1
|
Nikkey, Swami S, Sharma N, Saini A. Captivating nano sensors for mercury detection: a promising approach for monitoring of toxic mercury in environmental samples. RSC Adv 2024; 14:18907-18941. [PMID: 38873550 PMCID: PMC11167620 DOI: 10.1039/d4ra02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Mercury, a widespread highly toxic environmental pollutant, poses significant risks to both human health and ecosystems. It commonly infiltrates the food chain, particularly through fish, and water resources via multiple pathways, leading to adverse impacts on human health and the environment. To monitor and keep track of mercury ion levels various methods traditionally have been employed. However, conventional detection techniques are often hindered by limitations. In response to challenges, nano-sensors, capitalizing on the distinctive properties of nanomaterials, emerge as a promising solution. This comprehensive review provides insight into the extensive spectrum of nano-sensor development for mercury detection. It encompasses various types of nanomaterials such as silver, gold, silica, magnetic, quantum dot, carbon dot, and electrochemical variants, elucidating their sensing mechanisms and fabrication. The aim of this review is to offer an in-depth exploration to researchers, technologists, and the scientific community, and understanding of the evolving landscape in nano-sensor development for mercury sensing. Ultimately, this review aims to encourage innovation in the pursuit of efficient and reliable solutions for mercury detection, thereby contributing to advancements in environmental protection and public health.
Collapse
Affiliation(s)
- Nikkey
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Suman Swami
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| |
Collapse
|
2
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
3
|
Song J, Zhao N, Zhao L. Self-assembly and phase transition of gold nanoclusters in natural deep eutectic solvent for visual detection of toxicants in water environment. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Gong WJ, Nan HR, Peng HB, Wang YQ, Dong ZM, Zhang ZB, Cao XH, Liu YH. A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Zhang S, Wang L, Xu T, Zhang X. Luminescent MOF-Based Nanofibers with Visual Monitoring and Antibacterial Properties for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9110-9119. [PMID: 36753500 DOI: 10.1021/acsami.2c21786] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Diabetic wound healing remains as a serious challenge for medical circles that required continuous monitoring and effective management. Herein, the glucose oxidase/carbon dots@copper-metal-organic framework-based nanofibers (GOx/CDs@MOF NFs) were proposed as a multifunctional wound dressing, aiming to visually monitor wound pH and inhibit bacterial infection. In the diabetic wound microenvironment, the GOx/CDs@MOF NFs could convert endogenous glucose into hydroxyl radial (•OH) through the cascade catalytic reaction. In vivo and vitro experimental results confirmed that the GOx/CDs@MOF NFs could efficiently kill bacteria and promote wound healing. Additionally, CDs as a pH fluorescent indicator endowed GOx/CDs@MOF NFs with sensitive and reversible fluorescent sensing behavior to wound pH, and these visual images could also be captured by smartphones and transformed into RGB color mode (red, green, blue) values, allowing for onsite evaluation of the wound status. This multifunctional wound dressing provides a smart and effective solution for diabetic wound management and takes an immeasurable step toward the development of the next generation of digitally visualized wound dressings.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Zn-MOF74 as a “turn-on” fluorescent chemosensor for recognition and detection of water in acetone and Al3+ in ethanol with high selectivity and sensitivity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
