1
|
Jeon CK, Rojas Ramirez C, Makey DM, Kurulugama RT, Ruotolo BT. CIUSuite 3: Next-Generation CCS Calibration and Automated Data Analysis Tools for Gas-Phase Protein Unfolding Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1865-1874. [PMID: 38967378 DOI: 10.1021/jasms.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Ion mobility-mass spectrometry (IM-MS) has become a technology deployed across a wide range of structural biology applications despite the challenges in characterizing closely related protein structures. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing closely related, iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. With the speed and sensitivity of CIU analyses, there has been a rapid growth of CIU-based assays, especially regarding biomolecular targets that remain challenging to assess and characterize with other structural biology tools. With information-rich CIU data, many software tools have been developed to automate laborious data analysis. However, with the recent development of new IM-MS technologies, such as cyclic IM-MS, CIU continues to evolve, necessitating improved data analysis tools to keep pace with new technologies and facilitating the automation of various data processing tasks. Here, we present CIUSuite 3, a software package that contains updated algorithms that support various IM-MS platforms and supports the automation of various data analysis tasks such as peak detection, multidimensional classification, and collision cross section (CCS) calibration. CIUSuite 3 uses local maxima searches along with peak width and prominence filters to detect peaks to automate CIU data extraction. To support both the primary CIU (CIU1) and secondary CIU (CIU2) experiments enabled by cyclic IM-MS, two-dimensional data preprocessing is deployed, which allows multidimensional classification. Our data suggest that additional dimensions in classification improve the overall accuracy of class assignments. CIUSuite 3 also supports CCS calibration for both traveling wave and drift tube IM-MS, and we demonstrate the accuracy of a new single-field CCS calibration method designed for drift tube IM-MS leveraging calibrant CIU data. Overall, CIUSuite 3 is positioned to support current and next-generation IM-MS and CIU assay development deployed in an automated format.
Collapse
Affiliation(s)
- Chae Kyung Jeon
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Bailey AO, Durbin KR, Robey MT, Palmer LK, Russell WK. Filling the gaps in peptide maps with a platform assay for top-down characterization of purified protein samples. Proteomics 2024:e2400036. [PMID: 39004851 DOI: 10.1002/pmic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.
Collapse
Affiliation(s)
- Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | - Lee K Palmer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Adhikari J, Heffernan J, Edeling M, Fernandez E, Jethva PN, Diamond MS, Fremont DH, Gross ML. Epitope Mapping of Japanese Encephalitis Virus Neutralizing Antibodies by Native Mass Spectrometry and Hydrogen/Deuterium Exchange. Biomolecules 2024; 14:374. [PMID: 38540792 PMCID: PMC10967844 DOI: 10.3390/biom14030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.
Collapse
Affiliation(s)
- Jagat Adhikari
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - James Heffernan
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Melissa Edeling
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Estefania Fernandez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63130, USA; (J.H.); (M.E.); (E.F.); (M.S.D.); (D.H.F.)
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63130, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA; (J.A.); (P.N.J.)
