1
|
Martin EMS, Sosa AM, Martinez CS, Prieto J, Marrassini C, Dobrecky CB, Alonso MR, Anesini C. In Vitro Antioxidant Activity and Anticonvulsant Properties on Zebrafish PTZ-Induced Seizure Model of a Tilia viridis Aqueous Extract. J Pharmacopuncture 2024; 27:211-222. [PMID: 39350930 PMCID: PMC11439512 DOI: 10.3831/kpi.2024.27.3.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/04/2024] Open
Abstract
Objectives Tilia viridis (Bayer) Simonk. (Malvaceae) is widely distributed in Argentina and employed for its tranquilizing properties. Other species of the genus (Tilia europaea L., Tilia cordata Mill., Tilia platyphyllos Scop.) have been traditionally used for the treatment of epilepsy. Epilepsy affects approximately 65 million people worldwide and is characterized by an imbalance between excitatory and inhibitory processes in the brain, leading to unpredictable, unprovoked, recurrent seizures. Current pharmacological interventions often present mild to moderately severe side effects. Epilepsy has been associated with oxidative and nitrative stress as well as neuroinflammation. Herbal medicine therapies may offer new treatment options with multi-target antioxidant and anticonvulsant effects for patients whose seizures remain uncontrolled, potentially providing cost-effective solutions for individuals worldwide suffering from uncontrolled epilepsy.The aim of this study was to demonstrate the anticonvulsant activity of a standardized T. viridis aqueous extract (TE). Methods Study of the constituents of TE, TE's antioxidant and anticonvulsant activities and toxicity, and analysis of the possible relation between the potential activities and the compounds present in the extract. In order to demonstrate TE's anticonvulsant activity a zebrafish model was used. The study also assessed TE's toxicity and antioxidant activity. To standardize the extract, total polyphenols and flavonoids were quantified and specific flavonoids were identified and quantified using HPLC-MS/MS and HPLC-UV. Results TE exhibited anticonvulsant activity at low concentrations and demonstrated antioxidant effects by scavenging free radicals, exhibiting superoxide dismutase and peroxidase-like activities, as well as inhibiting lipoperoxidation. These actions can be attributed to the presence of polyphenols, particularly flavonoids. Conclusion TE holds promise as a complementary herbal medicine in the treatment of epilepsy and may also offer benefits for other neuropathies associated with oxidative stress, such as Parkinson's disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Elina Malén Saint Martin
- Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Institute of Chemistry and Drug Metabolism (IQUIMEFA UBA CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Ayelen Morena Sosa
- Bio-nanotechnology Laboratory, Department of Technology and Science, National University of Quilmes (GBEyB, IMBICE-CONICET-CICPBA), Bernal, Argentina
| | - Carolina Soledad Martinez
- Bio-nanotechnology Laboratory, Department of Technology and Science, National University of Quilmes (GBEyB, IMBICE-CONICET-CICPBA), Bernal, Argentina
| | - Jimena Prieto
- Bio-nanotechnology Laboratory, Department of Technology and Science, National University of Quilmes (GBEyB, IMBICE-CONICET-CICPBA), Bernal, Argentina
| | - Carla Marrassini
- Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Institute of Chemistry and Drug Metabolism (IQUIMEFA UBA CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Beatriz Dobrecky
- Pharmacobotany Unit, Department of Pharmacology and Pharmaceutical Technology I Unit, Pharmaceutical and Technology Department (InTecFyB), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - María Rosario Alonso
- Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Institute of Chemistry and Drug Metabolism (IQUIMEFA UBA CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Anesini