He X, Jia H, Sun N, Hou M, Tan Z, Lu X. Fluorescent hydrogels based on oxidized carboxymethyl cellulose with excellent adsorption and sensing abilities for Ag . Int J Biol Macromol 2022; 213:955-966. [PMID: 35690162 DOI: 10.1016/j.ijbiomac.2022.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/20/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Heavy metal contamination in water and soil are harmful and destructive to the environment, it has always been regarded as a big problem. Herein, we developed a self-healing fluorescent hydrogel based on oxidized carboxymethyl cellulose with excellent sensing and adsorption abilities for Ag+. The detection and adsorption effects of hydrogels on heavy metal ions were studied. It turned out that the fluorescent hydrogel has sensitive detection and high adsorption capacity for Ag+, the detection limit was 3.798 μM, and the maximum adsorption capacity was 407 mg/g. The adsorption isotherm fitted the Langmuir model well, and the pseudo-secondary model for adsorption kinetics fitted well. The hydrogel could heal itself without external stimulus, it could be easily regenerated 7 times without loss of adsorption performance. In short, the prepared hydrogel has capability of self-healing, detecting and adsorbing heavy metal ions at the same time, good mechanical strength, these all made it a promising long-life adsorbent and provided a new way for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Hui Jia
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nan Sun
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Miaomiao Hou
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zheping Tan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| |
Collapse
|
9
|
Metal–Organic Frameworks-Mediated Assembly of Gold Nanoclusters for Sensing Applications. JOURNAL OF ANALYSIS AND TESTING 2022; 6:163-177. [PMID: 35572781 PMCID: PMC9076503 DOI: 10.1007/s41664-022-00224-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
|
10
|
Diamantis SA, Pournara AD, Koutsouroubi ED, Moularas C, Deligiannakis Y, Armatas GS, Hatzidimitriou AG, Manos MJ, Lazarides T. Detection and Sorption of Heavy Metal Ions in Aqueous Media by a Fluorescent Zr(IV) Metal-Organic Framework Functionalized with 2-Picolylamine Receptor Groups. Inorg Chem 2022; 61:7847-7858. [PMID: 35523200 DOI: 10.1021/acs.inorgchem.2c00434] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing global environmental pollution due to heavy metal ions raises the importance of research on new multifunctional materials for simultaneous detection and removal of these contaminants from water resources. In this study, we report a microporous 8-connected Zr4+ metal-organic framework (MOF) based on a terephthalate ligand decorated with a chelating 2-picolylamine side group (dMOR-2), which shows highly efficient fluorescence sensing and sorption of heavy metal cations. We demonstrate by detailed fluorescence studies the ability of a water-dispersible composite of dMOR-2 with polyvinylpyrrolidone for real-time detection of Cu2+, Pb2+, and Hg2+ in aqueous media. The limits of detection were found to be below 2 ppb for these species, while the system's performance is not affected by the presence of other potentially competitive ions. In addition, sorption studies showed that a composite of dMOR-2 with calcium alginate (dMOR-2@CaA) is an excellent sorbent for Pb2+ and Cu2+ ions with capacities of 376 ± 15 and 117 ± 4 mg per gram of dMOR-2@CaA, respectively, while displaying the capability for simultaneous removal of various heavy metal ions in low initial concentrations and in the presence of large excesses of other cationic species. Structural and spectroscopic studies with model ligands analogous to our material's receptor unit showed chelation to the 2-picolylamine moiety to be the main binding mode of metal ions to dMOR-2. Overall, dMOR-2 is shown to represent a rare example of a MOF, which combines sensitive fluorescence detection and high sorption capacity for heavy metal ions.