| |
Collapse
|
4
|
Vallejo DD, Corstvet JL, Fernández FM. Triboelectric Nanogenerators: Low-Cost Power Supplies for Improved Electrospray Ionization. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 495:117167. [PMID: 38053979 PMCID: PMC10695355 DOI: 10.1016/j.ijms.2023.117167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electrospray ionization (ESI) is one of the most popular methods to generate ions for mass spectrometry (MS). When compared with other ionization techniques, it can generate ions from liquid-phase samples without additives, retaining covalent and non-covalent interactions of the molecules of interest. When hyphenated to liquid chromatography, it greatly expands the versatility of MS analysis of complex mixtures. However, despite the extensive growth in the application of ESI, the technique still suffers from some drawbacks when powered by direct current (DC) power supplies. Triboelectric nanogenerators promise to be a new power source for the generation of ions by ESI, improving on the analytical capabilities of traditional DC ESI. In this review we highlight the fundamentals of ESI driven by DC power supplies, its contrasting qualities to triboelectric nanogenerator power supplies, and its applications to three distinct fields of research: forensics, metabolomics, and protein structure analysis.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph L. Corstvet
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L. Collision energies: Optimization strategies for bottom-up proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1261-1299. [PMID: 34859467 DOI: 10.1002/mas.21763] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 06/07/2023]
Abstract
Mass-spectrometry coupled to liquid chromatography is an indispensable tool in the field of proteomics. In the last decades, more and more complex and diverse biochemical and biomedical questions have arisen. Problems to be solved involve protein identification, quantitative analysis, screening of low abundance modifications, handling matrix effect, and concentrations differing by orders of magnitude. This led the development of more tailored protocols and problem centered proteomics workflows, including advanced choice of experimental parameters. In the most widespread bottom-up approach, the choice of collision energy in tandem mass spectrometric experiments has outstanding role. This review presents the collision energy optimization strategies in the field of proteomics which can help fully exploit the potential of MS based proteomics techniques. A systematic collection of use case studies is then presented to serve as a starting point for related further scientific work. Finally, this article discusses the issue of comparing results from different studies or obtained on different instruments, and it gives some hints on methodology transfer between laboratories based on measurement of reference species.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Helga Hevér
- Chemical Works of Gedeon Richter Plc, Budapest, Hungary
| | - Arnold Steckel
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Szabó
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
D'Amico CI, Robbins G, Po I, Fang Z, Slaney TR, Tremml G, Tao L, Ruotolo BT, Kennedy RT. Screening Clones for Monoclonal Antibody Production Using Droplet Microfluidics Interfaced to Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37192521 DOI: 10.1021/jasms.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As one of the most critical steps in process development for protein therapeutics, clone selection and cell culture optimization require a large number of samples to be screened for high titer and desirable molecular profiles. Typical analytical techniques, such as chromatographic approaches, often take minutes per sample which are inefficient for large-scale screenings. Droplet microfluidics coupled to mass spectrometry (MS) represents an attractive approach due to its low volume requirements, high-throughput capabilities, label-free nature, and ability to handle complex mixtures. In this work, we coupled a modified protein cleanup protocol with a droplet-MS workflow for mAb titer screening to guide clone selection. With this droplet approach we achieved a throughput of 0.04 samples/s with an LoD of 0.15 mg/mL and an LoQ of 0.45 mg/mL. To test its performance in a real-world setting, this workflow was applied to a 35-clone screen, where the top 20% producing clones were identified. In addition, we coupled our sample cleanup protocol to a high-resolution MS and compared the glycan profiles of the high titer clones. This work demonstrates that droplet-MS provides a rapid way of clone screening and cell culture optimization based on titer and molecular structure of the expressed proteins. Future work is aimed at increasing the throughput and automation of this droplet-MS technique.
Collapse
Affiliation(s)
- Cara I D'Amico
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gillian Robbins
- Department of Chemistry, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Iris Po
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Zhichao Fang
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Thomas R Slaney
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Gabi Tremml
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Li Tao
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey 08901, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Robert T Kennedy
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor Michigan 48109, United States
| |
Collapse
|
7
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Macias LA, Wang X, Davies BW, Brodbelt JS. Mapping paratopes of nanobodies using native mass spectrometry and ultraviolet photodissociation. Chem Sci 2022; 13:6610-6618. [PMID: 35756525 PMCID: PMC9172568 DOI: 10.1039/d2sc01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Following immense growth and maturity of the field in the past decade, native mass spectrometry has garnered widespread adoption for the structural characterization of macromolecular complexes. Routine analysis of biotherapeutics by this technique has become commonplace to assist in the development and quality control of immunoglobulin antibodies. Concurrently, 193 nm ultraviolet photodissociation (UVPD) has been developed as a structurally sensitive ion activation technique capable of interrogating protein conformational changes. Here, UVPD was applied to probe the paratopes of nanobodies, a class of single-domain antibodies with an expansive set of applications spanning affinity reagents, molecular imaging, and biotherapeutics. Comparing UVPD sequence fragments for the free nanobodies versus nanobody·antigen complexes empowered assignment of nanobody paratopes and intermolecular salt-bridges, elevating the capabilities of UVPD as a new strategy for characterization of nanobodies. Ultraviolet photodissociation mass spectrometry is used to probe the paratopes of nanobodies, a class of single-domain antibodies, and to determine intersubunit salt-bridges and explore the nanobody·antigen interfaces.![]()
