1
|
Chen J, Zhao D, Shi HW, Duan Q, Jajesniak P, Li Y, Shen W, Zhang J, Reboud J, Cooper JM, Tang S. Inclusive and Accurate Clinical Diagnostics Using Intelligent Computation and Smartphone Imaging. ACS Sens 2024; 9:5342-5353. [PMID: 39404711 PMCID: PMC11519924 DOI: 10.1021/acssensors.4c01588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Smartphone-based colorimetry has been widely applied in clinical analysis, although significant challenges remain in its practical implementation, including the need to consider biases introduced by the ambient imaging environment, which limit its potential within a clinical decision pathway. In addition, most commercial devices demonstrate variability introduced by manufacturer-to-manufacturer differences. Here, we undertake a systematic characterization of the potential imaging interferences that lead to this limited performance in conventional smartphones and, in doing so, provide a comprehensive new understanding of smartphone color imaging. Through derivation of a strongly correlated parameter for sample quantification, we enable real-time imaging, which for the first time, takes the first steps to turning the mobile phone camera into an analytical instrument - irrespective of model, software, and the operating systems used. We demonstrate clinical applicability through the imaging of patients' skin, enabling rapid and convenient diagnosis of cyanosis and measurement of local oxygen concentration to a level that unlocks clinical decision-making for monitoring cardiovascular disease and anemia. Importantly, we show that our solution also accounts for the differences in individuals' skin tones as measured across the Fitzpatrick scale, overcoming potential clinically significant errors in current optical oximetry.
Collapse
Affiliation(s)
- Jisen Chen
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Dajun Zhao
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
- Department
of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200018, PR China
| | - Hai-Wei Shi
- Jiangsu
Institute for Food and Drug Control, Nanjing, Jiangsu 210019, PR China
- NMPA
Key Laboratory for Impurity Profile of Chemical Drugs, Nanjing, Jiangsu 210019, PR China
| | - Qiaolian Duan
- Jiangsu
Institute for Food and Drug Control, Nanjing, Jiangsu 210019, PR China
- School
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing, Jiangsu 210046, PR
China
| | - Pawel Jajesniak
- School of
Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yunxin Li
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Wei Shen
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jinghui Zhang
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Julien Reboud
- School of
Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jonathan M. Cooper
- School of
Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sheng Tang
- School
of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Safarnejad A, Abbasi-Moayed S, Fahimi-Kashani N, Hormozi-Nezhad MR, Abdollahi H. Modeling and optimization of the ratio of fluorophores: a step towards enhancing the sensitivity of ratiometric probes. Mikrochim Acta 2024; 191:327. [PMID: 38740592 DOI: 10.1007/s00604-024-06403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
In the ratiometric fluorescent (RF) strategy, the selection of fluorophores and their respective ratios helps to create visual quantitative detection of target analytes. This study presents a framework for optimizing ratiometric probes, employing both two-component and three-component RF designs. For this purpose, in a two-component ratiometric nanoprobe designed for detecting methyl parathion (MP), an organophosphate pesticide, yellow-emissive thioglycolic acid-capped CdTe quantum dots (Y-QDs) (analyte-responsive), and blue-emissive carbon dots (CDs) (internal reference) were utilized. Mathematical polynomial equations modeled the emission profiles of CDs and Y-QDs in the absence of MP, as well as the emission colors of Y-QDs in the presence of MP separately. In other two-/three-component examples, the detection of dopamine hydrochloride (DA) was investigated using an RF design based on blue-emissive carbon dots (B-CDs) (internal reference) and N-acetyl L-cysteine functionalized CdTe quantum dots with red/green emission colors (R-QDs/G-QDs) (analyte-responsive). The colors of binary/ternary mixtures in the absence and presence of MP/DA were predicted using fitted equations and additive color theory. Finally, the Euclidean distance method in the normalized CIE XYZ color space calculated the distance between predicted colors, with the maximum distance defining the real-optimal concentration of fluorophores. This strategy offers a more efficient and precise method for determining optimal probe concentrations compared to a trial-and-error approach. The model's effectiveness was confirmed through experimental validation, affirming its efficacy.
