1
|
Kawaguchi M, Yonetani Y, Mizuguchi T, Spratt SJ, Asanuma M, Shimizu H, Sasaki M, Ozeki Y. Visualization of Modified Bisarylbutadiyne-Tagged Small Molecules in Live-Cell Nuclei by Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:6643-6651. [PMID: 38626411 DOI: 10.1021/acs.analchem.3c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Visualizing the distribution of small-molecule drugs in living cells is an important strategy for developing specific, effective, and minimally toxic drugs. As an alternative to fluorescence imaging using bulky fluorophores or cell fixation, stimulated Raman scattering (SRS) imaging combined with bisarylbutadiyne (BADY) tagging enables the observation of small molecules closer to their native intracellular state. However, there is evidence that the physicochemical properties of BADY-tagged analogues of small-molecule drugs differ significantly from those of their parent drugs, potentially affecting their intracellular distribution. Herein, we developed a modified BADY to reduce deviations in physicochemical properties (in particular, lipophilicity and membrane permeability) between tagged and parent drugs, while maintaining high Raman activity in live-cell SRS imaging. We highlight the practical application of this approach by revealing the nuclear distribution of a modified BADY-tagged analogue of JQ1, a bromodomain and extra-terminal motif inhibitor with applications in targeted cancer therapy, in living HeLa cells. The modified BADY, methoxypyridazyl pyrimidyl butadiyne (MPDY), revealed intranuclear JQ1, while BADY-tagged JQ1 did not show a clear nuclear signal. We anticipate that the present approach combining MPDY tagging with live-cell SRS imaging provides important insight into the behavior of intracellular drugs and represents a promising avenue for improving drug development.
Collapse
Affiliation(s)
| | - Yuki Yonetani
- Future Technology R&D Center, Canon Inc., Tokyo 146-8501, Japan
| | - Takaha Mizuguchi
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Spencer J Spratt
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
| | - Masato Asanuma
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroki Shimizu
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Masato Sasaki
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo 134-8630, Japan
| | - Yasuyuki Ozeki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo 153-8904, Japan
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Schuler I, Schuler M, Frick T, Jimenez D, Maghnouj A, Hahn S, Zewail R, Gerwert K, El-Mashtoly SF. Efficacy of tyrosine kinase inhibitors examined by a combination of Raman micro-spectroscopy and a deep wavelet scattering-based multivariate analysis framework. Analyst 2024; 149:2004-2015. [PMID: 38426854 DOI: 10.1039/d3an02235h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
HER2 is a crucial therapeutic target in breast cancer, and the survival rate of breast cancer patients has increased because of this receptor's inhibition. However, tumors have shown resistance to this therapeutic strategy due to oncogenic mutations that decrease the binding of several HER2-targeted drugs, including lapatinib, and confer resistance to this drug. Neratinib can overcome this drug resistance and effectively inhibit HER2 signaling and tumor growth. In the present study, we examined the efficacy of lapatinib and neratinib using breast cancer cells by Raman microscopy combined with a deep wavelet scattering-based multivariate analysis framework. This approach discriminated between control cells and drug-treated cells with high accuracy, compared to classical principal component analysis. Both lapatinib and neratinib induced changes in the cellular biochemical composition. Furthermore, the Raman results were compared with the results of several in vitro assays. For instance, drug-treated cells exhibited (i) inhibition of ERK and AKT phosphorylation, (ii) inhibition of cellular proliferation, (iii) cell-cycle arrest, and (iv) apoptosis as indicated by western blotting, real-time cell analysis (RTCA), cell-cycle analysis, and apoptosis assays. Thus, the observed Raman spectral changes are attributed to cell-cycle arrest and apoptosis. The results also indicated that neratinib is more potent than lapatinib. Moreover, the uptake and distribution of lapatinib in cells were visualized through its label-free marker bands in the fingerprint region using Raman spectral imaging. These results show the prospects of Raman microscopy in drug evaluation and presumably in drug discovery.
Collapse
Affiliation(s)
- Irina Schuler
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Martin Schuler
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Tatjana Frick
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Dairovys Jimenez
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Rami Zewail
- Department of Computer Science & Engineering, Egypt-Japan University of Science and Technology, New Borg El-Arab, Egypt
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr-University Bochum, Bochum, Germany.
