1
|
Zhang W, Liu R, Yang X, Nian B, Hu Y. Immobilization of laccase on organic—inorganic nanocomposites and its application in the removal of phenolic pollutants. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Chen J, Yu B, Cong H, Shen Y. Recent development and application of membrane chromatography. Anal Bioanal Chem 2023; 415:45-65. [PMID: 36131143 PMCID: PMC9491666 DOI: 10.1007/s00216-022-04325-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Membrane chromatography is mainly used for the separation and purification of proteins and biological macromolecules in the downstream processing process, also applications in sewage disposal. Membrane chromatography is recognized as an effective alternative to column chromatography because it significantly improves chromatography from affinity, hydrophobicity, and ion exchange; the development status of membrane chromatography in membrane matrix and membrane equipment is thoroughly discussed, and the applications of protein capture and intermediate purification, virus, monoclonal antibody purification, water treatment, and others are summarized. This review will provide value for the exploration and potential application of membrane chromatography.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| |
Collapse
|
3
|
Ratnaningsih E, Kadja GTM, Putri RM, Alni A, Khoiruddin K, Djunaidi MC, Ismadji S, Wenten IG. Molecularly Imprinted Affinity Membrane: A Review. ACS OMEGA 2022; 7:23009-23026. [PMID: 35847319 PMCID: PMC9280773 DOI: 10.1021/acsomega.2c02158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A molecularly imprinted affinity membrane (MIAM) can perform separation with high selectivity due to its unique molecular recognition introduced from the molecular-printing technique. In this way, a MIAM is able to separate a specific or targeted molecule from a mixture. In addition, it is possible to achieve high selectivity while maintaining membrane permeability. Various methods have been developed to produce a MIAM with high selectivity and productivity, with their respective advantages and disadvantages. In this paper, the MIAM is reviewed comprehensively, from the fundamentals of the affinity membrane to its applications. First, the development of a MIAM and various preparation methods are presented. Then, applications of MIAMs in sensor, metal ion separation, and organic compound separation are discussed. The last part of the review discusses the outlook of MIAMs for future development.
Collapse
Affiliation(s)
- Enny Ratnaningsih
- Biochemistry
Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Grandprix T. M. Kadja
- Division
of Inorganic and Physical Chemistry, Institut
Teknologi Bandung, Jalan
Ganesha No. 10, Bandung 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Center
for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Rindia M. Putri
- Biochemistry
Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Anita Alni
- Organic
Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jalan Ganesha
No. 10, Bandung 40132, Indonesia
| | - Muhammad C. Djunaidi
- Department
of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Jl. Prof. H Soedarto SH, Semarang 50275, Indonesia
| | - Suryadi Ismadji
- Department
of Chemical Engineering, Widya Mandala Surabaya
Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - I. Gede Wenten
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung 40132, Indonesia
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jalan Ganesha
No. 10, Bandung 40132, Indonesia
| |
Collapse
|
4
|
Rusli H, Putri RM, Alni A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022; 27:907. [PMID: 35164170 PMCID: PMC8840574 DOI: 10.3390/molecules27030907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Compound separation plays a key role in producing and analyzing chemical compounds. Various methods are offered to obtain high-quality separation results. Liquid chromatography is one of the most common tools used in compound separation across length scales, from larger biomacromolecules to smaller organic compounds. Liquid chromatography also allows ease of modification, the ability to combine compatible mobile and stationary phases, the ability to conduct qualitative and quantitative analyses, and the ability to concentrate samples. Notably, the main feature of a liquid chromatography setup is the stationary phase. The stationary phase directly interacts with the samples via various basic mode of interactions based on affinity, size, and electrostatic interactions. Different interactions between compounds and the stationary phase will eventually result in compound separation. Recent years have witnessed the development of stationary phases to increase binding selectivity, tunability, and reusability. To demonstrate the use of liquid chromatography across length scales of target molecules, this review discusses the recent development of stationary phases for separating macromolecule proteins and small organic compounds, such as small chiral molecules and polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Handajaya Rusli