- Pharmacognosy Unit, Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Institute of Chemistry and Drug Metabolism (IQUIMEFA UBA CONICET), University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhu F, Wang B, Qin D, Su X, Yu L, Wu J, Law BY, Guo M, Yu C, Zhou X, Wu A. Carpesii fructus extract exhibits neuroprotective effects in cellular and Caenorhabditis elegans models of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14515. [PMID: 37905594 PMCID: PMC11017466 DOI: 10.1111/cns.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Despite extensive research, no definitive cure or effective disease-modifying treatment for PD exists to date. Therefore, the identification of novel therapeutic agents with neuroprotective properties is of utmost importance. Here, we aimed to investigate the potential neuroprotective effects of Carpesii fructus extract (CFE) in both cellular and Caenorhabditis elegans (C. elegans) models of PD. METHODS The neuroprotective effect of CFE in H2O2- or 6-OHDA-induced PC-12 cells and α-synuclein-overexpressing PC-12 cells were investigated by determining the cell viability, mitochondrial damage, reactive oxygen species (ROS) production, apoptosis, and α-synuclein expression. In NL5901, BZ555, and N2 worms, the expression of α-synuclein, motive ability, the viability of dopaminergic neurons, lifespan, and aging-related phenotypes were investigated. The signaling pathway was detected by Western blotting and validated by employing small inhibitors and RNAi bacteria. RESULTS In cellular models of PD, CFE significantly attenuated H2O2- or 6-OHDA-induced toxicity, as evidenced by increased cell viability and reduced apoptosis rate. In addition, CFE treatment suppressed ROS generation and restored mitochondrial membrane potential, highlighting its potential as a mitochondrial protective agent. Furthermore, CFE reduced the expression of α-synuclein in wide type (WT)-, A53T-, A30P-, or E46K-α-synuclein-overexpressing PC-12 cells. Our further findings reveal that CFE administration reduced α-synuclein expression and improved its induced locomotor deficits in NL5901 worms, protected dopaminergic neurons against 6-OHDA-induced degeneration in BZ555 worms, extended lifespan, delayed aging-related phenotypes, and enhanced the ability of stress resistance in N2 worms. Mechanistic studies suggest that the neuroprotective effects of CFE may involve the modulation of the MAPK signaling pathway, including ERK, JNK, and p38, whereas the interference of these pathways attenuated the neuroprotective effect of CFE in vitro and in vivo. CONCLUSION Overall, our study highlights the potential therapeutic value of CFE as a neuroprotective agent in the context of PD. Furthermore, elucidation of the active compounds of CFE will provide valuable insights for the development of novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Feng‐Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Bin‐Ding Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Da‐Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Hui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijingChina
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Jian‐Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Betty Yuen‐Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and TechnologyTaipaChina
| | - Min‐Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Chong‐Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - Xiao‐Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| | - An‐Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of EducationSchool of Pharmacy, Southwest Medical UniversityLuzhouChina
| |
Collapse
|
3
|
Lee SY, Lee HJ, Kim NY, Kim MS. Investigating the effects of Carpesii fructus extract on the liver transcriptome of olive flounder (Paralichthys olivaceus) as a potential antiparasitic agent. Genet Mol Biol 2024; 47:e20230146. [PMID: 38488527 PMCID: PMC10941726 DOI: 10.1590/1678-4685-gmb-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/26/2023] [Indexed: 03/17/2024] Open
Abstract
Olive flounder (Paralichthys olivaceus), a popular aquaculture species, is plagued by the disease scuticociliatosis caused by Miamiensis avidus, which has a high mortality rate and is typically treated with chemicals such as formalin and hydrogen peroxide. However, Carpesii fructus extract has shown potential as a natural therapeutic agent by reducing the motility of M. avidus. However, despite its potential importance, the effect of the extract on fish metabolism remains unknown. In this study, the effect of Carpesii fructus extract and formalin on fish metabolism was analysed by whole transcriptome analysis in the liver of P. olivaceus. A total of 37,796 transcripts were generated and differential expression genes (DEGs) were identified in the liver of P. olivaceus treated with Carpesii fructus extract or formalin. In addition, functional analysis of DEGs between treatment groups was presented using Gene Ontology. These results will be crucial for the study of scuticociliatosis in various fish species, including P. olivaceus, and for the development of therapeutic agents for other diseases.
