1
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
2
|
Walter N, Stich T, Docheva D, Alt V, Rupp M. Evolution of implants and advancements for osseointegration: A narrative review. Injury 2022; 53 Suppl 3:S69-S73. [PMID: 35948509 DOI: 10.1016/j.injury.2022.05.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/02/2023]
Abstract
Since ancient times, reduction and internal fixation has been applied to restore skeletal integrity. Despite advances in the understanding of fracture healing, the risk of complication such as implant loosening or implant-related infection still depicts a challenging complication. Nowadays, a great deal of research is devoted to unreveal the impact of implant surface modifications on osteogenic processes to enhance bone consolidation and osseointegration. This narrative review is aimed to (1) show the evolution and already achieved milestones of implant optimization, and (2) to outline the key factors that contribute to an enhanced osseointegration. Different physical and chemical roughening techniques are currently applied in various studies. Surface patterning on the nanoscale has been found to be an essential factor for the biological response, achievable by e.g. anodisation or laser texturing. Besides surface roughening, also different coating methods are vastly investigated. Next to metal or inorganic compounds as coating material, a variety of biomolecules is currently studied for their osteosupportive capacities. Osseointegration can be improved by surface modification on the micro and nanoscale. Bioactive agents can further improve the osseointegration potential. Used agents at the moment are e.g. inorganic compounds, growth factors (BMPs and non-BMPs) and antiresorptive drugs. The advancement in research on new implant generations therefore aims at actively supporting osseointegration processing.
Collapse
Affiliation(s)
- Nike Walter
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Theresia Stich
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre, Regensburg, Germany.
| |
Collapse
|
3
|
Zheng Z, He Y, Long L, Gan S, Chen S, Zhang M, Xu J, Fu R, Liao Y, Zhu Z, Wang H, Chen W. Involvement of PI3K/Akt signaling pathway in promoting osteogenesis on titanium implant surfaces modified with novel non-thermal atmospheric plasma. Front Bioeng Biotechnol 2022; 10:975840. [PMID: 36185461 PMCID: PMC9523010 DOI: 10.3389/fbioe.2022.975840] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Non-thermal atmospheric plasma (NTAP) modification to induce a hydrophilic titanium (Ti) surface with less carbon contamination, has been demonstrated to boost the osteogenic responses. In this study, we investigated the underlying bone formation mechanism of NTAP-Ti, and the involvement of PI3K/Akt signaling pathway in regulating osteogenic activities on NTAP-Ti surfaces. NTAP was employed for Ti activation, and PI3K inhibitor, LY294002, was applied to the suppression of PI3K/Akt pathway. We systematically and quantitatively detected the cell morphology, attachment, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts, and molecular expressions involved in osteogenesis and PI3K/Akt signaling pathway in vivo and in vitro. A descent in osteoblast proliferation on Ti surfaces in relation to LY294002. Alkaline phosphatase (ALP) activity, as well as matrix mineralization, was mitigated by PI3K inhibitor in NTAP-Ti. Likewise, the expression levels of osteogenesis-related genes [ALP, osteocalcin (Ocn), osteopontin (Opn) and runt-related transcription factor 2 (Runx2)] on NTAP-Ti were notably attenuated by LY294002, as confirmed by the results of osteogenesis-related proteins (ALP, and Runx2) expression analysis. In addition, the expression of PI3K/Akt signal pathway proteins further verified the inhibition of LY294002 on Ti surfaces modified by NTAP. Collectively, the PI3K/Akt signal pathway was involved in the amelioration of osteogenesis induced by NTAP modification. NTAP treatment for Ti activation is promising in augmented osteogenic potential through the activation of PI3K/Akt signal pathway.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanjin He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Long
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shuaiqi Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujiang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jia Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruijie Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Hang Wang, ; Wenchuan Chen,
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Hang Wang, ; Wenchuan Chen,
| |
Collapse
|
4
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
5
|
Hou C, An J, Zhao D, Ma X, Zhang W, Zhao W, Wu M, Zhang Z, Yuan F. Surface Modification Techniques to Produce Micro/Nano-scale Topographies on Ti-Based Implant Surfaces for Improved Osseointegration. Front Bioeng Biotechnol 2022; 10:835008. [PMID: 35402405 PMCID: PMC8990803 DOI: 10.3389/fbioe.2022.835008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Titanium and titanium alloys are used as artificial bone substitutes due to the good mechanical properties and biocompatibility, and are widely applied in the treatment of bone defects in clinic. However, Pure titanium has stress shielding effect on bone, and the effect of titanium-based materials on promoting bone healing is not significant. To solve this problem, several studies have proposed that the surface of titanium-based implants can be modified to generate micro or nano structures and improve mechanical properties, which will have positive effects on bone healing. This article reviews the application and characteristics of several titanium processing methods, and explores the effects of different technologies on the surface characteristics, mechanical properties, cell behavior and osseointegration. The future research prospects in this field and the characteristics of ideal titanium-based implants are proposed.