Collapse
Affiliation(s)
- Stavros A Diamantis
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Eirini D Koutsouroubi
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | - Constantinos Moularas
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Gerasimos S Armatas
- Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Greece
| | | | - Manolis J Manos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.,Institute of Materials Science and Computing, University Research Center of Ioannina, 45110 Ioannina, Greece
| | - Theodore Lazarides
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Guo H, Peng L, Wu N, Liu B, Wang M, Chen Y, Pan Z, Liu Y, Yang W. A novel fluorescent Si/CDs for highly sensitive Hg2+ sensing in water environment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Zhang H, Wu S, Xing Z, Wang HB. Turning waste into treasure: chicken eggshell membrane derived fluorescent carbon nanodots for the rapid and sensitive detection of Hg 2+ and glutathione. Analyst 2021; 146:7250-7256. [PMID: 34730569 DOI: 10.1039/d1an01582f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a green, economical, and waste-utilization approach is reported for the synthesis of water-soluble carbon nanodots (C-Dots) with a high fluorescence quantum yield of 19.5%. As a common protein-rich waste, eggshell membrane was selected as a cost-effective and ideal precursor to prepare C-Dots using the microwave method. The as-prepared C-Dots showed a maximum emission at 375 nm with an excitation wavelength at 235 nm. The fluorescent C-Dots were adopted as a sensitive probe for the rapid detection of Hg2+ and glutathione (GSH) based on the fluorescence off and on (turn-off-on) strategy. This was ascribed to the fact that Hg2+ could effectively quench the fluorescence of the C-Dots and GSH was able to prevent fluorescence quenching owing to the specific binding between Hg2+ and GSH. The designed method exhibited a high sensitivity and selectivity towards the detection of Hg2+ and GSH. Under the optimized conditions, the method showed a good linear relationship with Hg2+ concentration in the range from 100 nM to 50 μM with a detection limit of 32.0 nM. For GSH detection, it displayed a linear range from 50 nM to 10 μM with a detection limit of 9.8 nM. Moreover, this method was successfully applied to detect GSH in human serum samples. The eggshell derived fluorescent C-Dots pave the way for economical environmental and biological analyses.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Sifei Wu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Zhenhua Xing
- Xinyang Branch, Henan Province Institute of Boiler and Pressure Vessel Safety Testing, Xingyang 464000, PR China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
15
|
Casteleiro B, Martinho JMG, Farinha JPS. Encapsulation of gold nanoclusters: stabilization and more. NANOSCALE 2021; 13:17199-17217. [PMID: 34622909 DOI: 10.1039/d1nr04939a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
16
|
Zhang K, Zhu G, Wei Y, Zhang L, Shen Y. Engineering of an Upconversion Luminescence Sensing Platform Based on the Competition Effect for Mercury-Ion Monitoring in Green Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8565-8570. [PMID: 34310878 DOI: 10.1021/acs.jafc.1c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurately monitoring mercury ions (Hg2+) in food and agriculture-related matrixes (e.g., green tea) is of great significance to safeguard food safety. Here, we employed upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs) to engineer a cysteine (Cys)-assisted anti-Stokes luminescence sensing platform (UCNPs-AuNPs) for precisely detecting residual Hg2+ in green tea through the competition effect. Initially, AuNPs could effectively quench the luminescence of UCNPs through the luminescence resonance energy transfer process, which was then interrupted by Cys-triggered AuNP aggregation via Au-S, thereby restoring UCNP luminescence. Interestingly, owing to the competition effect with AuNPs toward Cys, Hg2+ could weaken the luminescence restoring efficiency, achieving a Hg2+ concentration-dependent luminescence change. On this basis, a facile, reliable, and sensitive upconversion luminescence sensing platform for monitoring residual Hg2+ in green tea was successfully established. This study offers a novel insight into integrating the competition effect and anti-Stokes luminescence for food- and agriculture-related contaminant monitoring.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Guang Zhu
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yunlong Wei
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institues; School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Wu M, Wang N, Lin Z, Su X. Development of carbon dot-thiochrome-based sensing system for ratiometric fluorescence detection of D-penicillamine. Anal Bioanal Chem 2021; 413:5779-5787. [PMID: 34312692 DOI: 10.1007/s00216-021-03552-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
A simple and rapid ratiometric fluorescent sensing system for D-penicillamine (D-PA) determination is developed based on yellow carbon dots (Y-CDs) combined with thiochrome (oxVB1) for the first time. The oxidization of thiamine (VB1) can be catalyzed by Alkaline-hydrolyzed artemisinin (a-ART) to form oxVB1, which leads to the occurrence of fluorescence emission peak at 466 nm. Furthermore, the oxidation reaction between a-ART and VB1 could be inhibited by D-PA, and accompanied with the decrease of fluorescence at 466 nm. However, the fluorescence peak of Y-CDs as an internal reference at 566 nm was almost unchanged. The ratiometric signal changes contributed to a robust and sensitive D-PA sensing. Under the optimal condition, a good linear response for the D-PA detection was obtained in the ranges of 0.5-50 μM with a detection limit of 0.33 μM. In addition, Y-CDs and thiochrome-based sensing system was applied to D-PA determination in real samples and obtained acceptable results. We developed a new carbon dots/thiochrome fluorescent nanoprobe for ratiometric fluorescence sensing of D-penicillamine.