Collapse
Affiliation(s)
- Azam Safarnejad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Samira Abbasi-Moayed
- Department of Analytical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | | | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran.
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Hamid Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| |
Collapse
|
3
|
Biswas SK, Chatterjee S, Laha S, Pakira V, Som NK, Saha S, Chakraborty S. Instrument-free single-step direct estimation of the plasma glucose level from one drop of blood using smartphone-interfaced analytics on a paper strip. LAB ON A CHIP 2022; 22:4666-4679. [PMID: 36345815 DOI: 10.1039/d2lc00824f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We demonstrated an instrument-free miniaturized adaptation of the laboratory gold standard methodology for the direct estimation of plasma glucose from a drop of whole blood using a low-cost single-user-step paper-strip sensor interfaced with a smartphone. Unlike a majority of the existing glucose meters that use whole blood-based indirect sensing technologies, our direct adaptation of the gold-standard laboratory benchmark could eliminate the possibilities of cross interference with other analytes present in the whole blood by facilitating an in situ plasma separation, capillary flow and colorimetric reaction occurring concomitantly, without incurring additional device complexity or embodiment. The test reagents were dispensed in lyophilized form, and the resulting paper strips were found to be stable over three months stored in a normal freezer, rendering easy adaptability commensurate with the constrained supply chains in extreme resource-poor settings. Quantitative results could be arrived at via a completely-automated mobile-app-based image analytics interface developed using dynamic machine learning, obviating manual interpretation. The tests were demonstrated to be of high efficacy, even when executed by minimally trained frontline personnel having no special skill of drawing precise volume of blood, on deployment at under-resourced community centres having no in-built or accessible healthcare infrastructure. Clinical validation using 220 numbers of human blood samples in a double-blinded manner evidenced sensitivity and specificity of 98.11% and 96.7%, respectively, as compared to the results obtained from a laboratory-benchmarked biochemistry analyser, establishing its efficacy for public health and community disease management in resource-limited settings without any quality compromise of the test outcome.
Collapse
Affiliation(s)
- Sujay K Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Subhamoy Chatterjee
- Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Victor Pakira
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nirmal K Som
- B C Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Satadal Saha
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- B C Roy Institute of Medical Science and Research, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- JSV Innovations Pvt. Ltd, Kolkata, 700025, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
4
|
Tharakan S, Faqah O, Asghar W, Ilyas A. Microfluidic Devices for HIV Diagnosis and Monitoring at Point-of-Care (POC) Settings. BIOSENSORS 2022; 12:949. [PMID: 36354458 PMCID: PMC9687700 DOI: 10.3390/bios12110949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human immunodeficiency virus (HIV) is a global epidemic; however, many individuals are able to obtain treatment and manage their condition. Progression to acquired immunodeficiency syndrome (AIDS) occurs during late-stage HIV infection, which compromises the immune system, making it susceptible to infections. While there is no cure, antiretroviral therapy can be used provided that detection occurs, preferably during the early phase. However, the detection of HIV is expensive and resource-intensive when tested with conventional methods, such as flow cytometry, polymerase chain reaction (PCR), or enzyme-linked immunosorbent assays (ELISA). Improving disease detection in resource-constrained areas requires equipment that is affordable, portable, and can deliver rapid results. Microfluidic devices have transformed many benchtop techniques to on-chip detection for portable and rapid point-of-care (POC) testing. These devices are cost-effective, sensitive, and rapid and can be used in areas lacking resources. Moreover, their functionality can rival their benchtop counterparts, making them efficient for disease detection. In this review, we discuss the limitations of currently used conventional HIV diagnostic assays and provide an overview of potential microfluidic technologies that can improve HIV testing in POC settings.
