, before substituting phosphates at higher concentrations. The most energetically favored selenite-doped HAp is of AB-type, followed by the B-type and only then by the A-type. This order of stability was entailed by the variation in the geometry and orientation of both the selenite ion and its neighboring phosphates and/or carbonates. The incorporation of selenite in different types of carbonated HAp also caused variations of different thermodynamic parameters, including entropy, enthalpy, heat capacity, and the Gibbs free energy. Solubility of HAp accommodating 1.2 wt% of selenite was 2.5 times higher than that of undoped HAp and the ensuing release of the selenite ion was directly responsible for inhibiting RAW264.7 osteoclasts. Dose-response curves demonstrated that the inhibition of osteoclasts was directly proportional to the concentration of selenite-doped HAp and to the selenite content in it. Meanwhile, selenite-doped HAp had a significantly less adverse effect on osteoblastic K7M2 and MC3T3-E1 cells than on RAW264.7 osteoclasts. The therapeutically promising osteoblast vs. osteoclast selectivity of inhibition was absent when the cells were challenged with undoped HAp, indicating that it is caused by selenite ions in HAp rather than by HAp alone. It is concluded that like three oxygens building the selenite pyramid, the coupling of (1) experimental materials science, (2) quantum mechanical modeling and (3) biological assaying is a triad from which a deeper understanding of ion-doped HAp and other biomaterials can emanate.
Collapse
Affiliation(s)
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - Mervat S Mostafa
- Science and Technology Center of Excellence, Ministry of Military Production, Cairo, Egypt
| | - Vuk Uskoković
- Tardigrade Nano, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA.
| |
Collapse
|
9
|
Rau JV, Fosca M, Fadeeva IV, Kalay S, Culha M, Raucci MG, Fasolino I, Ambrosio L, Antoniac IV, Uskoković V. Tricalcium phosphate cement supplemented with boron nitride nanotubes with enhanced biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111044. [DOI: 10.1016/j.msec.2020.111044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
|
10
|
Ghiasi B, Sefidbakht Y, Mozaffari-Jovin S, Gharehcheloo B, Mehrarya M, Khodadadi A, Rezaei M, Ranaei Siadat SO, Uskoković V. Hydroxyapatite as a biomaterial - a gift that keeps on giving. Drug Dev Ind Pharm 2020; 46:1035-1062. [PMID: 32476496 DOI: 10.1080/03639045.2020.1776321] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthetic analogue to biogenic apatite, hydroxyapatite (HA) has a number of physicochemical properties that make it an attractive candidate for diagnosis, treatment of disease and augmentation of biological tissues. Here we describe some of the recent studies on HA, which may provide bases for a number of new medical applications. The content of this review is divided to different medical application modes utilizing HA, including tissue engineering, medical implants, controlled drug delivery, gene therapies, cancer therapies and bioimaging. A number of advantages of HA over other biomaterials emerge from this discourse, including (i) biocompatibility, (ii) bioactivity, (iii) relatively simple synthesis protocols for the fabrication of nanoparticles with specific sizes and shapes, (iv) smart response to environmental stimuli, (v) facile functionalization and surface modification through noncovalent interactions, and (vi) the capacity for being simultaneously loaded with a wide range of therapeutic agents and switched to bioimaging modalities for uses in theranostics. A special section is dedicated to analysis of the safety of particulate HA as a component of parenterally administrable medications. It is concluded that despite the fact that many benefits come with the usage of HA, its deficiencies and potential side effects must be addressed before the translation to the clinical domain is pursued. Although HA has been known in the biomaterials world as the exemplar of safety, this safety proves to be the function of size, morphology, surface ligands and other structural and compositional parameters defining the particles. For this reason, each HA, especially when it comes in a novel structural form, must be treated anew from the safety research angle before being allowed to enter the clinical stage.