Collapse
Affiliation(s)
- Luis A Macias
- Department of Chemistry, University of Texas at Austin Austin TX 78712 USA
| | - Xun Wang
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin Austin TX 78712 USA
| | | |
Collapse
|
9
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Zhao B, Bian X, Zhuang X, Liu S, Liu Z, Song F. Screening apo-SOD1 conformation stabilizers from natural flavanones using native ion mobility mass spectrometry and fluorescence spectroscopy methods. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9251. [PMID: 34978114 DOI: 10.1002/rcm.9251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE A large number of studies have shown that the production of aberrant and deleterious copper zinc superoxide dismutase (SOD1) species is closely related to amyotrophic lateral sclerosis (ALS). Therefore, it is of great significance to screen effective inhibitors of misfolding and aggregation of SOD1 for treating ALS disease. METHODS The interaction between flavanone compounds with apo-SOD1was investigated using native electrospray ion mobility mass spectrometry (native ESI-IM-MS). Binding affinities of ligands were compared using native MS, ESI-MS/MS, collision-induced unfolding, and competitive experiments. The effect of ligands on apo-SOD1 aggregation was investigated using the fluorescence spectroscopy method. RESULTS The results of MS showed that the binding affinity of liquiritin apioside was the strongest, better than the corresponding monosaccharide and aglycone, indicating that the presence and the number of glycosyl group are beneficial to enhance ligand affinity to protein. The results of fluorescence spectroscopy for inhibiting protein aggregation in vitro were consistent with the binding affinity. In addition, the results of the collision-induced unfolding indicated that liquiritin apioside can slow down the unfolding of the protein. Meanwhile, the results of competition experiment suggested that liquiritin apiosides share different binding sites with naringin and 5-fluorouridine, which are significant for the structural stability of SOD1. CONCLUSIONS This study revealed that the binding of liquiritin apioside can stabilize apo-SOD1 dimer and inhibit the aggregation of apo-SOD1, and illustrated that native ESI-IM-MS is a powerful tool for providing insight into investigating the structure-activity relationship between small molecules and protein, and screening protein conformation stabilizers.
Collapse
Affiliation(s)
- Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Muti-Omics Research, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinyu Bian
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
11
|
Edwards HM, Wu HT, Julian RR, Jackson GP. Differentiating aspartic acid isomers and epimers with charge transfer dissociation mass spectrometry (CTD-MS). Analyst 2022; 147:1159-1168. [PMID: 35188507 DOI: 10.1039/d1an02279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: L-Asp, L-isoAsp, D-Asp, and D-isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form cn+57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the L- and D forms of Asp and isoAsp could also be differentiated based on the relative abundance of y- and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R, which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides.
Collapse
Affiliation(s)
- Halle M Edwards
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| | - Hoi-Ting Wu
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, CA, USA
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA. .,Department of Forensic and Investigative Science, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
12
|
Pope BL, Joaquin D, Hickey JT, Mismash N, Heravi T, Shrestha J, Arslanian AJ, Mortensen DN, Dearden DV. Multi-CRAFTI: Relative Collision Cross Sections from Fourier Transform Ion Cyclotron Resonance Mass Spectrometric Line Width Measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:131-140. [PMID: 34928604 DOI: 10.1021/jasms.1c00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Determination of collision cross sections (CCS) using the cross-sectional areas by the Fourier transform ion cyclotron resonance (CRAFTI) technique is limited by the requirement that accurate pressures in the trapping cell of the mass spectrometer must be known. Experiments must also be performed in the energetic hard-sphere regime such that ions decohere after single collisions with neutrals; this limits application to ions that are not much more massive than the neutrals. To mitigate these problems, we have resonantly excited two (or more) ions of different m/z to the same center-of-mass kinetic energy in a single experiment, subjecting them to identical neutral pressures. We term this approach "multi-CRAFTI". This facilitates measurement of relative CCS without requiring knowledge of the pressure and enables determination of absolute CCS using internal standards. Experiments with tetraalkylammonium ions yield CCS in reasonable agreement with the one-ion-at-a-time CRAFTI approach and with ion mobility spectrometry (IMS) when differences in collision energetics are taken into account (multi-CRAFTI generally yields smaller CCS than does IMS due to the higher collision energies employed in multi-CRAFTI). Comparison of multi-CRAFTI and IMS results with CCS calculated from structures computed at the M06-2X/6-31+G* level of theory using projection approximation or trajectory method values, respectively, indicates that the computed structures have CCS increasingly smaller than the experimental CCS as m/z increases, implying the computational model overestimates interactions between the alkyl arms. For ions that undergo similar collisional decoherence processes, relative CCS reach constant values at lower collision energies than do absolute CCS values, suggesting a means of increasing the accessible upper m/z limit by employing multi-CRAFTI.