- Analytical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Rindia M. Putri
- Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| | - Anita Alni
- Organic Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
| |
Collapse
|
5
|
Improved antifouling performance of a polyamide composite reverse osmosis membrane by surface grafting of dialdehyde carboxymethyl cellulose (DACMC). J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118843] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
6
|
Enzymatic degradation of ginkgolic acids by laccase immobilized on core/shell Fe 3O 4/nylon composite nanoparticles using novel coaxial electrospraying process. Int J Biol Macromol 2021; 172:270-280. [PMID: 33418049 DOI: 10.1016/j.ijbiomac.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
Enzyme immobilization can increase enzyme reusability to reduce cost of industrial production. Ginkgo biloba leaf extract is commonly used for medical purposes, but it contains ginkgolic acid, which has negative effects on human health. Here, we report a novel approach to solve the problem by degrading the ginkgolic acid with immobilized-laccase, where core/shell composite nanoparticles prepared by coaxial electrospraying might be first applied to enzyme immobilization. The core/shell Fe3O4/nylon 6,6 composite nanoparticles (FNCNs) were prepared using one-step coaxial electrospraying and can be simply recovered by magnetic force. The glutaraldehyde-treated FNCNs (FNGCNs) were used to immobilize laccase. As a result, thermal stability of the free laccase was significantly improved in the range of 60-90 °C after immobilization. The laccase-immobilized FNGCNs (L-FNGCNs) were applied to degrade the ginkgolic acids, and the rate constants (k) and times (τ50) were ~0.02 min-1 and lower than 39 min, respectively, showing good catalytic performance. Furthermore, the L-FNGCNs exhibited a relative activity higher than 0.5 after being stored for 21 days or reused for 5 cycles, showing good storage stability and reusability. Therefore, the FNGCNs carrier was a promising enzyme immobilization system and its further development and applications were of interest.
Collapse
|
7
|
Khan R, Wang H, Li Y, Yu S, Khan MK, Xiao K, Huang X. Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37515-37526. [PMID: 32701290 DOI: 10.1021/acsami.0c06037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a new robust and green facile platform for nonoxidizing chemical grafting to simultaneously improve antifouling and antibacterial properties of thin film composite (TFC) polyamide (PA) reverse osmosis (RO) membranes. In this work, alginate dialdehyde (ADA) was used as a green platform to graft chlorhexidine (CH), a nonoxidizing chemical, on TFC-RO membrane surface. A synergistic effect due to ADA and CH grafting was revealed. The modified membrane surfaces were characterized using XPS, FT-IR, AFM, SEM-EDS, contact angle, and zeta potential analysis. A simple two-step Schiff base reaction was performed. Improved salt rejection performances were observed for the grafted PA membranes at the expense of negligible flux drop for the CH-ADA-PA membranes (38 to 42 L m-2 h-1) compared with the pristine PA membrane (45 L m-2 h-1). All the CH-ADA-PA membranes had excellent antibacterial activity against E. coli along with a highly superior resistance to the formation of biofilms. Organic fouling behaviors with a protein (bovine serum albumin, BSA) and a surfactant (dodecyl trimethylammonium bromide, DTAB) were investigated as typical foulants for the grafted PA membranes. The results indicated that the CH-ADA-PA membranes showed the best antifouling performance followed by the ADA-PA membranes, the pristine membrane being the most inferior. Hence, these results pave the way for a new robust and green bioinspired route for practical application in RO membrane fouling control.