Collapse
Affiliation(s)
- Shebin Tharakan
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Omair Faqah
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Bio-Nanotechnology and Biomaterials (BNB) Lab, New York Institute of Technology, Old Westbury, NY 11568, USA
- Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
5
|
Beduk T, Beduk D, Hasan MR, Guler Celik E, Kosel J, Narang J, Salama KN, Timur S. Smartphone-Based Multiplexed Biosensing Tools for Health Monitoring. BIOSENSORS 2022; 12:583. [PMID: 36004979 PMCID: PMC9406027 DOI: 10.3390/bios12080583] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
Many emerging technologies have the potential to improve health care by providing more personalized approaches or early diagnostic methods. In this review, we cover smartphone-based multiplexed sensors as affordable and portable sensing platforms for point-of-care devices. Multiplexing has been gaining attention recently for clinical diagnosis considering certain diseases require analysis of complex biological networks instead of single-marker analysis. Smartphones offer tremendous possibilities for on-site detection analysis due to their portability, high accessibility, fast sample processing, and robust imaging capabilities. Straightforward digital analysis and convenient user interfaces support networked health care systems and individualized health monitoring. Detailed biomarker profiling provides fast and accurate analysis for disease diagnosis for limited sample volume collection. Here, multiplexed smartphone-based assays with optical and electrochemical components are covered. Possible wireless or wired communication actuators and portable and wearable sensing integration for various sensing applications are discussed. The crucial features and the weaknesses of these devices are critically evaluated.
Collapse
Affiliation(s)
- Tutku Beduk
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Duygu Beduk
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
| | - Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey;
| | - Jurgen Kosel
- Silicon Austria Labs GmbH: Sensor Systems, 9524 Villach, Austria;
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (J.N.)
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Suna Timur
- Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Izmir, Turkey;
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
6
|
Scheeline A. Selfie Spectrometry: Why Tablets, Laptops, and Cell Phones Have Not Taken Over Visible Spectrometry. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Heithoff DM, Barnes L, Mahan SP, Fox GN, Arn KE, Ettinger SJ, Bishop AM, Fitzgibbons LN, Fried JC, Low DA, Samuel CE, Mahan MJ. Assessment of a Smartphone-Based Loop-Mediated Isothermal Amplification Assay for Detection of SARS-CoV-2 and Influenza Viruses. JAMA Netw Open 2022; 5:e2145669. [PMID: 35089353 PMCID: PMC8800074 DOI: 10.1001/jamanetworkopen.2021.45669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Importance A critical need exists in low-income and middle-income countries for low-cost, low-tech, yet highly reliable and scalable testing for SARS-CoV-2 virus that is robust against circulating variants. Objective To assess whether a smartphone-based assay is suitable for SARS-CoV-2 and influenza virus testing without requiring specialized equipment, accessory devices, or custom reagents. Design, Setting, and Participants This cohort study enrolled 2 subgroups of participants (symptomatic and asymptomatic) at Santa Barbara Cottage Hospital. The symptomatic group consisted of 20 recruited patients who tested positive for SARS-CoV-2 with symptoms; 30 asymptomatic patients were recruited from the same community, through negative admission screening tests for SARS-CoV-2. The smartphone-based real-time loop-mediated isothermal amplification (smaRT-LAMP) was first optimized for analysis of human saliva samples spiked with either SARS-CoV-2 or influenza A or B virus; these results then were compared with those obtained by side-by-side analysis of spiked samples using the Centers for Disease Control and Prevention (CDC) criterion-standard reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay. Next, both assays were used to test for SARS-CoV-2 and influenza viruses present in blinded clinical saliva samples obtained from 50 hospitalized patients. Statistical analysis was performed from May to June 2021. Exposures Testing for SARS-CoV-2 and influenza A and B viruses. Main Outcomes and Measures SARS-CoV-2 and influenza infection status and quantitative viral