1
|
Wang Y, Li W, Lin B, Yuan Y, Ning P, Tao X, Lv R. NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomater Sci 2023. [PMID: 37334508 DOI: 10.1039/d3bm00700f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Photothermal therapy has a remarkable effect on the destruction of tumors. It kills tumor cells by photothermal ablation and induces immunogenic cell death by activating the immune response in tumor tissues. However, inhibition of the tumor immune microenvironment suppresses PTT-induced body-specific anti-tumor immunity. In this study, we designed the GdOF@PDA-HA-R837-hydrogel complex to achieve NIR-II imaging-guided photothermal ablation and enhanced immune response. Due to the doping of Yb and Er elements and the presence of a polydopamine coating, the synthesized nanoparticles enable NIR-II and photoacoustic imaging of tumor tissues, which will help in the integration of multimodal tumor imaging for diagnosis and treatment. Polydopamine is used as a photothermal agent and drug carrier because of its excellent photothermal ability and high drug loading capacity under 808 nm near infrared light. Hyaluronic acid can bind to specific receptors on the surface of cancer cells, allowing nanoparticles to aggregate around the tumor, thus enhancing the targeting ability of nanoparticles. In addition, imiquimod (R837) has been used as an immune response modulator to enhance the immunotherapeutic effect. The presence of a hydrogel enhanced the retention effect of nanoparticles in the tumor. We demonstrate that the combination of photothermal therapy with immune adjuvants effectively induces ICD, which in turn stimulates the activation of specific anti-tumor immunity and enhances the effect of photothermal therapy in vivo.
Collapse
Affiliation(s)
- Yukun Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Ying Yuan
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Pengbo Ning
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
| | - Xiaofeng Tao
- Department of Medical Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China.
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China.
- Interdisciplinary Research Center of Smart Sensor, Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
2
|
Liu Y, Su MY, Gu ZY, Zhang KY, Wang XT, Du M, Guo JZ, Wu XL. Advanced Lithium Primary Batteries: Key Materials, Research Progresses and Challenges. CHEM REC 2022; 22:e202200081. [PMID: 35585030 DOI: 10.1002/tcr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Indexed: 11/06/2022]
Abstract
In recent years, with the vigorous development and gradual deployment of new energy vehicles, more attention has been paid to the research on lithium-ion batteries (LIBs). Compared with the booming LIBs, lithium primary batteries (LPBs) own superiority in specific energy and self-discharge rate and are usually applied in special fields such as medical implantation, aerospace, and military. Widespread application in special fields also means more stringent requirements for LPBs in terms of energy density, working temperature range and shelf life. Therefore, how to obtain LPBs with high energy density, wide operational temperature range and long storage life is of great importance in future development. In view of the above, this paper reviews the latest research on LPBs in cathode, anode and electrolyte over the years, and puts forward relevant insights for LPBs, along with the intention to explore avenues for the design of LPBs components in the coming decades and promote further development in this field.
Collapse
Affiliation(s)
- Yan Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Meng-Yuan Su
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Kai-Yang Zhang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Miao Du
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xing-Long Wu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P.R. China.,MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
3
|
Fu L, Huang Y, Hou J, Sun M, Wang L, Wang X, Chen L. A Raman/fluorescence dual-modal imaging guided synergistic photothermal and photodynamic therapy nanoplatform for precision cancer theranostics. J Mater Chem B 2022; 10:8432-8442. [DOI: 10.1039/d2tb01696f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanoplatform that integrates hypoxia-responsive fluorescent probe function as well as imaging and therapeutic functions is developed.