Collapse
Affiliation(s)
- Brigham L Pope
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Daniel Joaquin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Jacob T Hickey
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Noah Mismash
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Jamir Shrestha
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Daniel N Mortensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
13
|
Yin Z, Du M, Chen D, Zhang W, Huang W, Wu X, Yan S. Rapid structural discrimination of IgG antibodies by multicharge-state collision-induced unfolding. RSC Adv 2021; 11:36502-36510. [PMID: 35494361 PMCID: PMC9043582 DOI: 10.1039/d1ra06486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin G (IgG) antibodies are an important class of biotherapeutics that target various diseases, such as cancers, neurodegenerative disorders, and autoimmune diseases, yet rapid discrimination of IgG antibodies remains a great challenge due to heterogeneity, flexibility, and large size. Herein, we demonstrate a simplified multicharge-state collision-induced unfolding (CIU) method for rapid differentiation of four IgG isotypes that differ in terms of the numbers and patterns of disulfide bonds, bypassing tedious single charge-state selection in advance. The results presented herein reveal that gas-phase unfolding behaviors have a strong dependence on charge states outside IgG surfaces; therefore, multicharge-state CIU analysis of IgG subtypes could offer a great opportunity to gain deeper insights into their gas-phase structural differentiation. The full discrimination of IgG antibody isoforms that possess different disulfide bond numbers and even subtle disulfide bonding patterns can be achieved based on their charge-dependent gas-phase unfolding behaviors and root-mean square deviation in CIU difference spectra. Taken together, the incorporation of all charge states observed in a native ion mobility-mass spectrometry (IM-MS) experiment to CIU analysis could make this strategy sensitive to more subtle structural discrepancies, facilitating the rapid discrimination and evaluation of innovative structurally similar biotherapeutic candidates with unexplored functions.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Mingyi Du
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Dong Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| | - Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University Guangzhou 510642 China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou 510640 China
| |
Collapse
|
14
|
Vimer S, Ben-Nissan G, Marty M, Fleishman SJ, Sharon M. Direct-MS analysis of antibody-antigen complexes. Proteomics 2021; 21:e2000300. [PMID: 34310051 PMCID: PMC8595693 DOI: 10.1002/pmic.202000300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 11/05/2022]
Abstract
In recent decades, antibodies (Abs) have attracted the attention of academia and the biopharmaceutical industry due to their therapeutic properties and versatility in binding a vast spectrum of antigens. Different engineering strategies have been developed for optimizing Ab specificity, efficacy, affinity, stability and production, enabling systematic screening and analysis procedures for selecting lead candidates. This quality assessment is critical but usually demands time-consuming and labor-intensive purification procedures. Here, we harnessed the direct-mass spectrometry (direct-MS) approach, in which the analysis is carried out directly from the crude growth media, for the rapid, structural characterization of designed Abs. We demonstrate that properties such as stability, specificity and interactions with antigens can be defined, without the need for prior purification.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Marty
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sarel J. Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
17
|
Raval S, Sarpe V, Hepburn M, Crowder DA, Zhang T, Viner R, Schriemer DC. Improving Spectral Validation Rates in Hydrogen-Deuterium Exchange Data Analysis. Anal Chem 2021; 93:4246-4254. [PMID: 33592142 DOI: 10.1021/acs.analchem.0c05045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The data analysis practices associated with hydrogen-deuterium exchange mass spectrometry (HX-MS) lag far behind that of most other MS-based protein analysis tools. A reliance on external tools from other fields and a persistent need for manual data validation restrict this powerful technology to the expert user. Here, we provide an extensive upgrade to the HX data analysis suite available in the Mass Spec Studio in the form of two new apps (HX-PIPE and HX-DEAL), completing a workflow that provides an HX-tailored peptide identification capability, accelerated validation routines, automated spectral deconvolution strategies, and a rich set of exportable graphics and statistical reports. With these new tools, we demonstrate that the peptide identifications obtained from undeuterated samples generated at the start of a project contain information that helps predict and control the extent of manual validation required. We also uncover a large fraction of HX-usable peptides that remains unidentified in most experiments. We show that automated spectral deconvolution routines can identify exchange regimes in a project-wide manner, although they remain difficult to accurately assign in all scenarios. Taken together, these new tools provide a robust and complete solution suitable for the analysis of high-complexity HX-MS data.