load were determined. Results Among the 50 eligible participants with no prior SARS-CoV-2 infection included in the study, 29 were men. The mean age was 57 years (range, 21 to 93 years). SmaRT-LAMP exhibited 100% concordance (50 of 50 patient samples) with the CDC criterion-standard diagnostic for SARS-CoV-2 sensitivity (20 of 20 positive and 30 of 30 negative) and for quantitative detection of viral load. This platform also met the CDC criterion standard for detection of clinically similar influenza A and B viruses in spiked saliva samples (n = 20), and in saliva samples from hospitalized patients (50 of 50 negative). The smartphone-based LAMP assay was rapid (25 minutes), sensitive (1000 copies/mL), low-cost (<$7/test), and scalable (96 samples/phone). Conclusions and Relevance In this cohort study of saliva samples from patients, the smartphone-based LAMP assay detected SARS-CoV-2 infection and exhibited concordance with RT-qPCR tests. These findings suggest that this tool could be adapted in response to novel CoV-2 variants and other pathogens with pandemic potential including influenza and may be useful in settings with limited resources.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Lucien Barnes
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis
| | - Gary N Fox
- Department of Materials and Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara
| | - Katherine E Arn
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Sarah J Ettinger
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Andrew M Bishop
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, California
- Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, California
| | - David A Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara
| |
Collapse
|
8
|
Portable stirring device for the on-site extraction of environmental waters using magnetic hydrophilic-lipophilic balance tape. Anal Chim Acta 2022; 1189:339186. [PMID: 34815052 DOI: 10.1016/j.aca.2021.339186] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
The spatial heterogeneity of environmental systems makes sampling at multiple locations crucial to provide complete and representative information. The on-site application of an extraction technique simplifies the sampling logistics, increasing sample integrity during transportation and storage. This article presents a portable, simple, and low-cost device capable of performing the simultaneous on-site extraction of several environmental water samples. The device consists of a small electric motor integrated into the plastic cap of a conventional glass bottle and operated with a portable battery. The electric motor provides stirring to a novel magnetic sorptive phase based on the deposition of hydrophilic-lipophilic balance (HLB) particles over a magnetic tape. The use of open technology makes the device globally affordable. In this first approach, the isolation and preconcentration of atrazine and simazine have been selected as proof of concept. Using an internal standard made unnecessary the adjustment of the ionic strength before the extraction, thus simplifying the analytical procedure. Under the optimum conditions and using direct infusion mass spectrometry as the instrumental technique, detection limits as low as 15 ng/L were obtained. The precision calculated at three different levels was better than 8.3%. The accuracy, calculated with spiked samples, indicates the applicability of the approach for environmental water analysis.
Collapse
|
9
|
Tong L, Hutcheson JD. A surface-based calibration approach to enable dynamic and accurate quantification of colorimetric assay systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4290-4297. [PMID: 34473147 DOI: 10.1039/d1ay01130h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colorimetry is widely used in assay systems for its low-cost, ease-of-use, rapidity, moderate storage requirements and intuitively visible effects. However, the application is limited due to its relatively low sensitivity. Conventional colorimetric calibration methods often use a fixed incubation time that can limit the detection range, system robustness and sensitivity. In this paper, we used color saturation to measure the accumulation of product (correlation coefficient R2 = 0.9872), and we created a novel "calibration mesh" method based on an expanded sigmoid function to enhance sensitivity. The novel calibration mesh method can be adapted for a wide variety of assay systems to improve robustness and detection range, and provide a dynamic and faster output.