Collapse
Affiliation(s)
- Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Junjun Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingzhao Sun
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxiao Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
4
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Huang X, Tian X, Zhang Q, Hu H, Gao J, Ma B, Wu K, Bai J, Du S, Lu Y, Han N. Combined photothermal-immunotherapy via poly-tannic acid coated PLGA nanoparticles for cancer treatment. Biomater Sci 2021; 9:6282-6294. [PMID: 34378577 DOI: 10.1039/d1bm00474c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photothermal therapy (PTT) is able to ablate tumors via hyperthermia, while immunotherapy could prevent tumor recurrence and metastasis by activating the host immune responses. Therefore, the combination of PTT and immunotherapy offers great advantages for the treatment of cancer. To achieve this goal, poly tannic acid (pTA) coated PLGA nanoparticles (PLGA-pTA NPs) were synthesized for combined photothermal-immunotherapy. pTA was a coordination complex formed by TA and Fe3+ and it could be easily coated on PLGA NPs within seconds with a coating rate of 5.89%. As a photothermal agent, PLGA-pTA revealed high photothermal conversion efficiency and excellent photo-stability upon 808 nm laser irradiation. It also exhibited strong photothermal cytotoxicity against 4T1 cells. Moreover, PLGA-pTA based PTT could effectively trigger DC maturation since it could induce the release of DAMPs. The result of animal experiments showed that PLGA-pTA plus laser irradiation raised the tumor temperature up to ca. 60 °C and effectively suppressed the growth of primary tumors. What's more, the progression of distant tumors as well as lung metastasis was also significantly inhibited due to the activation of anti-tumor responses by PLGA-pTA mediated PTT. When further combined with anti-PD-L1 antibody (a-PD-L1), the tumor growth and metastasis were almost completely inhibited. Our study provided a versatile platform to achieve combined photothermal-immunotherapy with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Xingyue Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xuehao Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Qing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haiyan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiahui Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Baonan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yang Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Zhang Y, Zhang S, Zhang Z, Ji L, Zhang J, Wang Q, Guo T, Ni S, Cai R, Mu X, Long W, Wang H. Recent Progress on NIR-II Photothermal Therapy. Front Chem 2021; 9:728066. [PMID: 34395388 PMCID: PMC8358119 DOI: 10.3389/fchem.2021.728066] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Photothermal therapy is a very promising treatment method in the field of cancer therapy. The photothermal nanomaterials in near-infrared region (NIR-I, 750-900 nm) attracts extensive attention in recent years because of the good biological penetration of NIR light. However, the penetration depth is still not enough for solid tumors due to high tissue scattering. The light in the second near-infrared region (NIR-II, 1000-1700 nm) allows deeper tissue penetration, higher upper limit of radiation and greater tissue tolerance than that in the NIR-I, and it shows greater application potential in photothermal conversion. This review summarizes the photothermal properties of Au nanomaterials, two-dimensional materials, metal oxide sulfides and polymers in the NIR-II and their application prospects in photothermal therapy. It will arouse the interest of scientists in the field of cancer treatment as well as nanomedicine.
Collapse
Affiliation(s)
- Yunguang Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Siyu Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Zihan Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Lingling Ji
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Jiamei Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Qihao Wang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Tian Guo
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Simin Ni
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Ru Cai
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Huang X, Lu Y, Guo M, Du S, Han N. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view. Theranostics 2021; 11:7546-7569. [PMID: 34158866 PMCID: PMC8210617 DOI: 10.7150/thno.56482] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer has been a great threat to humans for decades. Due to the limitations of monotherapy, combinational therapies such as photothermal therapy (PTT) and immunotherapy have gained increasing attention with expectation to overcome the shortfalls of each other and obtain satisfactory therapeutic outcomes. PTT can inhibit primary tumors by thermal ablation but usually fails to achieve complete eradication and cannot prevent metastasis and recurrence. Meanwhile, the efficacy of immunotherapy is usually attenuated by the weak immunogenicity of tumor and the immunosuppressive tumor microenvironment (ITM). Therefore, many recent studies have attempted to synergize PTT with immunotherapy in order to enhance the therapeutic efficacy. In this review, we aim to summarize the cutting-edge strategies in combining nano-based PTT with immunotherapy for cancer treatment. Herein, the combination strategies were mainly classified into four categories, including 1) nano-based PTT combined with antigens to induce host immune responses; 2) nano-based PTT in combination with immune adjuvants acting as in situ vaccines; 3) nano-based PTT synergized with immune checkpoint blockade or other regulators to relieve the ITM; 4) nano-based PTT combined with CAR-T therapy or cytokine therapy for tumor treatment. The characteristics of various photothermal agents and nanoplatforms as well as the immunological mechanisms for the synergism were also introduced in detail. Finally, we discussed the existing challenges and future prospects in combined PTT and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Shouying Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