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
- Biotechnology Program, Institute of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El-Arab, Egypt
| |
Collapse
|
3
|
Phatak N, Bhattacharya S, Shah D, Manthalkar L, Sreelaya P, Jain A. CD44 targeted delivery of hyaluronic acid-coated polymeric nanoparticles against colorectal cancer. Nanomedicine (Lond) 2023; 18:1613-1634. [PMID: 37830460 DOI: 10.2217/nnm-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Aim: To develop hyaluronic acid (HA)-coated poly-lactic-co-glycolic acid (PLGA)-polysarcosine (PSAR) coupled sorafenib tosylate (SF) polymeric nanoparticles for targeted colon cancer therapy. Materials & methods: PLGA-PSAR shells were encapsulated with SF via nanoprecipitation. Interactions were examined with transmission electron microscopy, revealing formulation component interactions. Results: The optimized HA-coated polymeric nanoparticles (238.8 nm, -6.1 mV, 68.361% entrapment) displayed enhanced controlled release of SF. These formulations showed superior cytotoxicity against HCT116 cell lines compared with free drug (p < 0.05). In vivo tests on male albino Wistar rats demonstrated improved pharmacokinetics, targeting and biocompatibility. HA-coated PLGA-PSAR-coupled SF polymeric nanoparticles hold potential for effective colorectal therapy. Conclusion: Colon cancer may be precisely targeted by HA-coated PLGA-PSA-coupled SF polymeric nanoparticles.
Collapse
Affiliation(s)
- Niraj Phatak
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Disha Shah
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Laxmi Manthalkar
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Putrevu Sreelaya
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| | - Arinjay Jain
- School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Deemed-to-Be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
4
|
Wang L, Wang J, Chen L. TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol 2023:1-7. [PMID: 36541209 DOI: 10.1080/08923973.2022.2160731] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ferroptosis is involved in the drug resistance mechanisms of some tumors. The present study aimed to explore the role of tissue inhibitor of matrix metalloprotease 1 (TIMP1) in sorafenib-triggered ferroptosis in colorectal cancer (CRC). METHODS HCT-8 CRC cell lines were generated that were sorafenib-resistant or that under- or overexpressed TIMP1. The levels of reactive oxygen species (ROS), iron, and malondialdehyde (MDA) were compared across the different cell lines. The half-maximal inhibitory concentration of sorafenib against the different lines was determined based on cell viability. Expression of ferroptosis-related genes and the corresponding proteins was determined by quantitative RT-PCR or western blotting. RESULTS TIMP1 overexpression induced sorafenib resistance in HCT-8 cells. TIMP1 knockdown repressed the activation of the PI3K/Akt pathway and reduced levels of glutathione peroxidase 4 (GPX4), enhancing sorafenib-induced ferroptosis. This led to accumulation of ROS, iron, and MDA. Giving sorafenib and the GPX4 inhibitor RSL3 to sorafenib-resistant HCT-8 cells induced ferroptosis, leading to elevated levels of iron and lipid peroxides, ultimately reducing cell viability. TIMP1 depletion in CRC cells enhances sorafenib-triggered ferroptosis by reducing PI3K/Akt axis signal transduction. CONCLUSION The combination of sorafenib and GPX4 inhibitors such as RSL3 may be a promising therapy against CRC.