Collapse
Affiliation(s)
- Lin Tong
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL, 33174, USA.
| | - Joshua D Hutcheson
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, EC 2612, Miami, FL, 33174, USA.
| |
Collapse
|
10
|
Alawsi T, Mattia GP, Al-Bawi Z, Beraldi R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
11
|
Sun X, Zhang H, Huang L, Hao S, Zhai J, Dong S. A naked-eye readout self-powered electrochemical biosensor toward indoor formaldehyde: On-site detection and exposure risk warning. Biosens Bioelectron 2021; 177:112975. [DOI: 10.1016/j.bios.2021.112975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022]
|
12
|
Ilyas S, Sher M, Du E, Asghar W. Smartphone-based sickle cell disease detection and monitoring for point-of-care settings. Biosens Bioelectron 2020; 165:112417. [PMID: 32729535 PMCID: PMC7484220 DOI: 10.1016/j.bios.2020.112417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a worldwide hematological disorder causing painful episodes, anemia, organ damage, stroke, and even deaths. It is more common in sub-Saharan Africa and other resource-limited countries. Conventional laboratory-based diagnostic methods for SCD are time-consuming, complex, and cannot be performed at point-of-care (POC) and home settings. Optical microscope-based classification and counting demands a significant amount of time, extensive setup, and cost along with the skilled human labor to distinguish the normal red blood cells (RBCs) from sickled cells. There is an unmet need to develop a POC and home-based test to diagnose and monitor SCD and reduce mortality in resource-limited settings. An early-stage and timely diagnosis of SCD can help in the effective management of the disease. In this article, we utilized a smartphone-based image acquisition method for capturing RBC images from the SCD patients in normoxia and hypoxia conditions. A computer algorithm is developed to differentiate RBCs from the patient's blood before and after cell sickling. Using the developed smartphone-based technique, we obtained similar percentage of sickle cells in blood samples as analyzed by conventional method (standard microscope). The developed method of testing demonstrates the potential utility of the smartphone-based test for reducing the overall cost of screening and management for SCD, thus increasing the practicality of smartphone-based screening technique for SCD in low-resource settings. Our setup does not require any special storage requirements. This is the characteristic advantage of our technique as compared to other hemoglobin-based POC diagnostic techniques.
Collapse
Affiliation(s)
- Shazia Ilyas
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, 33431, USA
| | - Mazhar Sher
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, 33431, USA
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, 33431, USA; Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, 33431, USA; Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
13
|
Enhancement of the Peroxidase-Like Activity of Iodine-Capped Gold Nanoparticles for the Colorimetric Detection of Biothiols. BIOSENSORS-BASEL 2020; 10:bios10090113. [PMID: 32882936 PMCID: PMC7558680 DOI: 10.3390/bios10090113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
A colorimetric assay was developed for the detection of biothiols, based on the peroxidase-like activity of iodine-capped gold nanoparticles (AuNPs). These AuNPs show a synergetic effect in the form of peroxidase-mimicking activity at the interface of AuNPs, while free AuNPs and iodine alone have weak catalytic properties. Thus, iodine-capped AuNPs possess good intrinsic enzymatic activity and trigger the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), leading to a change in color from colorless to yellow. When added to solution, biothiols, such as cysteine, strongly bind to the interface of AuNPs via gold-thiol bonds, inhibiting the catalytic activity of AuNPs, resulting in a decrease in oxidized TMB. Using this strategy, cysteine could be linearly determined, at a wide range of concentrations (0.5 to 20 μM), with a detection limit of 0.5 μM using UV-Vis spectroscopy. This method was applied for the detection of cysteine in diluted human urine.
Collapse
|
14
|
An antibody panel for highly specific detection and differentiation of Zika virus. Sci Rep 2020; 10:11906. [PMID: 32681135 PMCID: PMC7367842 DOI: 10.1038/s41598-020-68635-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/29/2020] [Indexed: 11/15/2022] Open
Abstract
Zika virus (ZIKV) is an emerging flavivirus transmitted to humans by Aedes mosquitos. ZIKV can be transmitted from mother to fetus during pregnancy and can cause microcephaly and other birth defects. Effective vaccines for Zika are yet to be approved. Detection of the ZIKV is based on serological testing that often shows cross-reactivity with the Dengue virus (DENV) and other flaviviruses. We aimed to assemble a highly specific anti-Zika antibody panel to be utilized in the development of a highly specific and cost-effective ZIKV rapid quantification assay for viral load monitoring at point-of-care settings. To this end, we tested the affinity and specificity of twenty one commercially available monoclonal and polyclonal antibodies against ZIKV and DENV envelope proteins utilizing nine ZIKV and twelve DENV strains. We finalized and tested a panel of five antibodies for the specific detection and differentiation of ZIKV and DENV infected samples.