8
|
Wang D, Peng J, Huang Y, Sun L, Liu M, Li H, Chao M, Gong P, Liu Z, You J. Rational Construction of Fluorescence Turn-Off Fluorinated Carbon Fiber/Ag Composites and Their Anticancer and Antibacterial Activities. ACS APPLIED BIO MATERIALS 2021; 4:1749-1759. [DOI: 10.1021/acsabm.0c01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dandan Wang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jingyi Peng
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yan Huang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lu Sun
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mingyue Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hui Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mianran Chao
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, P. R. China
| |
Collapse
|
9
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Wang T, Wang H, Pang G, He T, Yu P, Cheng G, Zhang Y, Chang J. A Logic AND-Gated Sonogene Nanosystem for Precisely Regulating the Apoptosis of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56692-56700. [PMID: 33290034 DOI: 10.1021/acsami.0c13453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To date, many methods have been developed for inducing tumor cell death, such as using chemical drugs and radiation. However, all of them have a common problem, a lack of mechanisms for precisely regulating the death of tumor cells. It often leads to nonspecific death and systemic side effects. Therefore, the efficacy and further application of these traditional methods are limited. In this paper, a logic AND-gated sonogene nanosystem was designed for precisely regulating the apoptosis of tumor cells. The running of this system required two essential parts, MscL I92L channel protein and ultrasound. Ultrasound could open the MscL I92L protein channel which when expressed on cells triggers the influx and outflux of small molecules through the channel. When the channel is kept open for a long time, Ca2+ influx becomes excessive which in turn activates the Ca2+ apoptosis pathway of cells. The expression of MscL I92L protein and the applying of ultrasound constituted the logic AND gate which could implement the precise regulation to apoptosis. This strategy would help reduce nonspecific triggers and side effects. In this system, cationic nanoliposomes were prepared as the carrier for effectively delivering MscL I92L plasmids to tumor cells in vivo. We investigated the apoptosis-promoting effect of this system in different tumor cell lines (HeLa, B16, and 4T1). The results demonstrated that the apoptosis rate was highest in the B16 cell line (the early apoptosis rate was 11.9% and the late apoptosis rate was 59.1%) when the cells were subjected to consistent ultrasound (6 MHz, 15 W) for 30 min. This logic AND-gated sonogene nanosystem is expected to provide a new strategy and development direction for tumor therapy.
Collapse
Affiliation(s)
- Tiange Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Tiandi He
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, P.R China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, P.R China
| |
Collapse
|
11
|
|
12
|
Synthesis, characterization, apoptosis, ROS, autophagy and western blotting studies of cyclometalated iridium(III) complexes. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ghafelehbashi R, Tavakkoli Yaraki M, Heidarpoor Saremi L, Lajevardi A, Haratian M, Astinchap B, Rashidi AM, Moradian R. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe 3O 4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110597. [PMID: 32228991 DOI: 10.1016/j.msec.2019.110597] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Developing new nanocarriers and understanding the interactions between the drug and host molecules in the nanocarrier at the molecular level is of importance for future of nanomedicine. In this work, we synthesized and characterized a series of iron oxide nanoparticles (IONPs) functionalized with different organic molecules (citric acid, α-cyclodextrin, and citric acid/α-cyclodextrin composite). It was found that incorporation of citric acid into the α-cyclodextrin had negligible effect on the adsorption efficiency (<5%) of citric acid/α-cyclodextrin functionalized IONPs, while the isotherm adsorption data were well described by the Langmuir isotherm model (qmax = 2.92 mg/g at T = 25 °C and pH = 7). In addition, the developed nanocarrier showed pH-responsive behavior for releasing the quercetin molecules as drug model, where the Korsmeyer-Peppas model could describe the release profile with Fickian diffusion (n < 0.45 for at all pH and temperatures). Then, Density functional theory was applied to calculate the absolute binding energies (ΔEb) of the complexation of quercetin with different host molecules in the developed nanocarriers. The calculated energies are as follow: 1) quercetin and citric acid: ΔEb = -16.58 kcal/mol, 2) quercetin and α-cyclodextrin: ΔEb = -46.98 kcal/mol, and 3) quercetin and citric acid/α-cyclodextrin composite: ΔEb = -40.15 kcal/mol. It was found that quercetin tends to interact with all hosts via formation of hydrogen bonds and van der Waals interactions. Finally, the cytotoxicity of the as-developed nanocarriers was evaluated using MTT assay and both normal NIH-3T3 and cancereous HeLa cells. The cell viability results showed that the quercetin could be delivered effectively to the HeLa cells due to the acidic environment inside the cells with minimum effect on the viability of NIH-3T3 cells. These results might open a new window to design of stimuli-responsive nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Aseman Lajevardi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Haratian
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Bandar Astinchap
- Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, Sanandaj, Iran.