Collapse
Affiliation(s)
- Shaunak Raval
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Vladimir Sarpe
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| | - Terry Zhang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Rosa Viner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - David C Schriemer
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N-4N1.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada T2N-4N1
| |
Collapse
|
18
|
Glycoproteomics Technologies in Glycobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:413-434. [PMID: 33205259 DOI: 10.1007/10_2020_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glycosylation is a key factor determining the pharmacological properties of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics, and immunogenicity. As such, comprehensive information about glycosylation of biotherapeutics is critical to demonstrate similarity. Regulatory agencies also require extensive documentation of the comprehensive analyses of glycosylation-related critical quality attributes (CQAs) during the development, manufacturing, and release of biosimilars. Mass spectrometry has catalysed tremendous advancements in the characterisation of glycosylation CQAs of biotherapeutics. Here we provide a perspective overview on the MS-based technologies relevant for biotherapeutic product characterisation with an emphasis on the recent developments that allow determination of glycosylation features such as site of glycosylation, sialic acid linkage, glycan structure, and content.
Collapse
|
19
|
Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE, Morgenstern KR, Georgiou G, Brodbelt JS. Mapping a Conformational Epitope of Hemagglutinin A Using Native Mass Spectrometry and Ultraviolet Photodissociation. Anal Chem 2020; 92:11869-11878. [PMID: 32867493 PMCID: PMC7808878 DOI: 10.1021/acs.analchem.0c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Révész Á, Rokob TA, Jeanne Dit Fouque D, Hüse D, Háda V, Turiák L, Memboeuf A, Vékey K, Drahos L. Optimal Collision Energies and Bioinformatics Tools for Efficient Bottom-up Sequence Validation of Monoclonal Antibodies. Anal Chem 2019; 91:13128-13135. [PMID: 31518108 DOI: 10.1021/acs.analchem.9b03362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rigorous validation of amino acid sequence is fundamental in the characterization of original and biosimilar protein biopharmaceuticals. Widely accepted workflows are based on bottom-up mass spectrometry, and they often require multiple techniques and significant manual work. Here, we demonstrate that optimization of a set of tandem mass spectroscopy (MS/MS) collision energies and automated combination of all available information in the measurements can increase the sequence validated by one technique close to the inherent limits. We created a software (called "Serac") that consumes results of the Mascot database search engine and identifies the amino acids validated by bottom-up MS/MS experiments using the most rigorous, industrially acceptable definition of sequence coverage (we term this "confirmed sequence coverage"). The software can combine spectra at the level of amino acids or fragment ions to exploit complementarity, provides full transparency to justify validation, and reduces manual effort. With its help, we investigated collision energy dependence of confirmed sequence coverage of individual peptides and full proteins on trypsin-digested monoclonal antibody samples (rituximab and trastuzumab). We found the energy dependence to be modest, but we demonstrated the benefit of using spectra taken at multiple energies. We describe a workflow based on 2-3 LC-MS/MS runs, carefully selected collision energies, and a fragment ion level combination, which yields ∼85% confirmed sequence coverage, 25%-30% above that from a basic proteomics protocol. Further increase can mainly be expected from alternative digestion enzymes or fragmentation techniques, which can be seamlessly integrated to the processing, thereby allowing effortless validation of full sequences.