Collapse
|
15
|
Serhan M, Jackemeyer D, Long M, Sprowls M, Diez Perez I, Maret W, Chen F, Tao N, Forzani E. Total Iron Measurement in Human Serum With a Novel Smartphone-Based Assay. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2020; 8:2800309. [PMID: 32832281 PMCID: PMC7433848 DOI: 10.1109/jtehm.2020.3005308] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Background: Abnormally low or high blood iron levels are common health conditions worldwide and can seriously affect an individual's overall well-being. A low-cost point-of-care technology that measures blood iron markers with a goal of both preventing and treating iron-related disorders represents a significant advancement in medical care delivery systems. Methods: A novel assay equipped with an accurate, storable, and robust dry sensor strip, as well as a smartphone mount and (iPhone) app is used to measure total iron in human serum. The sensor strip has a vertical flow design and is based on an optimized chemical reaction. The reaction strips iron ions from blood-transport proteins, reduces Fe(III) to Fe(II), and chelates Fe(II) with ferene, with the change indicated by a blue color on the strip. The smartphone mount is robust and controls the light source of the color reading App, which is calibrated to obtain output iron concentration results. The real serum samples are then used to assess iron concentrations from the new assay, and validated through intra-laboratory and inter-laboratory experiments. The intra-laboratory validation uses an optimized iron detection assay with multi-well plate spectrophotometry. The inter-laboratory validation method is performed in a commercial testing facility (LabCorp). Results: The novel assay with the dry sensor strip and smartphone mount, and App is seen to be sensitive to iron detection with a dynamic range of 50 - [Formula: see text]/dL, sensitivity of 0.00049 a.u/[Formula: see text]/dL, coefficient of variation (CV) of 10.5%, and an estimated detection limit of [Formula: see text]/dL These analytical specifications are useful for predicting iron deficiency and overloads. The optimized reference method has a sensitivity of 0.00093 a.u/[Formula: see text]/dL and CV of 2.2%. The correlation of serum iron concentrations (N = 20) between the optimized reference method and the novel assay renders a slope of 0.95, and a regression coefficient of 0.98, suggesting that the new assay is accurate. Last, a spectrophotometric study of the iron detection reaction kinetics is seen to reveal the reaction order for iron and chelating agent. Conclusion: The new assay is able to provide accurate results in intra- and inter- laboraty validations, and has promising features of both mobility and low-cost manufacturing suitable for global healthcare settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Chen
- Arizona State UniversityTempeAZ85287USA
| | | | | |
Collapse
|
16
|
Abstract
Although highly active antiretroviral therapy (HAART) has been introduced over twenty years ago to treat Human Immunodeficiency Virus (HIV) positive patients, acquired immunodeficiency syndrome (AIDS) is still one of the deadliest diseases found worldwide. AIDS prevalence and mortality rates are usually more pronounced in resource-constrained countries than in the developed world. The lack of trained medical technicians, sophisticated diagnostic equipment, and the overall scarcity of medical infrastructures have severely impacted HIV/AIDS diagnostics, which hinders the initiation and periodic monitoring of antiretroviral therapy (ART). Currently, available HIV viral load assays are not well-suited for resource-limited settings due to their high cost and a requirement for medical/technical infrastructures. In this paper, we review current and emerging diagnostic assays for HIV detection, with a focus on point-of-care (POC) based immunoassays for viral load measurement, drug resistance, and HIV recurrence. We also discuss the limitations of the available HIV assays and highlight the technological advancements in cellphone, paper, and flexible material-based assays which have the potential to improve HIV diagnosis and monitoring, thus assisting with the management of the disease.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA
| | - Massimo Caputi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.,Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL, USA.,Department of Biological Sciences (courtesy appointment), Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