| | - Ali Mohammad Rashidi
- Department of Materials and Textile Engineering, College of Engineering, Razi University, Kermanshah, Iran
| | - Rostam Moradian
- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran; Nanoscience and Nanotechnology Research Center, Razi University, Kermanshah, Iran
| |
Collapse
|
14
|
Gao P, Liu S, Su Y, Zheng M, Xie Z. Fluorine-Doped Carbon Dots with Intrinsic Nucleus-Targeting Ability for Drug and Dye Delivery. Bioconjug Chem 2019; 31:646-655. [DOI: 10.1021/acs.bioconjchem.9b00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pengli Gao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130022, P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| | - Ya Su
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130022, P. R. China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
15
|
Sericin grafted multifunctional curcumin loaded fluorinated graphene oxide nanomedicines with charge switching properties for effective cancer cell targeting. Int J Pharm 2019; 572:118791. [PMID: 31678390 DOI: 10.1016/j.ijpharm.2019.118791] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
Fluorinated graphene has recently gained much attention for cancer drug delivery, owing to its peculiar properties including high electronegativity difference, magnetic resonance imaging contrast agent, and the photothermal effect. However, the hydrophobic nature of fluorinated graphene greatly hinders its application as a biological material. Herein, a novel green method is reported for synthesis of a pH-sensitive charge-reversal and water-soluble fluorinated graphene oxide, modified with polyethyleneimine anchored to sericin-polypeptide (FPS). This nanocarrier was further loaded with curcumin (Cur), and characterized as a nanocarrier for anti-cancer drug delivery. The synthesized nanocarriers contain two different pH-sensitive amide linkages, which are negatively charged in blood pH (≈7.4) and can prolong circulation times. The amide linkages undergo hydrolysis once they reach the mildly acidic condition (pH≈6.5, corresponding to tumor extracellular matrix), and subsequently once reached the lower acidic condition (pH≈5.5, corresponded to endo/lysosomes microenvironment), the FPS charge can be switched to positive (≈+28 mV), which aids the nuclear release. This nanocarrier was designed to selectively enhance cell internalization and nuclear-targeted delivery of curcumin in HeLa, SkBr3 and PC-3 cancer cells. Moreover, FPS-Cur demonstrated high curcumin loading capacity, prolonged curcumin release and promotion of apoptosis in HeLa, SkBr3 and PC-3 cells. Therefore, with its pH-responsive charge-reversal properties, FPS-Cur would be a promising candidate for chemotherapy of cervical, breast and prostate cancers.
Collapse
|
16
|
Yu Y, Zhang L, Wang M, Yang Z, Lin L, Xiong Y, Xu Z, Wang J. H 2O 2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine (Lond) 2019; 14:2189-2207. [PMID: 31411542 DOI: 10.2217/nnm-2019-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.