Collapse
Affiliation(s)
- Chuang Hou
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing An
- Nursing Teaching and Research Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao Ma
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| | - Fusheng Yuan
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhiyu Zhang, ; Fusheng Yuan,
| |
Collapse
|
6
|
Stich T, Alagboso F, Křenek T, Kovářík T, Alt V, Docheva D. Implant-bone-interface: Reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med 2022; 7:e10239. [PMID: 35079626 PMCID: PMC8780039 DOI: 10.1002/btm2.10239] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Titanium is commonly and successfully used in dental and orthopedic implants. However, patients still have to face the risk of implant failure due to various reasons, such as implant loosening or infection. The risk of implant loosening can be countered by optimizing the osteointegration capacity of implant materials. Implant surface modifications for structuring, roughening and biological activation in favor for osteogenic differentiation have been vastly studied. A key factor for a successful stable long-term integration is the initial cellular response to the implant material. Hence, cell-material interactions, which are dependent on the surface parameters, need to be considered in the implant design. Therefore, this review starts with an introduction to the basics of cell-material interactions as well as common surface modification techniques. Afterwards, recent research on the impact of osteogenic processes in vitro and vivo provoked by various surface modifications is reviewed and discussed, in order to give an update on currently applied and developing implant modification techniques for enhancing osteointegration.
Collapse
Affiliation(s)
- Theresia Stich
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| | - Francisca Alagboso
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| | - Tomáš Křenek
- New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic
| | - Tomáš Kovářík
- New Technologies Research CentreUniversity of West BohemiaPilsenCzech Republic
| | - Volker Alt
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
- Clinic and Polyclinic for Trauma Surgery, University Regensburg Medical CentreRegensburgGermany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma SurgeryUniversity Regensburg Medical CentreRegensburgGermany
| |
Collapse
|
7
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
8
|
Xu Y, Zhang L, Xu J, Li J, Wang H, He F. Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: A preclinical vivo experimental study. Clin Oral Implants Res 2021; 32:1366-1383. [PMID: 34416034 DOI: 10.1111/clr.13837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of the current study was to explore effects of strontium-incorporated titanium implant surfaces by hydrothermal treatment on osseointegration in diabetic rats. MATERIALS AND METHODS The surface characteristics of SLA and SLA-Sr surfaces were detected by related instruments. Thirty-six male Sprague-Dawley rats were induced into diabetes, and thirty-six rats were normal. SLA and SLA-Sr implants were, respectively, inserted into bilateral tibial metaphysis of each rat. Percentage of bone-to-implant contact (BIC%) and percentage of bone area (BA%) were analyzed at 4 and 8 weeks after implantation. Immunohistochemistry of osteoprotegerin (OPG) and Wnt5a were conducted at 1 and 4 weeks. Gene expression levels of inflammatory cytokines and related signaling molecules in peri-implant bone tissue were detected at 3 and 7 days. RESULTS Strontium was uniformly distributed on SLA-Sr surfaces, and it was released in an effective concentration range. SLA-Sr surfaces showed significantly higher BIC% in diabetic rats at 4 (p < .05) and 8 weeks (p < .05). Besides, it displayed higher BIC% at 4 weeks (p < .05) in normal rats. Also, SLA-Sr surfaces upregulated expression of OPG at 4 weeks (p < .05) in diabetic rats. What's more, SLA-Sr surfaces downregulated inflammation (TNF-α, IL-1β, and IL-6; p < .01) in diabetic rats at 3 days. In addition, expression of Wnt5a and ROR2 was upregulated (p < .05) at 7 days after implantation under diabetes. CONCLUSION It is suggested that strontium-incorporated titanium implant surfaces by hydrothermal treatment could enhance implant osseointegration as compared with SLA implant surfaces in diabetic rats.
Collapse
Affiliation(s)
- Yangbo Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Liefen Zhang
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangang Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hui Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fuming He
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Xie D, Xu C, Ye C, Mei S, Wang L, Zhu Q, Chen Q, Zhao Q, Xu Z, Wei J, Yang L. Fabrication of Submicro-Nano Structures on Polyetheretherketone Surface by Femtosecond Laser for Exciting Cellular Responses of MC3T3-E1 Cells/Gingival Epithelial Cells. Int J Nanomedicine 2021; 16:3201-3216. [PMID: 34007174 PMCID: PMC8121686 DOI: 10.2147/ijn.s303411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 01/24/2023] Open
Abstract
Purpose Polyetheretherketone (PEEK) exhibits high mechanical strengths and outstanding biocompatibility but biological inertness that does not excite the cell responses and stimulate bone formation. The objective of this study was to construct submicro-nano structures on PEEK by femtosecond laser (FSL) for exciting the responses of MC3T3-E1 cells and gingival epithelial (GE) cells, which induce regeneration of bone/gingival tissues for long-term stability of dental implants. Materials and Methods In this study, submicro-nano structures were created on PEEK surface by FSL with power of 80 mW (80FPK) and 160 mW (160FPK). Results Compared with PEEK, both 80FPK and 160FPK with submicro-nano structures exhibited elevated surface performances (hydrophilicity, surface energy, roughness and protein absorption). Furthermore, in comparison with 80FPK, 160FPK further enhanced the surface performances. In addition, compared with PEEK, both 80FPK and 160FPK significantly excited not only the responses (adhesion, proliferation, alkaline phosphatase [ALP] activity and osteogenic gene expression) of MC3T3-E1 cells but also responses (adhesion as well as proliferation) of GE cells of human in vitro. Moreover, in comparison with 80FPK, 160FPK further enhanced the responses of MC3T3-E1 cells/GE cells. Conclusion FSL created submicro-nano structures on PEEK with elevated surface performances, which played crucial roles in exciting the responses of MC3T3-E1 cells/GE cells. Consequently, 160FPK with elevated surface performances and outstanding cytocompatibility would have enormous potential as an implant for dental replacement.