17
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
18
|
Kabir MA, Zilouchian H, Sher M, Asghar W. Development of a Flow-Free Automated Colorimetric Detection Assay Integrated with Smartphone for Zika NS1. Diagnostics (Basel) 2020; 10:diagnostics10010042. [PMID: 31947549 PMCID: PMC7168132 DOI: 10.3390/diagnostics10010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
The Zika virus (ZIKV) is an emerging flavivirus transmitted to humans by Aedes mosquitoes that can potentially cause microcephaly, Guillain–Barré Syndrome, and other birth defects. Effective vaccines for Zika have not yet been developed. There is a necessity to establish an easily deployable, high-throughput, low-cost, and disposable point-of-care (POC) diagnostic platform for ZIKV infections. We report here an automated magnetic actuation platform suitable for a POC microfluidic sandwich enzyme-linked immunosorbent assay (ELISA) using antibody-coated superparamagnetic beads. The smartphone integrated immunoassay is developed for colorimetric detection of ZIKV nonstructural protein 1 (NS1) antigen using disposable chips to accommodate the reactions inside the chip in microliter volumes. An in-house-built magnetic actuator platform automatically moves the magnetic beads through different aqueous phases. The assay requires a total of 9 min to automatically control the post-capture washing, horseradish peroxidase (HRP) conjugated secondary antibody probing, washing again, and, finally, color development. By measuring the saturation intensity of the developed color from the smartphone captured video, the presented assay provides high sensitivity with a detection limit of 62.5 ng/mL in whole plasma. These results advocate a great promise that the platform would be useful for the POC diagnosis of Zika virus infection in patients and can be used in resource-limited settings.
Collapse
Affiliation(s)
- Md Alamgir Kabir
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.A.K.); (M.S.)
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
| | - Hussein Zilouchian
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
| | - Mazhar Sher
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.A.K.); (M.S.)
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; (M.A.K.); (M.S.)
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA;
- Department of Biological Sciences (Courtesy Appointment), Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| |
Collapse
|
19
|
Jung Y, Heo Y, Lee JJ, Deering A, Bae E. Smartphone-based lateral flow imaging system for detection of food-borne bacteria E.coli O157:H7. J Microbiol Methods 2020; 168:105800. [DOI: 10.1016/j.mimet.2019.105800] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
|
20
|
Hao S, Sun X, Zhang H, Zhai J, Dong S. Recent development of biofuel cell based self-powered biosensors. J Mater Chem B 2020; 8:3393-3407. [DOI: 10.1039/c9tb02428j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BFC-based SPBs have been used as power sources for other devices and as sensors for detecting toxicity and BOM.
Collapse
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
21
|
Jiang N, Ahmed R, Damayantharan M, Ünal B, Butt H, Yetisen AK. Lateral and Vertical Flow Assays for Point-of-Care Diagnostics. Adv Healthc Mater 2019; 8:e1900244. [PMID: 31081270 DOI: 10.1002/adhm.201900244] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Indexed: 02/03/2023]
Abstract
Lateral flow assays (LFAs) have been the pillar of rapid point-of-care (POC) diagnostics due to their simplicity, rapid process, and low cost. Recent advances in sensitivity, selectivity, and chemical stability enhancement have ensured the foothold of LFAs in commercial POC diagnostics. This paper reviews recent developments in labeling strategies and detection methods of LFAs. Moreover, vertical flow assays (VFAs) have emerged as an alternate paper-based assay due to faster detection time and unique multiplexing capabilities. Smartphones as LFA readers have been transformed into a universal integrated platform for imaging, data processing, and storage, providing quantitative results in low-resource settings. Commercial LFAs and VFAs products are evaluated with regards to their performance, market trends, and regulatory issues. The future outlook of the flow-based assays for POC diagnostics is also discussed.