Collapse
Affiliation(s)
| | - Hwa Jin Lee
- CellQua, Inc, Seongnam, South Korea
- Kongju National University, Department of Biological Sciences,
Gongju, South Korea
| | - Na Young Kim
- National Institute of Fisheries Science, Pathology Research
Division, Busan, South Korea
| | - Min Sun Kim
- Kongju National University, Department of Biological Sciences,
Gongju, South Korea
| |
Collapse
|
4
|
Duarte da Silva KC, Carneiro WF, Virote BDCR, Santos MDF, de Oliveira JPL, Castro TFD, Bertolucci SKV, Murgas LDS. Evaluation of the Anti-Inflammatory and Antioxidant Potential of Cymbopogon citratus Essential Oil in Zebrafish. Animals (Basel) 2024; 14:581. [PMID: 38396549 PMCID: PMC10886050 DOI: 10.3390/ani14040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
This study explored the protective capacity of the essential oil (EO) of Cymbopogon citratus against oxidative stress induced by hydrogen peroxide (H2O2) and the inflammatory potential in zebrafish. Using five concentrations of EO (0.39, 0.78, 1.56, 3.12, and 6.25 μg/mL) in the presence of 7.5 mM H2O2, we analyzed the effects on neutrophil migration, caudal fin regeneration, cellular apoptosis, production of reactive oxygen species (ROS), and activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) after 96 h of exposure. A significant decrease in neutrophil migration was observed in all EO treatments compared to the control. Higher concentrations of EO (3.12 and 6.25 μg/mL) resulted in a significant decrease in caudal fin regeneration compared to the control. SOD activity was reduced at all EO concentrations, CAT activity significantly decreased at 3.12 μg/mL, and GST activity increased at 0.78 μg/mL and 1.56 μg/mL, compared to the control group. No significant changes in ROS production were detected. A reduction in cellular apoptosis was evident at all EO concentrations, suggesting that C. citratus EO exhibits anti-inflammatory properties, influences regenerative processes, and protects against oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Kiara Cândido Duarte da Silva
- Faculty of Animal Science and Veterinary Medicine (FZMV), Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (K.C.D.d.S.); (W.F.C.); (B.d.C.R.V.)
| | - William Franco Carneiro
- Faculty of Animal Science and Veterinary Medicine (FZMV), Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (K.C.D.d.S.); (W.F.C.); (B.d.C.R.V.)
| | - Bárbara do Carmo Rodrigues Virote
- Faculty of Animal Science and Veterinary Medicine (FZMV), Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (K.C.D.d.S.); (W.F.C.); (B.d.C.R.V.)
| | - Maria de Fátima Santos
- School of Agricultural Sciences of Lavras (ESAL), Department of Agriculture, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (M.d.F.S.); (J.P.L.d.O.); (S.K.V.B.)
| | - João Paulo Lima de Oliveira
- School of Agricultural Sciences of Lavras (ESAL), Department of Agriculture, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (M.d.F.S.); (J.P.L.d.O.); (S.K.V.B.)
| | - Tássia Flávia Dias Castro
- Institute of Biomedical Sciences II (ICBII), Universidade de São Paulo, São Paulo 05508-000, São Paulo, Brazil;
| | - Suzan Kelly Vilela Bertolucci
- School of Agricultural Sciences of Lavras (ESAL), Department of Agriculture, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (M.d.F.S.); (J.P.L.d.O.); (S.K.V.B.)
| | - Luis David Solis Murgas
- Faculty of Animal Science and Veterinary Medicine (FZMV), Department of Veterinary Medicine, Federal University of Lavras, Lavras 37200-900, Minas Gerais, Brazil; (K.C.D.d.S.); (W.F.C.); (B.d.C.R.V.)