Collapse
Affiliation(s)
- Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Tibor András Rokob
- Theoretical Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Dany Jeanne Dit Fouque
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Dániel Hüse
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Viktor Háda
- Analytical Department of Biotechnology , Gedeon Richter Plc , POB 27, H-1475 Budapest 10 , Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - Antony Memboeuf
- UMR CNRS 6521, CEMCA , Université de Bretagne Occidentale , 6 Av. Le Gorgeu , 29238 Brest Cedex 3 , France
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar Tudósok körútja 2 , H-1117 , Budapest , Hungary
| |
Collapse
|
22
|
Polasky DA, Dixit SM, Vallejo DD, Kulju KD, Ruotolo BT. An Algorithm for Building Multi-State Classifiers Based on Collision-Induced Unfolding Data. Anal Chem 2019; 91:10407-10412. [DOI: 10.1021/acs.analchem.9b02650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel A. Polasky
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sugyan M. Dixit
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kathryn D. Kulju
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Brown KA, Rajendran S, Dowd J, Wilson DJ. Rapid characterization of structural and functional similarity for a candidate bevacizumab (Avastin) biosimilar using a multipronged mass‐spectrometry‐based approach. Drug Test Anal 2019; 11:1207-1217. [DOI: 10.1002/dta.2609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kerene A. Brown
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| | | | - Jason Dowd
- Apobiologix (division of Apotex Inc.) Toronto ON Canada
| | - Derek J. Wilson
- Chemistry DepartmentYork University Toronto ON Canada
- The Centre for Research in Mass SpectrometryYork University Toronto ON Canada
| |
Collapse
|
24
|
Zhao B, Zhuang X, Bian X, Liu S, Liu Z, Song F. Stabilities of superoxide dismutase and metal-free superoxide dismutase studied by electrospray ionization ion mobility mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:894-896. [PMID: 30861216 DOI: 10.1002/rcm.8426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Bing Zhao
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Ühemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| | - Xiaoyu Zhuang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinyu Bian
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Ühemistry and Engineering, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
25
|
Upton R, Migas LG, Pacholarz KJ, Beniston RG, Estdale S, Firth D, Barran PE. Hybrid mass spectrometry methods reveal lot-to-lot differences and delineate the effects of glycosylation on the tertiary structure of Herceptin®. Chem Sci 2019; 10:2811-2820. [PMID: 30997002 PMCID: PMC6425993 DOI: 10.1039/c8sc05029e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/12/2019] [Indexed: 12/23/2022] Open
Abstract
To quantify the measurable variations in the structure of a biopharmaceutical product we systematically evaluate three lots of Herceptin®, two mAb standards and an intact Fc-hinge fragment. Each mAb is examined in three states; glycan intact, truncated (following endoS2 treatment) and fully deglycosylated. Despite equivalence at the intact protein level, each lot of Herceptin® gives a distinctive signature in three different mass spectrometry approaches. Ion mobility mass spectrometry (IM-MS) shows that in the API, the attached N-glycans reduce the conformational spread of each mAb by 10.5-25%. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) data support this, with lower global deuterium uptake in solution when comparing intact to the fully deglycosylated protein. HDX-MS and activated IM-MS map the influence of glycans on the mAb and reveal allosteric effects which extend far beyond the Fc domains into the Fab region. Taken together, these findings and the supplied interactive data sets establish acceptance criteria with application for MS based characterisation of biosimilars and novel therapeutic mAbs.