Collapse
Affiliation(s)
- Nan Jiang
- School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
| | - Rajib Ahmed
- School of MedicineStanford University Palo Alto CA 94304 USA
| | - Mylon Damayantharan
- School of EngineeringUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Barış Ünal
- Triton Systems Inc. 200 Turnpike Rd. Chelmsford MA 01824 USA
| | - Haider Butt
- School of EngineeringUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London London SW7 2AZ UK
| |
Collapse
|
22
|
Asghar W, Sher M, Khan NS, Vyas JM, Demirci U. Microfluidic Chip for Detection of Fungal Infections. ACS OMEGA 2019; 4:7474-7481. [PMID: 31080939 PMCID: PMC6504191 DOI: 10.1021/acsomega.9b00499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 05/08/2023]
Abstract
Fungal infections can lead to severe clinical outcomes such as multiple organ failure and septic shock. Rapid detection of fungal infections allows clinicians to treat patients in a timely manner and improves clinical outcomes. Conventional detection methods include blood culture followed by plate culture and polymerase chain reaction. These methods are time-consuming and require expensive equipment, hence, they are not suitable for point-of-care and clinical settings. There is an unmet need to develop a rapid and inexpensive detection method for fungal infections such as candidemia. We developed an innovative immuno-based microfluidic device that can rapidly detect and capture Candida albicans from phosphate-buffered saline (PBS) and human whole blood. Our microchip technology showed an efficient capture of C. albicans in PBS with an efficiency of 61-78% at various concentrations ranging from 10 to 105 colony-forming units per milliliter (cfu/mL). The presented microfluidic technology will be useful to screen for various pathogens at the point-of-care and clinical settings.
Collapse
Affiliation(s)
- Waseem Asghar
- Ashgar
Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, Florida 33431, United States
- Department
of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- E-mail: (W.A.)
| | - Mazhar Sher
- Ashgar
Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, Florida 33431, United States
- Department
of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Nida S. Khan
- Division
of Infectious Disease, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Jatin M. Vyas
- Division
of Infectious Disease, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Utkan Demirci
- Bio-Acoustic
MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for
Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94305, United States
- E-mail: (U.D.)
| |
Collapse
|
23
|
Coarsey C, Coleman B, Kabir MA, Sher M, Asghar W. Development of a Flow-Free Magnetic Actuation Platform for an Automated Microfluidic ELISA. RSC Adv 2019; 9:8159-8168. [PMID: 31777654 PMCID: PMC6880949 DOI: 10.1039/c8ra07607c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need to create an easily deployable and point-of-care (POC) diagnostic platform for disease outbreaks and for monitoring and maintenance of chronic illnesses. Such platforms are useful in regions where access to clinical laboratories may be limited or constrained using cost-effective solutions to quickly process high numbers of samples. Using oil and water liquid–liquid interphase separation, immunoassays developed for microfluidic chips can potentially meet this need when leveraged with electromagnetic actuation and antibody-coated superparamagnetic beads. We have developed a microfluidic immunoassay detection platform, which enables assay automation and maintains successful liquid containment for future use in the field. The assay was studied through a series of magnetic and fluid simulations to demonstrate these optimizations, and an optimized chip was tested using a target model for HIV-1, the p24 capsid antigen. The use of minimal reagents further lowers the cost of each assay and lowers the required sample volume for testing (<50 μL), that can offer easy turnaround for sample collection and assay results. The developed microfluidic immunoassay platform can be easily scaled for multiplex or multi-panel specific testing at the POC. A flow-free device is developed for automated and rapid ELISA testing at the point-of-care settings.![]()
Collapse
Affiliation(s)
- Chad Coarsey
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Benjamin Coleman
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Md Alamgir Kabir
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Mazhar Sher
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431
| | - Waseem Asghar
- Asghar-Lab, Micro and Nanotechnology for Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431.,Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431.,Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|