Collapse
Affiliation(s)
- Yiming Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Miao Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| | - Zhe Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Leping Lin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Yuxuan Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| |
Collapse
|
17
|
Bollu VS, Bathini T, Barui AK, Roy A, Ragi NC, Maloth S, Sripadi P, Sreedhar B, Nagababu P, Patra CR. Design of DNA-intercalators based copper(II) complexes, investigation of their potential anti-cancer activity and sub-chronic toxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110079. [PMID: 31546406 DOI: 10.1016/j.msec.2019.110079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
Abstract
In the present paper, we synthesized and characterized four N-donor polypyridyl copper(II) complexes (C1-C4); [Cu(mono-CN-PIP)2]2+ (C1), [Cu(tri-OMe-PIP)2]2+ (C2), [Cu(di-CF3-PIP)2]2+ (C3) and [Cu(DPPZ)2]2+ (C4). The (Calf-Thymus) CT-DNA binding studies depicted that the complexes could interact with DNA via intercalative mode. All the complexes, particularly C3 and C4 attenuated the proliferation as well as migration of various cancer cells, indicating their anti-cancer and anti-metastatic activity. Additionally, chick embryo angiogenesis (CEA) assay exhibited the inhibition of vascular sprouting in presence of C3 and C4, suggesting their potential in inhibiting the blood vessel growth. Mechanistic studies revealed that the complexes induced the excessive production of cellular reactive oxygen species (ROS) leading to apoptosis through up regulation of p53 and downregulation of Bcl-xL, which might be the plausible mechanisms underlying their anti-cancer properties. To understand the feasibility of practical application of anti-cancer copper complexes C3 and C4, in vivo sub-chronic toxicity study (4 weeks) was performed in C57BL6 mice and the results exhibited almost non-toxic effects induced by these complexes in terms of haematology and serum biochemical analyses, suggesting their biocompatible nature. The current study provides the basis for future advancement of other novel biocompatible metal complexes that could be employed for the therapy of different cancers.
Collapse
Affiliation(s)
- Vishnu Sravan Bollu
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Thulasiram Bathini
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Ayan Kumar Barui
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Nagarjuna Chary Ragi
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Swamy Maloth
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Prabhakar Sripadi
- National Centre for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India
| | - Bojja Sreedhar
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
| | - Penumaka Nagababu
- Inorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India; Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur 440020, Maharashtra, India.
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana State, India.
| |
Collapse
|
18
|
Kalaiyarasan G, Joseph J. Cholesterol derived carbon quantum dots as fluorescence probe for the specific detection of hemoglobin in diluted human blood samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:580-586. [DOI: 10.1016/j.msec.2018.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
|
19
|
Ramanathan G, Thyagarajan S, Sivagnanam UT. Accelerated wound healing and its promoting effects of biomimetic collagen matrices with siderophore loaded gelatin microspheres in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:455-464. [DOI: 10.1016/j.msec.2018.08.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022]
|
20
|
Ghorbani F, Zamanian A, Behnamghader A, Joupari MD. A facile method to synthesize mussel-inspired polydopamine nanospheres as an active template for in situ formation of biomimetic hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:729-739. [PMID: 30423759 DOI: 10.1016/j.msec.2018.10.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/15/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
In this study, Mussel-inspired polydopamine (PDA) nanospheres were synthesized via spontaneous oxidative polymerization of dopamine hydrochloride (dopa-HCl) in a deionized water-alcohol mixed solvent at room temperature and atmospheric air, under alkaline condition. Field-emission scanning electron microscopy (FE-SEM) demonstrated production of sphere-like shape with a smooth surface and tunable size, while monodispersity increased by utilizing isopropanol instead of ethanol owing to lower Ra values based on Hansen solubility parameter (HSP) theory. Dropwise addition of monomer played an undeniable role in the fabrication of uniform and smaller spheres. The difference of the charge repulsion of constructs in the range of pH led to different dispersive behavior in a variety of solvents, exhibiting versatile applications. The presence of active functional groups on the surface of PDA spheres made them an appropriate option for PDA-assisted biomimetic mineralization of hydroxyapatite (HA), which is the result of the interaction between abundant catecholamine moieties in PDA and Ca+2 ions in simulated body fluid. Bio-adhesive nature of PDA in water and the presence of amino and hydroxyl functional groups support desirable L929 mouse fibroblast cell spreading. The viability of >90% fibroblast cells proved the biocompatibility of polymerized structure. All the achievements indicated that PDA nanospheres provide a biocompatible and bioactive template for green synthesizing hydroxyapatite and the innovative basis for further tissue engineering applications.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran; Stem cell Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomaterials, Aprin Advanced Technologies Development Company, Tehran, Iran.