Collapse
Affiliation(s)
- Maolin Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Zihan Lin
- College of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
18
|
Sun QZ, Zhao B, Chai LY, Liu H, Jin HZ, Liu H. A 3D nickel(II) coordination polymer constructed by mixed- ligand strategy: synthesis, crystal structure and sensing of Hg(II) ion. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1952239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qiao-Zhen Sun
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Bo Zhao
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Li-Yuan Chai
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hao Liu
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hao-Zhe Jin
- School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hui Liu
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP), School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
19
|
Zhang S, Zhang C, Shao X, Guan R, Hu Y, Zhang K, Liu W, Hong M, Yue Q. Dual-emission ratio fluorescence for selective and sensitive detection of ferric ions and ascorbic acid based on one-pot synthesis of glutathione protected gold nanoclusters. RSC Adv 2021; 11:17283-17290. [PMID: 35479669 PMCID: PMC9032689 DOI: 10.1039/d0ra10281d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/04/2021] [Indexed: 01/22/2023] Open
Abstract
A fluorometric method was proposed for the determination of Fe3+ and ascorbic acid (AA) based on blue and red dual fluorescence emissions of glutathione (GSH) stabilized-gold nanoclusters (AuNCs). AuNCs were synthesized from GSH and tetrachloroauric acid. The fluorescence peaks of AuNCs were at 425 nm and 585 nm, respectively. In the presence of Fe3+, the fluorescence peak at 425 nm can be enhanced and that at 585 nm can be quenched. There is a good linear relationship between the fluorescence intensity ratio for the 425 and 585 nm peaks (F 425/F 585) and the concentration of Fe3+ in the range of 0.75-125 μM. However, when AA was added to the AuNCs-Fe3+ system, the value of F 425/F 585 decreased consistently with the concentration of AA in the range of 0.25-35 μM. The limit of detection for Fe3+ and AA was 227 and 75.8 nM, respectively. The interaction between AuNCs and Fe3+ can induce the ligand-metal charge transfer (LMCT) effect leading to the fluorescence increment at 425 nm, while AA can reduce Fe3+ to Fe2+. The production of Fe2+ can not enhance or quench the fluorescence of AuNCs. By comparison with previous literature, the AuNCs prepared here show two fluorescence peaks without additional fluorescence labels. Furthermore, the method was successfully applied in the determination of Fe3+ and AA in some real samples, such as water, human serum and tablets.
Collapse
Affiliation(s)
- Shuai Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Cong Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Xiaodong Shao
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University Miami FL 33174 USA
| | - Rentian Guan
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Yingying Hu
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Keying Zhang
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Wenjing Liu
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Min Hong
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| | - Qiaoli Yue
- Shandong Provincial Key Laboratory of Chrmical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University China
| |
Collapse
|
20
|
Abstract
Metal Organic Frameworks (MOFs) are noted as exceptional candidates towards the detection and removal of specific analytes. MOFs were reported in particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury. This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
Collapse
|
21
|
Jia P, Yang K, Hou J, Cao Y, Wang X, Wang L. Ingenious dual-emitting Ru@UiO-66-NH 2 composite as ratiometric fluorescence sensor for detection of mercury in aqueous. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124469. [PMID: 33243635 DOI: 10.1016/j.jhazmat.2020.124469] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The increasing deterioration of ecosystem derived from heavy metals residues brings about the environmental and food contamination, which presses the exploration of facile platform for monitoring heavy metals. Herein, a ratiometric fluorescence sensor was designed for Hg2+ detection based on the compound of UiO-66-NH2 and Ru(bpy)32+ (Ru@UiO-66-NH2) which was synthesized by situ encapsulation. The innovative composite displayed two emission peaks at 437 and 604 nm, and the addition of Hg2+ could only quench the blue fluorescence due to static quenching and photo-induced electron transfer mechanism, providing an internal standard to promote the precision. Under optimal conditions, the ratiometric Ru@UiO-66-NH2 probe revealed outstanding anti-interference capability and performed with a great limit of detection (LOD) of 0.053 μM for Hg2+, which was 2-fold lower than that of single-color UiO-66-NH2. By merit of Ru@UiO-66-NH2, test hydrogels were fabricated to provide a tactics for visual, rapid and on-site detection of Hg2+. Additionally, the dual-emitting sensing platform presented satisfactory recoveries and reliabilities in lake water, tap water, and drink water, demonstrating the application potential of this proposed ratiometric fluorescence sensor for monitoring Hg2+.