| |
Collapse
|
5
|
Odetti LM, Chacón CF, Siroski PA, Simoniello MF, Poletta GL. Effects of glyphosate, 2,4-D, chlorantraniliprole, and imidacloprid formulations, separately and in mixtures in Caiman latirostris hatchlings. Toxicol Appl Pharmacol 2023; 469:116544. [PMID: 37150452 DOI: 10.1016/j.taap.2023.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
The present study demonstrated the potential of glyphosate (GLY), 2,4-dichlorophenoxyacetic acid (2,4-D), imidacloprid (IMI) and chlorantraniliprole (CAP) separately and in mixtures to induce oxidative stress and DNA damage in Caiman latirostris hatchlings. Under controlled condition, an embryonic exposure to these pesticides was done at concentrations recommended for soybean crops. Treatments were: negative control, GLY, 2,4-D, IMI, CAP, mixture 1 (M1): GLY + 2,4-D, M2: IM I + CAP and M3: GLY + 2,4-D + IMI + CAP. At hatching, blood samples were taken for the evaluation of genotoxicity, oxidative damage to lipids and DNA, the enzymatic activity of Catalase (CAT) and Superoxide dismutase (SOD), and the expression level of their corresponding genes (catalase: cat and superoxide dismutase: sod). It has been shown that IMI, M2 and M3 induced a significant inhibition of CAT activity while no effect was observed on SOD. In turn, lipid peroxidation was significantly higher in individuals exposed to IMI, and to all the mixtures. Besides, genotoxicity and oxidative DNA damage were observed in all exposed groups. The results of mRNA expression showed no difference at transcription levels. In the same way, no alterations in growth parameters were recorded at hatching. Regarding to the mixtures, we observed a potentiating action of IMI on M3 in lipid peroxidation as well as independent action on oxidative DNA damage and genotoxicity parameters. Our results highlight the importance of investigating the effect of pesticides and their mixtures considering the potential consequences to caimans living in natural environments.
Collapse
Affiliation(s)
- Lucia M Odetti
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina.
| | - Camila F Chacón
- Lab. de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL/CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Pablo A Siroski
- Lab. de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral-UNL/CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| | - Ma Fernanda Simoniello
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - Gisela L Poletta
- Cát. Toxicol. y Bioq. Legal, FBCB-UNL, CONICET. Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. Sta. Fe). Av. Aristóbulo del Valle 8700 (3000), Santa Fe, Argentina
| |
Collapse
|
6
|
Castro TFD, Carneiro WF, Reichel T, Fabem SL, Machado MRF, de Souza KKC, Resende LV, Murgas LDS. The toxicological effects of Eryngium foetidum extracts on zebrafish embryos and larvae depend on the type of extract, dose, and exposure time. Toxicol Res (Camb) 2022; 11:891-899. [PMID: 36337237 PMCID: PMC9618102 DOI: 10.1093/toxres/tfac067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/08/2022] [Accepted: 09/10/2022] [Indexed: 07/30/2023] Open
Abstract
Eryngium foetidum is a herbaceous plant found in tropical and subtropical regions. In vivo pharmacological parameters show that leaf extracts of this plant have antioxidant, anti-inflammatory, antidiabetic, and antimicrobial activities due to their bioactive compounds such as flavonoids and phenols. Despite the evidence for several bioactivities of E. foetidum, information on its safety and tolerability is limited. The objective of this study was to assess the effect and concentration of different extracts of E. foetidum on the development of zebrafish (Danio rerio) embryos. To study the impact of aqueous (AE), ethanolic (EE), and methanolic (ME) extracts, the embryos were exposed to 0.625, 1.25, 2.5, 5, and 10 mg mL-1 for up to 120-h postfertilization to assess embryonic developmental toxicity and then to 0.039, 0.078, 0.156, 0.312, and 0.625 mg mL-1 to assess the antioxidant responses of the enzymes superoxide dismutase catalase, glutathione S-transferase (GST), and cell apoptosis. The results showed that, depending on the extraction solvent, concentration used, and exposure time, E. foetidum extracts caused mortality, altered the hatching time, and promoted changes in enzymatic activities. Delays in development and increased GST activity were found in all treatments. Apoptosis was not observed in any of the treatments. In conclusion, AE, EE, and ME concentrations above 0.625 mg mL-1 can cause adverse effects on the early stages of zebrafish development.