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Morteza Daliri Joupari
- Department of Animal, Avian and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Hussein KH, Abdelhamid HN, Zou X, Woo HM. Ultrasonicated graphene oxide enhances bone and skin wound regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:484-492. [PMID: 30423733 DOI: 10.1016/j.msec.2018.09.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/28/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
In the present study, we investigated the applications of ultrasonicated graphene oxide (UGO) for bone regeneration and skin wound healing. Ultrasonication of a GO suspension increased the dispersion and stability (by increasing the zeta potential) of the GO suspension. UGO has fewer oxygen-containing groups but still displays excellent water dispersion. The UGO supension showed high biocompatibility for human fetal osteoblast (hFOB cells), human endothelial cells (EA.hy 926 cells), and mouse embryonic fibroblasts. Importantly, UGO could support cell attachment and proliferation, in addition to promoting the osteogenesis of seeded cells and the promotion of new bone formation. In addition, a 1% UGO supension enhanced cell migration in an in vitro skin scratch assay and promoted wound closure in an in vivo rat excisional skin defect model. These results showed that UGO offers a good environment for cells involved in bone and skin healing, suggesting its potential application in tissue regeneration.
Collapse
Affiliation(s)
- Kamal Hany Hussein
- Department of Animal Surgery, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden; Department of Chemistry, Faculty of Science, Assuit University, Assuit, Egypt.
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-10691, Sweden.
| | - Heung-Myong Woo
- Stem Cell Institute, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea; College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| |
Collapse
|
22
|
Yang Y, Guo L, Tian Z, Gong Y, Zheng H, Zhang S, Xu Z, Ge X, Liu Z. Novel and Versatile Imine-N-Heterocyclic Carbene Half-Sandwich Iridium(III) Complexes as Lysosome-Targeted Anticancer Agents. Inorg Chem 2018; 57:11087-11098. [DOI: 10.1021/acs.inorgchem.8b01656] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuteng Gong
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Hongmei Zheng
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shumiao Zhang
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhishan Xu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Department of Chemistry and Chemical Engineering, Shandong Normal University, Jinan 250014, China
| | - Xingxing Ge
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
23
|
Al Dine EJ, Marchal S, Schneider R, Hamie B, Ghanbaja J, Roques-Carmes T, Hamieh T, Toufaily J, Gaffet E, Alem H. A Facile Approach for Doxorubicine Delivery in Cancer Cells by Responsive and Fluorescent Core/Shell Quantum Dots. Bioconjug Chem 2018; 29:2248-2256. [DOI: 10.1021/acs.bioconjchem.8b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Enaam Jamal Al Dine
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
| | - Sophie Marchal
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Raphaël Schneider
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS,
LRGP, F-54000 Nancy, France
| | - Batoul Hamie
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beirut, Lebanon
| | - Jaafar Ghanbaja
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS,
LRGP, F-54000 Nancy, France
| | - Tayssir Hamieh
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Joumana Toufaily
- Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne CS 30519, 54519, Vandoeuvre-lès-Nancy Cedex, France
| | - Eric Gaffet
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Halima Alem
- Université
de Lorraine, CNRS, IJL, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
24
|
Gong P, Wang F, Guo F, Liu J, Wang B, Ge X, Li S, You J, Liu Z. Fluorescence turn-off Ag/fluorinated graphene composites with high NIR absorption for effective killing of cancer cells and bacteria. J Mater Chem B 2018; 6:7926-7935. [DOI: 10.1039/c8tb02211a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study establishes FGO–Ag as a novel fluorescence “turn-off” nanocarrier with good targeting efficiency and high NIR absorption and drug loading; it also demonstrates its application in antibacterial and cancer chemo-photothermal treatments.
Collapse
Affiliation(s)
- Peiwei Gong
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Fei Wang
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Feifei Guo
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinfeng Liu
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Bin Wang
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Xingxing Ge
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Shuohan Li
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
- P. R. China
| |
Collapse
|