Collapse
Affiliation(s)
- Ling Wang
- Nursing Department, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Jin Wang
- Nursing Department, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Ling Chen
- Department of Pharmacy, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| |
Collapse
|
5
|
YOKOTA S, YONEZAWA T, MOMOI Y, MAEDA S. Sorafenib inhibits tumor cell growth and angiogenesis in canine transitional cell carcinoma. J Vet Med Sci 2022; 84:666-674. [PMID: 35387955 PMCID: PMC9177404 DOI: 10.1292/jvms.21-0478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/22/2022] [Indexed: 11/22/2022] Open
Abstract
Canine transitional cell carcinoma (cTCC) is the most common naturally occurring bladder cancer and accounts for 1-2% of canine tumors. The prognosis is poor due to the high rate of invasiveness and metastasis at diagnosis. Sorafenib is a multi-kinase inhibitor that targets rapidly accelerated fibrosarcoma (RAF), vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived growth factor receptor-β (PDGFR-β), and KIT. In previous studies, a somatic mutation of B-rapidly accelerated fibrosarcoma (BRAF) and expressions of VEGFR-2 and PDGFR-β were observed in over 80% of patients with cTCC. Therefore, in this study, we investigated the anti-tumor effects of sorafenib on cTCC. Five cTCC cell lines were used in the in vitro experiments. All five cTCC cell lines expressed VEGFR-2 and PDGFR-β and sorafenib showed growth inhibitory effect on cTCC cell lines. Cell cycle arrest at the G0/G1 phase and subsequent apoptosis were observed following sorafenib treatment. In the in vivo experiments, cTCC (Sora) cells were subcutaneously injected into nude mice. Mice were orally administered with sorafenib (30 mg/kg daily) for 14 days. Sorafenib inhibited tumor growth compared to vehicle control. The necrotic area in the tumor tissues was increased in the sorafenib-treated group. Sorafenib also inhibited angiogenesis in the tumor microenvironment. Thus, sorafenib may be potential therapeutic agent for cTCC via its direct anti-tumor effect and inhibition of angiogenesis.
Collapse
Affiliation(s)
- Shohei YOKOTA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro YONEZAWA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki MOMOI
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo MAEDA
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Notarstefano V, Pisani M, Bramucci M, Quassinti L, Maggi F, Vaccari L, Parlapiano M, Giorgini E, Astolfi P. A vibrational in vitro approach to evaluate the potential of monoolein nanoparticles as isofuranodiene carrier in MDA-MB 231 breast cancer cell line: New insights from Infrared and Raman microspectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120735. [PMID: 34923374 DOI: 10.1016/j.saa.2021.120735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Isofuranodiene (IFD) is a sesquiterpene occurring in several plant species, which proved to have multiple anticancer activities. IFD has a lipophilic nature and, hence, a very low water solubility and a poor bioavailability; moreover, it is not stable, undergoing the "Cope rearrangement" to the less active curzerene. The use of appropriate delivery systems can thus be considered as a valid tool to enhance IFD bioavailability, solubility, stability and at the same time also to improve its intracellular uptake and pharmacological activity. Within this frame, monoolein (GMO) nanoparticles loaded with IFD were prepared and their enhanced anticancer activity, compared to pristine IFD, was assessed. In this study, for the first time, an in vitro Fourier Transform Infrared and Raman Microspectroscopy approaches were exploited to evaluate the effects of IFD, alone and loaded in GMO nanoparticles, on MDA-MB 231 breast cancer cell line. The anti-cancer effects of IFD were evidenced by both the spectroscopic techniques and discriminated from the GMO-induced changes in the culture environment; moreover, a synergistic effect of IFD and GMO administration can be envisaged by the experimental results.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Michela Pisani
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, I-62032 Camerino, Italy.
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, SISSI Beamline, s.s. 14 km 163,500 in Area Science Park, I-34149 Basovizza, Trieste, Italy.
| | - Marco Parlapiano
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| | - Paola Astolfi
- Department of Materials, Environmental Sciences and Urban Planning, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy.