Collapse
Affiliation(s)
- Tassia Flavia Dias Castro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | - William Franco Carneiro
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | - Tharyn Reichel
- School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brasil
| | - Sarah Lacerda Fabem
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| | | | | | - Luciane Vilela Resende
- School of Agricultural Sciences, Department of Agriculture, Federal University of Lavras, Lavras, MG, Brasil
| | - Luis David Solis Murgas
- Faculty of Animal Science and Veterinary Medicine, Department of Veterinary Medicine, Federal University of Lavras, Lavras, MG, CEP:37200-000, Brazil
| |
Collapse
|
7
|
Ibrahim SRM, Fadil SA, Fadil HA, Hareeri RH, Abdallah HM, Mohamed GA. Ethnobotanical Uses, Phytochemical Composition, Biosynthesis, and Pharmacological Activities of Carpesium abrotanoides L. (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121598. [PMID: 35736748 PMCID: PMC9230109 DOI: 10.3390/plants11121598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 05/13/2023]
Abstract
Carpesium abrotanoides L. (Asteraceae) is a medicinal plant with immense therapeutic importance and bioactivities. It is commonly encountered in various Asian regions. It has numerous ethnomedicinal uses for curing diverse ailments such as toothache, stomach ulcer, boils, tonsillitis, bronchitis, bacterial infection, bruises, swelling, virus infection, fever, and amygdalitis, as well as an anthelmintic versus round-, tape-, hook-, and pinworms. Different classes of phytoconstituents such as sesquiterpenes, sesquiterpene dimers, monoterpenes, and nitrogenous compounds have been reported from this plant. These phytoconstituents have proved to possess anti-inflammatory, cytotoxic, antimicrobial, and insecticidal capacities. The present review aims to summarize all published data on C. abrotanoides including traditional uses, phytoconstituents, bioactivities, and toxicological aspects, as well as the synthesis and biosynthesis of its metabolites through an extensive survey on various databases and various publishers. These reported data could draw the attention of various natural-metabolite-interested researchers and medicinal chemists towards the development of this plant and/or its metabolites into medicine for the prevention and treatment of certain illnesses. Despite the diverse traditional uses of C. abrotanoides, there is a need for scientific evidence to support these claims. Clinical trials are also required to further assure these data and validate this plant utilization in treating several diseases.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or ; Tel.: +966-581183034
| | - Sana A. Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
| | - Haifa A. Fadil
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, Almadinah Almunawarah 30078, Saudi Arabia;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (H.M.A.); (G.A.M.)
| |
Collapse
|
8
|
Risk compounds, potential mechanisms and biomarkers of Traditional Chinese medicine‐induced reproductive toxicity. J Appl Toxicol 2022; 42:1734-1756. [DOI: 10.1002/jat.4290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
|
9
|
Zhang Y, Xia Q, Wang J, Zhuang K, Jin H, Liu K. Progress in using zebrafish as a toxicological model for traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114638. [PMID: 34530096 DOI: 10.1016/j.jep.2021.114638] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has been applied for more than 2000 years. However, modern basic research on the safety of TCMs is limited. Establishing safety evaluation technology in line with the characteristics of TCM and conducting large-scale basic toxicity research are keys to comprehensively understand the toxicity of TCMs. In recent years, zebrafish has been used as a model organism for toxicity assessment and is increasingly utilized for toxicity research of TCMs. Yet, a comprehensive review in using zebrafish as a toxicological model for TCMs is lacked. AIM OF THE STUDY We aim to summarize the progress and limitation in toxicity evaluation of TCMs using zebrafish and put forward the future research ideas. MATERIALS AND METHODS The scientific databases, including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI) were searched using the key words of zebrafish, toxicology, traditional Chinese medicine, acute toxicity, liver injury, cardiotoxicity, kidney toxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, ototoxicity, and osteotoxicity. RESULTS Zebrafish assays are low experimental cost and short cycle, easily achieving high-throughput toxicity screening, and exemption from ethical legislation up to 5 dpf. It has been widely used to evaluate the acute toxicity, liver toxicity, cardiotoxicity, nephrotoxicity, developmental toxicity, neurotoxicity, gastrointestinal irritation, immunotoxicity, and ototoxicity caused by TCMs, although some physiological difference limited its application. CONCLUSIONS Zebrafish is a powerful model for TCMs toxicity evaluation, but it is not flawless. The toxicity testing criterion and high throughput assays are urgent to be established. This review provides references for future studies.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Kaiyan Zhuang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China
| | - Hongtao Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China.