Collapse
Affiliation(s)
- Rashid Khan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Han Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yufang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuyan Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - M Kamran Khan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Threshold flux in concentration mode: Fouling control during clarification of molasses by ultrafiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Qian S, Yan Z, Xu Y, Tan H, Chen Y, Ling Z, Niu X. Carbon nanotubes as electrophysiological building blocks for a bioactive cell scaffold through biological assembly to induce osteogenesis. RSC Adv 2019; 9:12001-12009. [PMID: 35516980 PMCID: PMC9063522 DOI: 10.1039/c9ra00370c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
Bio-functional cell scaffolds have great potential in the field of tissue regenerative medicine. In this work, a carbon nanotube (CNT) gel scaffold via specific pairing of functionalized nucleobases was developed for specifically targeted drug delivery and in vitro osteogenesis. The CNT gel scaffold with nano-fibrous architectures was established by Watson–Crick base pairing between thymine and adenine of low molecular weight heparin, respectively. As scaffold precursors, adenine and thymine functionalized heparin derivatives could additionally bind cell growth factors by the affinity interaction. The resulting nano-fibrous gel scaffolds showed excellent mechanical integrity and advanced electro-physiological functions. Potential application of the electrophysiological CNT gel scaffold in bone tissue engineering was confirmed by encapsulation of human adipose-derived stem cells (ASCs). Our results indicate that the electrically conductive networks formed by CNTs within the nano-fibrous framework are the key characteristics of cell scaffolds leading to improved ASC organization and differentiation by an extra electrical stimulus (ES). Specifically, ASCs cultured in bio-electrical gel scaffolds showed ∼4 times higher spontaneous osteogenesis in combination with bone morphogenetic protein 2 (BMP-2), compared to those cultured on pristine hydrogels. This electrophysiological CNT gel scaffold containing BMP-2 exhibited beneficial effects on ASC activity and osteogenetic differentiation, which suggested a promising future for local treatment of bone regeneration. Bio-functional cell scaffolds have great potential in the field of tissue regenerative medicine.![]()
Collapse
Affiliation(s)
- Saibo Qian
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Zhilin Yan
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yongjie Xu
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Huaping Tan
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yong Chen
- Department of Orthopaedics
- Jinling Hospital
- Nanjing 210002
- China
| | - Zhonghua Ling
- Department of Orthopaedics
- Jinling Hospital
- Nanjing 210002
- China
| | - Xiaohong Niu
- Department of Luoli
- Nanjing Hospital of Integrated Traditional Chinese and Western Medicine
- Nanjing 210014
- China
| |
Collapse
|
10
|
Ma B, Liu F, Li Z, Duan J, Kong Y, Hao M, Ge S, Jiang H, Liu H. Piezoelectric nylon-11 nanoparticles with ultrasound assistance for high-efficiency promotion of stem cell osteogenic differentiation. J Mater Chem B 2019; 7:1847-1854. [DOI: 10.1039/c8tb03321h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the assistance of ultrasound, piezoelectric nylon-11 nanoparticle-mediated electric stimulation can promote the osteogenic differentiation of DPSCs efficiently in a noninvasive way.
Collapse
Affiliation(s)
- Baojin Ma
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Feng Liu
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Zhao Li
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Ying Kong
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Min Hao
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration
- School of Stomatology
- Shandong University
- Jinan
- China
| | - Huaidong Jiang
- School of Physical Science and Technology
- Shanghai Tech University
- Shanghai 201210
- China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University
- Jinan
- China
- Institute for Advanced Interdisciplinary Research
- Jinan University
| |
Collapse
|
11
|
Kuan CY, Lin YY, Chen CY, Yang CC, Chi CY, Li CH, Dong GC, Lin FH. The preparation of oxidized methylcellulose crosslinked by adipic acid dihydrazide loaded with vitamin C for traumatic brain injury. J Mater Chem B 2019. [DOI: 10.1039/c9tb00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxi-MC-ADH-VC can open up a new avenue for clinical TBI treatment and rehabilitation.
Collapse
Affiliation(s)
- Che-Yung Kuan
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Yu-Ying Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Ching-Yun Chen
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
- Taiwan
| | - Chun-Chen Yang
- Institute of Biomedical Engineering
- College of Medicine and College of Engineering
- National Taiwan University
- Taipei
- Taiwan
| | - Chih-Ying Chi
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Chi-Han Li
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Guo-Chung Dong
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| | - Feng-Huei Lin
- PhD Program in Tissue Engineering and Regenerative Medicine
- National Chung Hsing University
- Taiwan
- Institute of Biomedical Engineering and Nanomedicine
- National Health Research Institutes
| |
Collapse
|
12
|
Ma N, Yao D, Yang H, Yin J, Wang H, Zhang Y, Meng J. Surface Modification of Cellulose Membranes To Prepare a High-Capacity Membrane Adsorber for Monoclonal Antibody Purification via Hydrophobic Charge-Induction Chromatography. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Na Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Dongxue Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hui Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jian Yin
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hua Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yufeng Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300387, China
| | - Jianqiang Meng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|