| |
Collapse
|
7
|
El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021; 94:120-142. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
8
|
Notarstefano V, Sabbatini S, Pro C, Belloni A, Orilisi G, Rubini C, Byrne HJ, Vaccari L, Giorgini E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: new evidence of acquired cisplatin chemoresistance. Analyst 2021; 145:8038-8049. [PMID: 33063801 DOI: 10.1039/d0an01623c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral Squamous Cells Carcinoma (OSCC) is characterised by the risk of recurrence and the onset of a refractoriness response to chemotherapy drugs. These phenomena have been recently related to a subpopulation of Cancer Stem Cells (CSCs), which have either an innate or acquired drug resistance, triggered by chemotherapy treatments. In this light, to precisely target chemotherapy regimens, it is essential to improve knowledge on CSCs, with a particular focus on their molecular features. In this work, a subpopulation of CSCs, isolated by tumour sphere formation from primary OSCC cells, were treated with cisplatin for 16, 24 and 48 hours and analysed by infrared absorption and Raman microspectroscopies. CSC spectral data were compared with those obtained in previous work, for primary OSCC cells treated under the same conditions. Routine viability/apoptosis cell-based assays evidenced in CSCs and primary OSCCs, a similar degree of sensitivity to the drug at 24 hours, while a reversion of the conventional monotonic time response exhibited by OSCCs was shown by CSCs at 48 hours. This peculiar time response was also supported by the analysis of IR and Raman data, which pinpointed alterations in the lipid composition and DNA conformation in CSCs. The results obtained suggest that CSCs, although sharing with OSCC cells a similar sensitivity to cisplatin, display the onset of a mechanism of chemoresistance and enrichment of resistant CSCs as a result of drug treatment, shedding new light on the severe issue of refractoriness of some patients to chemotherapy conventionally used for OSCC.
Collapse
Affiliation(s)
- Valentina Notarstefano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Synthesis and Characterization of Chitosan-Based Nanodelivery Systems to Enhance the Anticancer Effect of Sorafenib Drug in Hepatocellular Carcinoma and Colorectal Adenocarcinoma Cells. NANOMATERIALS 2021; 11:nano11020497. [PMID: 33669332 PMCID: PMC7920308 DOI: 10.3390/nano11020497] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
The formation of two nanodelivery systems, Sorafenib (SF)-loaded chitosan (SF-CS) and their folate-coated (SF-CS-FA) nanoparticles (NPs), were developed to enhance SF drug delivery on human Hepatocellular Carcinoma (HepG2) and Colorectal Adenocarcinoma (HT29) cell lines. The ionic gelation method was adopted to synthesize the NPs. The characterizations were performed by DLS, FESEM, TEM, XRD, TGA, FTIR, and UV-visible spectroscopy. It was found that 83.7 ± 2.4% and 87.9 ± 1.1% of encapsulation efficiency; 18.2 ± 1.3% and 19.9 ± 1.4% of loading content; 76.3 ± 13.7 nm and 81.6 ± 12.9 nm of hydrodynamic size; 60–80 nm and 70–100 nm of TEM; and FESEM sizes of near-spherical shape were observed, respectively, for SF-CS and SF-CS-FA nanoparticles. The SF showed excellent release from the nanoparticles under pH 4.8 PBS solution, indicating a good delivery system for tumor cells. The cytotoxicity study revealed their better anticancer action towards HepG2 and HT29 cell lines compared to the free sorafenib. Moreover, both NPs systems showed negligible toxicity to normal Human Dermal Fibroblast adult cells (HDFa). This is towards an enhanced anticancer drug delivery system with sustained-release properties for better cancer management.
Collapse
|
10
|
Zeng J, Zhao W, Yue S. Coherent Raman Scattering Microscopy in Oncology Pharmacokinetic Research. Front Pharmacol 2021; 12:630167. [PMID: 33613294 PMCID: PMC7887381 DOI: 10.3389/fphar.2021.630167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022] Open
Abstract
The high attrition rates of anti-cancer drugs during clinical development remains a bottleneck problem in pharmaceutical industry. This is partially due to the lack of quantitative, selective, and rapid readouts of anti-cancer drug activity in situ with high resolution. Although fluorescence microscopy has been commonly used in oncology pharmacological research, fluorescent labels are often too large in size for small drug molecules, and thus may disturb the function or metabolism of these molecules. Such challenge can be overcome by coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, high spatial resolution, and high-speed imaging, without the need of any labeling. Coherent Raman scattering microscopy has tremendously improved the understanding of pharmaceutical materials in the solid state, pharmacokinetics of anti-cancer drugs and nanocarriers in vitro and in vivo. This review focuses on the latest applications of coherent Raman scattering microscopy as a new emerging platform to facilitate oncology pharmacokinetic research.