| |
Collapse
|
10
|
Woo SJ, Jeong MG, Jeon EJ, Do MY, Kim NY. Antiparasitic potential of ethanolic extracts of Carpesii Fructus against Miamiensis avidus in hirame natural embryo cell line and their effects on immune response- and biotransformation-related genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109214. [PMID: 34673250 DOI: 10.1016/j.cbpc.2021.109214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
Scuticociliatosis, caused by Miamiensis avidus, is a severe parasitic disease affecting marine organisms, particularly Paralichthys olivaceus. The aim of this study was to assess the antiparasitic potential of ethanolic extracts of Carpesii Fructus (EECF), the dried fruit of Carpesium abrotanoides L., which is used in traditional Chinese medicine, in vitro. We found that 50%, 70%, and 100% EECF induced morphological changes in M. avidus, including reduced motility, cell shrinkage, and lysis. Nearly 100% cell lysis was observed in M. avidus after 2 h of treating with 100% EECF. After 24 h, the survival rates of M. avidus treated with 100%, 70%, and 50% EECF were 10%, 20%, and 30%, respectively. Additionally, the mRNA levels of immune response-related (IL-1β, IL-8, TNF-α, and CD8-α) and biotransformation-related (CYP1A, CYP1B, CYP3A4, and UGT2B19) genes increased with 70% and 100% EECF treatment and decreased with 50% EECF treatment following pretreatment with concanavalin A. The viability of hirame natural embryo (HINAE) cells was reduced by 50%, 70%, and 100% EECF (100 mg/L) and was between 67 and 80%. The IC50 values of 50%, 70%, 90%, and 100% EECF in HINAE cells were 102.3, 42.93, 39.15, and 38.39 mg/L, respectively. These results indicated that 50% EECF was less toxic to HINAE cells than 70% or 100% EECF, while still exhibiting antiparasitic activity against M. avidus. Therefore, we demonstrated the role of EECF as a natural antiparasitic agent against M. avidus. Our findings suggest that Carpesii Fructus has potential use as an antiparasitic agent in the aquaculture industry.
Collapse
Affiliation(s)
- Soo Ji Woo
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Min Gyeong Jeong
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Eun Ji Jeon
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Mi Young Do
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Na Young Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan 46083, South Korea.
| |
Collapse
|
11
|
Wang AK, Geng T, Jiang W, Zhang Q, Zhang Y, Chen PD, Shan MQ, Zhang M, Tang YP, Ding AW, Zhang L. Simultaneous determination of twelve quinones from Rubiae radix et Rhizoma before and after carbonization processing by UPLC-MS/MS and their antithrombotic effect on zebrafish. J Pharm Biomed Anal 2020; 191:113638. [DOI: 10.1016/j.jpba.2020.113638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
|
12
|
Liu X, Zhang R, Jin Y. Differential responses of larval zebrafish to the fungicide propamocarb: Endpoints at development, locomotor behavior and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139136. [PMID: 32438087 DOI: 10.1016/j.scitotenv.2020.139136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The fungicide propamocarb (PM) is widely used to protect cucumbers, tomatoes and other plants from pathogens. According to previous studies, PM could be detected in the aquatic system in some area. However, the toxic effects of PM on zebrafish received very limited attention. In this study, we examined the toxic effects of various concentration of PM on the endpoints of development, locomotor behavior and oxidative stress in larval zebrafish. It was observed that PM exposure delayed embryonic development, inhibited hatchability at 60 and 72 h postfertilization and increased heart rate. After PM exposure, the larval zebrafish showed abnormal free swimming behavior and the swimming behavior in response to light-dark transition, indicating that PM had the potential to induce neurotoxicity. Moreover, PM exposure also affected the enzymatic activity of acetylcholinesterase and dopamine and the transcriptional level of genes related to neurotoxicity. In addition, PM exposure not only affects catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activity but also affects the transcription level of various genes. We believed that PM induced oxidative stress was also a possible reason to cause neurotoxicity in larval zebrafish. In summary, our results suggested that PM could disturb the endpoints at development, locomotor behavior and oxidative stress in larval zebrafish.