Collapse
Affiliation(s)
- Rosie Upton
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Lukasz G Migas
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Kamila J Pacholarz
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | | | - Sian Estdale
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - David Firth
- Covance Laboratories Ltd. , Otley Road , Harrogate , HG3 1PY , UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology , Michael Barber Centre for Collaborative Mass Spectrometry , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| |
Collapse
|
26
|
Beck A, D’Atri V, Ehkirch A, Fekete S, Hernandez-Alba O, Gahoual R, Leize-Wagner E, François Y, Guillarme D, Cianférani S. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: present and future. Expert Rev Proteomics 2019; 16:337-362. [DOI: 10.1080/14789450.2019.1578215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alain Beck
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Anthony Ehkirch
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Rabah Gahoual
- Unité de Technologies Biologiques et Chimiques pour la Santé (UTCBS), Paris 5-CNRS UMR8258 Inserm U1022, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Emmanuel Leize-Wagner
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Yannis François
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS), UMR 7140, Université de Strasbourg, CNRS, Strasbourg, France
| | - Davy Guillarme
- Biologics CMC and Developability, IRPF - Centre d’Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
27
|
Polasky DA, Dixit SM, Fantin SM, Ruotolo BT. CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data. Anal Chem 2019; 91:3147-3155. [DOI: 10.1021/acs.analchem.8b05762] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel A. Polasky
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sugyan M. Dixit
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sarah M. Fantin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Structural mass spectrometry comes of age: new insight into protein structure, function and interactions. Biochem Soc Trans 2019; 47:317-327. [DOI: 10.1042/bst20180356] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
Abstract
Mass spectrometry (MS) provides an impressive array of information about the structure, function and interactions of proteins. In recent years, many new developments have been in the field of native MS and these exemplify a new coming of age of this field. In this mini review, we connect the latest methodological and instrumental developments in native MS to the new insights these have enabled. We highlight the prominence of an increasingly common strategy of using hybrid approaches, where multiple MS-based techniques are used in combination, and integrative approaches, where MS is used alongside other techniques such as ion-mobility spectrometry. We also review how the emergence of a native top-down approach, which combines native MS with top-down proteomics into a single experiment, is the pièce de résistance of structural mass spectrometry's coming of age. Finally, we outline key developments that have enabled membrane protein native MS to shift from being extremely challenging to routine, and how this technique is uncovering inaccessible details of membrane protein–lipid interactions.
Collapse
|
29
|
Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Evolution of Structural Biology through the Lens of Mass Spectrometry. Anal Chem 2019; 91:142-155. [PMID: 30457831 PMCID: PMC6472977 DOI: 10.1021/acs.analchem.8b05014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T. Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Emily E. Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jessica A. Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
30
|
Tian Y, Lippens JL, Netirojjanakul C, Campuzano IDG, Ruotolo BT. Quantitative collision-induced unfolding differentiates model antibody-drug conjugates. Protein Sci 2018; 28:598-608. [PMID: 30499138 DOI: 10.1002/pro.3560] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022]
Abstract
Antibody-drug conjugates (ADCs) are antibody-based therapeutics that have proven to be highly effective cancer treatment platforms. They are composed of monoclonal antibodies conjugated with highly potent drugs via chemical linkers. Compared to cysteine-targeted chemistries, conjugation at native lysine residues can lead to a higher degree of structural heterogeneity, and thus it is important to evaluate the impact of conjugation on antibody conformation. Here, we present a workflow involving native ion mobility (IM)-MS and gas-phase unfolding for the structural characterization of lysine-linked monoclonal antibody (mAb)-biotin conjugates. Following the determination of conjugation states via denaturing Liquid Chromatography-Mass Spectrometry (LC-MS) measurements, we performed both size exclusion chromatography (SEC) and native IM-MS measurements in order to compare the structures of biotinylated and unmodified IgG1 molecules. Hydrodynamic radii (Rh) and collision cross-sectional (CCS) values were insufficient to distinguish the conformational changes in these antibody-biotin conjugates owing to their flexible structures and limited instrument resolution. In contrast, collision induced unfolding (CIU) analyses were able to detect subtle structural and stability differences in the mAb upon biotin conjugation, exhibiting a sensitivity to mAb conjugation that exceeds native MS analysis alone. Destabilization of mAb-biotin conjugates was detected by both CIU and differential scanning calorimetry (DSC) data, suggesting a previously unknown correlation between the two measurement tools. We conclude by discussing the impact of IM-MS and CIU technologies on the future of ADC development pipelines.
Collapse
Affiliation(s)
- Yuwei Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| | - Jennifer L Lippens
- Amgen Discovery Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, California, 91320
| | - Chawita Netirojjanakul
- Amgen Discovery Research, Hybrid Modality Engineering, Amgen, Thousand Oaks, California, 91320
| | - Iain D G Campuzano
- Amgen Discovery Research, Discovery Attribute Sciences, Amgen, Thousand Oaks, California, 91320
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|