Collapse
Affiliation(s)
- Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinjie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuanyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
22
|
Yu Y, Sheng W, Liu C, Gao N, Tian B, Zhu H, Jia P, Li Z, Zhang X, Wang K, Li X, Zhu B. A simple sensitive ratiometric fluorescent probe for the detection of mercury ions in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119279. [PMID: 33341742 DOI: 10.1016/j.saa.2020.119279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Mercury, as a highly toxic heavy metal, can cause very serious harm to human health and even death in severe cases. Therefore, we synthesized a novel ratiometric fluorescent probe for detecting mercury ions, with mercaptoethanol as the recognition receptor. Probe CMER could determine mercury ions in 0-1.6 μM and the detection limit is 7.6 nM. Moreover, CMER manifested a fast response for Hg2+ (within 5 s) and simultaneously observed that the color changed from light yellow to orange by naked eye. In addition to these preeminent spectral properties, the probe also had satisfactory bioimaging results in RAW 264.7 macrophage cells and zebrafish.
Collapse
Affiliation(s)
- Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Na Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Bin Tian
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Pan Jia
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
23
|
Dual-emission copper nanoclusters-based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species. Mikrochim Acta 2021; 188:13. [PMID: 33389152 DOI: 10.1007/s00604-020-04683-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
A fluorescent nanoprobe based on copper nanoclusters (CuNCs) has been developed for ratiometric detection of hydroxyl radicals (•OH) and superoxide anion radicals (O2•-). Two differently luminescent CuNCs, namely cyan-emissive poly(methacrylic acid)-protected copper nanoclusters (PCuNCs) and orange-emissive bovine serum albumin-protected CuNCs (BCuNCs), were conjugated to obtain a hybrid, dual-emission nanoprobe (PCuNCs-BCuNCs) with the corresponding peaks at 445 nm and 652 nm at an excitation wavelength of 360 nm. In particular, the fluorescence peak at 445 nm gradually enhanced with the incremental addition of •OH and O2•-. However, the fluorescence emission at 652 nm was greatly quenched in the presence of •OH, while in case of O2•-, the fluorescence intensity remained constant. The differential response of the PCuNCs-BCuNCs towards •OH and O2•- formed the basis of ratiometric detection. Under optimal conditions, the PCuNCs-BCuNCs exhibited good sensitivity and linearity towards •OH and O2•- with limits of detection of 0.15 μM and 1.8 μM, respectively. Moreover, the nanoprobe exhibited high selectivity for •OH and O2•- over other potential ROS interferences. Besides, PCuNCs-BCuNCs were eventually applied for qualitative and quantitative ratiometric assessment of intracellular •OH and O2•- in L-132 cells. Therefore, this strategy unveils a new potential for copper nanocluster-based sensing of ROS.