Collapse
Affiliation(s)
- Xin Liu
- Institute of standardization, China Jiliang University, Hangzhou 310018, China
| | - Rui Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
13
|
Toxicity Assessment of Herbal Medicine Using Zebrafish Embryos: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7272808. [PMID: 31781278 PMCID: PMC6875295 DOI: 10.1155/2019/7272808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022]
Abstract
Herbal remedies have been practiced by humans over centuries and therefore possess time-proven safety. However, it is imperative to evaluate the toxic effects of herbal medicine to confirm their safety, particularly when developing therapeutic leads. Use of laboratory animals such as rats, mice, and rabbits was considered as gold standard in herbal toxicity assessments. However, in the last few decades, the ethical consideration of using higher vertebrates for toxicity testing has become more contentious. Thus, possible alternative models entailing lower vertebrates such as zebrafish were introduced. The zebrafish embryotoxicity model is at the forefront of toxicology assessment due to the transparent nature of embryos, low cost, short cycle, higher fecundity, and genetic redundancy to the humans. Recently, its application has been extended to herbal toxicology. The present review intends to provide a comprehensive assembly of studies that applied the zebrafish embryo model for the assessment of herbal toxicity. A systematic literature survey was carried out in popular scientific databases. The literature search identified a total of 1014 articles in PubMed = 12, Scopus SciVerse® = 623, and Google Scholar = 1000. After screening, 25 articles were included in this review, and they were categorized into three groups in which the zebrafish embryotoxicity assay has been applied to investigate the toxicity of (1) polyherbal formulae/medical prescription (2 full texts), (2) crude extracts (12 full texts), and (3) phytocompounds/isolated constituents (11 full texts). These studies have investigated the toxicity of 6 polyherbal formulae, 16 crude extracts, and more than 30 phytocompounds/isolated constituents using the zebrafish embryotoxicity model. Moreover, this model has explicated the teratogenic effects and specific organ toxicities such as the kidney, heart, and liver. Furthermore, in some studies, the molecular mechanisms underlying the toxicity of herbal medicine have been elucidated. This comprehensive collection of scientific data solidifies the zebrafish embryo model as an effective model system for studying toxicological effects of a broad spectrum of herbal remedies. Henceforth, it provides a novel insight into the toxicity assessment of herbal medicine.
Collapse
|
14
|
Han L, Xia Q, Zhang L, Zhang X, Li X, Zhang S, Wang L, Liu C, Liu K. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos/larvae by acetyl-11-keto-β-boswellic acid (AKBA) through oxidative stress. Drug Chem Toxicol 2019; 45:143-150. [PMID: 31656113 DOI: 10.1080/01480545.2019.1663865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acetyl-11-keto-β-boswellic acid (AKBA), a triterpenoid from Boswellia serrate, is regarded as an angiogenesis inhibitor. However, its toxicity is unknown. The aim of this study was to examine its developmental toxicity and cardiotoxicity. A developmental toxicity assay in zebrafish embryos/larvae from 4 to 96 hours post-fertilization (hpf) was performed and a cardiotoxicity assay was designed from 48 to 72 hpf. Markers of oxidative stress and related genes were selected to access the possible mechanisms. According to the results, AKBA induced pericardium edema, yolk-sac edema, abnormal melanin, spinal curvature, hatching inhibition and shortened body length. Further, increased SV-BA distance, reduced heart rate, increased pericardium area and decreased blood flow velocity were detected in AKBA treated groups. The inhibition of cardiac progenitor gene expression, such as Nkx2.5 and Gata4, may be related to cardiotoxicity. The activities of antioxidant enzymes were decreased and the content of MDA was increased. In addition, AKBA treatment decreased the expression levels of Mn-Sod, Cat, and Gpx. These results suggested that AKBA induced developmental toxicity and cardiotoxicity through oxidative stress. As far as we know, this is the first report on the toxicity of AKBA. It reminds us to pay attention to developmental toxicity and cardiotoxicity of AKBA.