Collapse
Affiliation(s)
- Behrad Ghiasi
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Arash Khodadadi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Science, Kerman, Iran
| | - Maryam Rezaei
- Institute of Biochemistry and Biophysics (IBB), Tehran University, Tehran, Iran
| | - Seyed Omid Ranaei Siadat
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.,Nanobiotechnology Laboratory, The Faculty of New Technologies Engineering (NTE), Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
11
|
Cianciosi A, Costantini M, Bergamasco S, Testa S, Fornetti E, Jaroszewicz J, Baldi J, Latini A, Choińska E, Heljak M, Zoccali C, Cannata S, Święszkowski W, Diaz Lantada A, Gargioli C, Barbetta A. Engineering Human-Scale Artificial Bone Grafts for Treating Critical-Size Bone Defects. ACS APPLIED BIO MATERIALS 2019; 2:5077-5092. [DOI: 10.1021/acsabm.9b00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Marco Costantini
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Sara Bergamasco
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy
| | - Stefano Testa
- Department of Biology, Rome University Tor Vergata, 00133 Rome, Italy
| | - Ersilia Fornetti
- Department of Biology, Rome University Tor Vergata, 00133 Rome, Italy
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Jacopo Baldi
- IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alessandro Latini
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy
| | - Emilia Choińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Marcin Heljak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Carmine Zoccali
- IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Stefano Cannata
- Department of Biology, Rome University Tor Vergata, 00133 Rome, Italy
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Andrés Diaz Lantada
- Mechanical Engineering Department, Universidad Politécnica de Madrid, 28006 Madrid, Spain
| | - Cesare Gargioli
- Department of Biology, Rome University Tor Vergata, 00133 Rome, Italy
| | - Andrea Barbetta
- Department of Chemistry, University of Rome “La Sapienza”, 00185 Rome, Italy
| |
Collapse
|
12
|
|
13
|
Wu VM, Tang S, Uskoković V. Calcium Phosphate Nanoparticles as Intrinsic Inorganic Antimicrobials: The Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34013-34028. [PMID: 30226742 DOI: 10.1021/acsami.8b12784] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cheap and simple to make, calcium phosphate (CP), thanks to its unusual functional pleiotropy, belongs to the new wave of abundant and naturally accessible nanomaterials applicable as a means to various technological ends. It is used in a number of industries, including the biomedical, but its intrinsic antibacterial activity in the nanoparticle form has not been sufficiently explored to date. In this study, we report on this intrinsic antibacterial effect exhibited by two distinct CP phases: an amorphous CP (ACP) and hydroxyapatite (HAp). The effect is prominent against a number of regular bacterial species, including Staphylococcus aureus, Staphylococcus epidermis, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, but also their multidrug-resistant (MDR) analogues. Although ACP and HAp displayed similar levels of activity against Gram-negative organisms, ACP proved to be more effective against the Gram-positive ones, with respect to which HAp was mostly inert, yet this trend became reversed for the MDR strains. In addition to the intrinsic antimicrobial effect of CP nanoparticles, we have also observed a synergistic effect between the nanoparticles and certain antibiotics. Both forms of CP were engaged in a synergistic relationship with a variety of concomitantly delivered antibiotics, including ampicillin, kanamycin, oxacillin, vancomycin, minocycline, erythromycin, linezolid, and clindamycin, and enabled even antibiotics completely ineffective against particular bacterial strains to significantly suppress their growth. This relationship was complex; depending on a particular CP phase, bacterial strain and antibiotic, the antibacterial activity (i) intensified proportionally to the nanoparticle concentration, (ii) plateaued immediately after the introduction of nanoparticles in minute amounts, or (iii) exhibited concentration-dependent minima due to stress-induced biofilm formation. These findings present grounds for the further optimization of CP properties and maximization of this intriguing effect, which could in the long run make this material comparable in activity to the inorganics of choice for this application, including silver, copper, or zinc oxide, while retaining its superb safety profile and positive eukaryotic versus prokaryotic cell selectivity.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery , Chapman University , Irvine , California 92618-1908 , United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering , University of Illinois , Chicago , Illinois 60607-7052 , United States
| |
Collapse
|
14
|
Murugan N, Murugan C, Sundramoorthy AK. In vitro and in vivo characterization of mineralized hydroxyapatite/polycaprolactone-graphene oxide based bioactive multifunctional coating on Ti alloy for bone implant applications. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.03.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
15
|
A Novel Forming Method of Traditional Chinese Medicine Dispersible Tablets to Achieve Rapid Disintegration Based on the Powder Modification Principle. Sci Rep 2018; 8:10319. [PMID: 29985460 PMCID: PMC6037753 DOI: 10.1038/s41598-018-28734-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/28/2018] [Indexed: 12/23/2022] Open
Abstract
Slow disintegration and poor solubility are common problems facing the dispersible tablets of Traditional Chinese Medicine (TCM). In an early study, the research group found that co-grinding of extracts and silica could achieve a rapid disintegration effect, though the mechanism of this effect was not thoroughly elucidated. In this study, Yuanhu Zhitong dispersible tablets (YZDT) were selected as a model drug to explore the mechanism of rapid disintegration and dissolution. First, eight types of silica were used to prepare modified YZDT, and their disintegration time and amount of dissolution within 5 min were measured. Next, the powder properties of eight types of silica were investigated. By correlation analysis, it was found that the average pore size and density of silica were closely related to the effect of promoting disintegration. It was determined that the co-grinding of silica and extracts provided high porosity for the raw material drug, and its abundant narrow channels provided a strong static pressure for water penetration to achieve a rapid disintegration effect. Meanwhile, it was found that the addition of silica had a certain effect on promoting dissolution. Our results provide a highly operational approach for improving the disintegration and dissolution of TCM dispersible tablets. Meanwhile, this approach is also beneficial for establishing a high-quality evaluation index for silica.
Collapse
|