Collapse
|
24
|
Yao CX, Zhao N, Liu JC, Chen LJ, Liu JM, Fang GZ, Wang S. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers (Basel) 2020; 12:E691. [PMID: 32244951 PMCID: PMC7183274 DOI: 10.3390/polym12030691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
The high speed of contaminants growth needs the burgeoning of new analytical techniques to keep up with the continuous demand for monitoring and legislation on food safety and environmental pollution control. Metal-organic frameworks (MOFs) are a kind of advanced crystal porous materials with controllable apertures, which are self-assembled by organic ligands and inorganic metal nodes. They have the merits of large specific surface areas, high porosity and the diversity of structures and functions. Latterly, the utilization of metal-organic frameworks has attracted much attention in environmental protection and the food industry. MOFs have exhibited great value as sensing materials for many targets. Among many sensing methods, fluorometric sensing is one of the widely studied methods in the detection of harmful substances in food and environmental samples. Fluorometric detection based on MOFs and its functional materials is currently one of the most key research subjects in the food and environmental fields. It has gradually become a hot research direction to construct the highly sensitive rapid sensors to detect harmful substances in the food matrix based on metal-organic frameworks. In this paper, we introduced the synthesis and detection application characteristics (absorption, fluorescence, etc.) of metal-organic frameworks. We summarized their applications in the MOFs-based fluorometric detection of harmful substances in food and water over the past few years. The harmful substances mainly include heavy metals, organic pollutants and other small molecules, etc. On this basis, the future development and possible application of the MOFs have prospected in this review paper.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Ji-Chao Liu
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Li-Jun Chen
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Guo-Zhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| |
Collapse
|
25
|
|
26
|
Li H, Yang W, Pan Q. Integration of fluorescent probes into metal–organic frameworks for improved performances. RSC Adv 2020; 10:33879-33893. [PMID: 35519019 PMCID: PMC9056769 DOI: 10.1039/d0ra04907g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed a rapid development of fluorescent probes in both analytical sensing and optical imaging. Enormous efforts have been devoted to the regulation of fluorescent probes during their development, such as improving accuracy, sensitivity, selectivity, recyclability and overcoming the aggregation-caused quenching effect. Metal–organic frameworks (MOFs) as a new class of crystalline porous materials possess abundant host–guest chemistry, based on which they display a great application potential in regulating fluorescent probes. This review summarized the research works on the regulation of fluorescent probes using MOFs, with emphasis on the methods of integrating fluorescent probes into MOFs, the regulation effects of MOFs on fluorescent probes, the superiorities of MOFs in regulating fluorescent probes, and the outlook of this subject. It is desirably hoped that this review can provide a useful reference for the researchers interested in this field. This review surveyed the research works for the regulation of fluorescent probes with metal–organic frameworks based on host–guest chemistry.![]()
Collapse
Affiliation(s)
- Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)
- School of Science
- Hainan University
- Haikou 570228
- China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources (Ministry of Education)
- School of Science
- Hainan University
- Haikou 570228
- China
| |
Collapse
|
27
|
Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J. DNA three-way junction-actuated strand displacement for miRNA detection using a fluorescence light-up Ag nanocluster probe. Analyst 2019; 144:3836-3842. [PMID: 31095133 DOI: 10.1039/c9an00508k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rapid and label-free fluorescence biosensing strategy for highly sensitive detection of microRNA-122 (miR-122) has been developed by the combination of DNA three-way junction (TWJ)-actuated strand displacement and a fluorescence light-up Ag nanocluster (AgNC) probe. In the presence of target miR-122, the attachment of miR-122 to its complementary DNA results in the unblocking of the toehold and branch migration domains in the TWJ, activating the strand displacement reaction (SDR) accompanied by the proximity between the G-rich DNA probe and DNA-AgNC probe; thus a remarkably enhanced fluorescence signal of AgNCs can be obtained owing to the G-rich fluorescence enhancement mechanism. The results reveal that this biosensor exhibits superb specificity and high sensitivity toward miR-122 with a detection limit of 0.030 nM. In addition, the practicality of the biosensor is demonstrated by analyzing miR-122 in three cell lines with satisfactory results. Furthermore, by the utilization of the toehold-mediated SDR and DNA-AgNC conjugates, this proposed strategy offers the advantages of rapidness, convenience, low cost, and simplified operation without the need for biological labeling and the addition of enzymes. Thus, the constructed biosensor might provide a valuable and practical tool for detecting miRNA and the related clinical diagnosis and fundamental biomedicine research.
Collapse
Affiliation(s)
- Xue Zhang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jingfeng Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Yu Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jiadong Huang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|