Collapse
Affiliation(s)
- Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Lei Zhang
- Biological Science Section, Therapeutic Good Administration , Symonston , Australia
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| | - Changxiao Liu
- Tianjin Center for New Drug Evaluation and Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research , Tianjin , People's Republic of China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) , Jinan , People's Republic of China
| |
Collapse
|
15
|
Gaaied S, Oliveira M, Le Bihanic F, Cachot J, Banni M. Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2,4-dichlorophenoxyacetic acid herbicide. CHEMOSPHERE 2019; 224:289-297. [PMID: 30825855 DOI: 10.1016/j.chemosphere.2019.02.125] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The present study aims to assess the effects of 2,4-D herbicide on biotransformation and oxidative stress status of zebrafish larvae. Animals were exposed to a range of sublethal concentrations (0.02-0.8 mg/L) and biomarkers at transcriptomic level and biochemical level were assessed. Chemical analysis with showed that the bioaccumulation of 2,4-D in 96 hpf zebrafish larvae were increased in a concentration-dependent manner. This herbicide induced significant effects at both gene expression and enzymatic activities levels after at 96 hpf. Results of mRNA expression showed a differential transcription regulation with all target genes depending on the tested concentrations. The mRNA level of gsr and cyp1a were up regulated at the highest dose of herbicide (0.8 mg/L). The gene expression of gstp1 showed an up regulation at lower dose (0.02 mg/L) and a down regulation at the highest dose (0.8 mg/L) of 2,4-D. A significant induction of EROD activity and inhibition of GST activity were noted in groups exposed to 0.8 mg/L of 2,4-D. Considering the antioxidant defenses, the activity of CAT was increased in larvae exposed to 0.8 mg/L of herbicide and GPx activity was induced at lower doses of 2,4-D (0.02 and 0.051 mg/L). Moreover, peroxidative damage, assessed as MDA content, was markedly increased in larvae exposed to high 2,4-D concentration. Overall, the present study data indicate that bioaccumulation of 2,4-D in 96 hpf zebrafish larvae and alterations in detoxification and oxidative stress related parameters, likely associated with ROS production, which may endanger the embryo-larval stages development of fish.
Collapse
Affiliation(s)
- Sonia Gaaied
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Miguel Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Florane Le Bihanic
- University Bordeaux, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- University Bordeaux, Laboratory of Oceanic and Continental Environments and Paleoenvironments, EPOC, UMR 5805, F-33600, Pessac, France
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia.
| |
Collapse
|
16
|
Liang Z, Yuan Z, Li G, Fu F, Shan Y. Hypolipidemic, Antioxidant, and Antiapoptotic Effects of Polysaccharides Extracted from Reishi Mushroom, Ganoderma lucidum (Leysser: Fr) Karst, in Mice Fed a High-Fat Diet. J Med Food 2018; 21:1218-1227. [PMID: 30183494 DOI: 10.1089/jmf.2018.4182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mechanisms underlying the effect of Ganoderma lucidum (Reishi mushroom) polysaccharides (GLP) on obesity are not clear. In this study, GLP were found to attenuate the oleic acid-induced cell viability loss and apoptosis dose dependently in splenic lymphocytes in vitro. The effects of GLP on lipid metabolism, oxidative stress, and apoptosis in mice fed a high-fat diet (HD) were determined. GLP administration (200 and 400 mg/kg bw) significantly lowered the body-weight increases; liver, heart, and white adipose tissues indexes; serum lipid accumulation; and serum and small intestine oxidative stress in mice fed a HD. Moreover, GLP inhibited HD-induced apoptosis by decreasing the Bax/Bcl-2 ratio and suppressing caspase-3 activation in splenic lymphocytes. These findings indicate that GLP can exert hypolipidemic, antioxidant, and antiapoptotic effects in HD-induced obese mice.
Collapse
Affiliation(s)
- Zengenni Liang
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zhihang Yuan
- 2 College of Veterinary Medicine, Hunan Agricultural University , Changsha, Hunan, China
| | - Gaoyang Li
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Fuhua Fu
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yang Shan
- 1 Hunan Agricultural Product Processing Institute , Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|