Collapse
Affiliation(s)
- Junjie Zeng
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenying Zhao
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuhua Yue
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Gala de Pablo J, Chisholm DR, Ambler CA, Peyman SA, Whiting A, Evans SD. Detection and time-tracking activation of a photosensitiser on live single colorectal cancer cells using Raman spectroscopy. Analyst 2020; 145:5878-5888. [PMID: 32662453 DOI: 10.1039/d0an01023e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Raman spectroscopy has been used to observe uptake, metabolism and response of single-cells to drugs. Photodynamic therapy is based on the use of light, a photosensitiser and oxygen to destroy tumour tissue. Here, we used single-cell Raman spectroscopy to study the uptake and intracellular degradation of a novel photosensitiser with a diphenylacetylene structure, DC473, in live single-cells from colorectal adenocarcinoma cell lines SW480, HT29 and SW620. DC473 was seen to predominantly accumulate in lipid droplets, showing higher accumulation in HT29 and SW620 cells than in SW480 cells, with a broader DC473 peak shifted to higher wavenumbers. DC473 activation and effects were tracked on live single-cells for 5 minutes. Upon exposure to UV light, the DC473 signal intensity dropped, with remaining DC473 shifting towards higher wavenumbers and widening, with a lifetime of approximately 50 seconds. Morphologically, SW480 and SW620 cells showed changes upon photodynamic therapy, whereas HT29 cells showed no changes. Morphological changes correlated with higher remaining DC473 signal after UV exposure. Our research suggests that DC473 forms aggregates within the cells that disaggregate following activation, showing the potential of Raman spectroscopy for the study of time-dependent single-cell pharmacodynamics.
Collapse
Affiliation(s)
- Julia Gala de Pablo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
12
|
Yosef HK, Schütze K. Raman Trapping Microscopy for Non-invasive Analysis of Biological Samples. Methods Mol Biol 2019; 2095:303-317. [PMID: 31858476 DOI: 10.1007/978-1-0716-0191-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Raman microscopy is an emerging tool in biomedicine. It provides label-free and non-invasive analysis of biological cells. Due to its high biochemical specificity, Raman spectroscopy can be used to acquire spectral fingerprints that allow characterizing cells types and states. Here, we present a methodological approach for implementing Raman microscopy in skin cell measurements. Raman spectra can clearly identify keratinocytes, fibroblasts, and melanocytes cells that are involved in the production of autologous skin grafts. Consequently, Raman microscopy is a promising tool that can be used to analyze single cells and to test the quality of therapeutic cell products.
Collapse
|
13
|
Aljakouch K, Hilal Z, Daho I, Schuler M, Krauß SD, Yosef HK, Dierks J, Mosig A, Gerwert K, El-Mashtoly SF. Fast and Noninvasive Diagnosis of Cervical Cancer by Coherent Anti-Stokes Raman Scattering. Anal Chem 2019; 91:13900-13906. [DOI: 10.1021/acs.analchem.9b03395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Mondol AS, El-Mashtoly SF, Frick T, Gerwert K, Popp J, Schie IW. High-content screening Raman spectroscopy (HCS-RS) of panitumumab-exposed colorectal cancer cells. Analyst 2019; 144:6098-6107. [DOI: 10.1039/c9an01176e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Label-free screening for cancer cells exposed to monoclonal antibody-based drugs using HCS-RS.
Collapse
Affiliation(s)
- Abdullah S. Mondol
- Leibniz Institute of Photonics Technology
- 07745 Jena
- Germany
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
| | - Samir F. El-Mashtoly
- Department of Biophysics
- Ruhr University Bochum
- 44780 Bochum
- Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum
| | - Tatjana Frick
- Department of Biophysics
- Ruhr University Bochum
- 44780 Bochum
- Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum
| | - Klaus Gerwert
- Department of Biophysics
- Ruhr University Bochum
- 44780 Bochum
- Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum
| | - Jürgen Popp
- Leibniz Institute of Photonics Technology
- 07745 Jena
- Germany
- Institute of Physical Chemistry
- Friedrich Schiller University Jena
| | - Iwan W. Schie
- Leibniz Institute of Photonics Technology
- 07745 Jena
- Germany
| |
Collapse
|