Collapse
Affiliation(s)
- Dong Xie
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China.,Department of Orthopaedics, PLA Navy No.905 Hospital, Shanghai, 200052, People's Republic of China
| | - Chenhui Xu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Cheng Ye
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Shiqi Mei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Longqing Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhu
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qing Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Qi Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Zhiyan Xu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Lili Yang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| |
Collapse
|
10
|
Wan T, Jiao Z, Guo M, Wang Z, Wan Y, Lin K, Liu Q, Zhang P. Gaseous sulfur trioxide induced controllable sulfonation promoting biomineralization and osseointegration of polyetheretherketone implants. Bioact Mater 2020; 5:1004-1017. [PMID: 32671294 PMCID: PMC7339002 DOI: 10.1016/j.bioactmat.2020.06.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 06/16/2020] [Indexed: 10/25/2022] Open
Abstract
Fabricating a desired porous structure on the surface of biomedical polyetheretherketone (PEEK) implants for enhancing biological functions is crucial and difficult due to its inherent chemical inertness. In this study, a porous surface of PEEK implants was fabricated by controllable sulfonation using gaseous sulfur trioxide (SO3) for different time (5, 15, 30, 60 and 90 min). Micro-topological structure was generated on the surface of sulfonated PEEK implants preserving original mechanical properties. The protein absorption capacity and apatite forming ability was thus improved by the morphological and elemental change with higher degree of sulfonation. In combination of the appropriate micromorphology and bioactive sulfonate components, the cell adhesion, migration, proliferation and extracellular matrix secretion were obviously enhanced by the SPEEK-15 samples which were sulfonated for 15 min. Finding from this study revealed that controllable sulfonation by gaseous SO3 would be an extraordinarily strategy for improving osseointegration of PEEK implants by adjusting the microstructure and chemical composition while maintaining excellent mechanical properties.
Collapse
Affiliation(s)
- Teng Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- Corresponding author.
| | - Yizao Wan
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, 130041, PR China
- Corresponding author.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Corresponding author. Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| |
Collapse
|
11
|
A Fluorescent Zn(II)-Coordination Polymer: Selective Detection of Nitrofurantoin and Prevention of Peri-Implantitis after Ultrafine-Grained Titanium Implant by Reducing Inflammatory Cytokines Release. J Fluoresc 2020; 30:1035-1042. [PMID: 32607733 DOI: 10.1007/s10895-020-02575-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
In the current research, a novel coordination polymer (CP) containing Zn(II) ions as nodes with the chemical formula of [Zn(IPT)2]n (1) has been produced via reaction of Zn(NO3)2·6H2O with 5-(3-(1H-imidazol-1-yl)phenyl)-1H-tetrazolate (HIPT), a heterotopic imidazole-tetrazole-bifunctional ligand. The as-prepared complex 1 has been charactered via single crystal X-ray diffraction, elemental analysis, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and fourier transform infrared spectroscopy (FT-IR). Because of its outstanding luminescent performances and stability, the synthesized complex 1 is a kind of excellent material of luminescent sensor of nitrofurantoin (NFT) in the water. The value of Ksv for the complex 1 to NFT is about 1.4 × 104 M-1. For the treatment of the peri-implantitis with complex 1, the ELISA test was carried out to determine the levels of the inflammatory cytokines released into the gingival crevicular fluid. The results showed that the levels of the inflammatory cytokines could be significantly reduced by complex 1 treatment. In addition to this, the real time RT-PCR was also conducted, and the data suggested the signaling pathway of TLR-4-NF-κB activation was inhibited by complex 1.
Collapse
|
12
|
Influences of sodium tantalite submicro-particles in polyetheretherketone based composites on behaviors of rBMSCs/HGE-1 cells for dental application. Colloids Surf B Biointerfaces 2019; 188:110723. [PMID: 31887651 DOI: 10.1016/j.colsurfb.2019.110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 11/21/2022]
Abstract
Dental implanted materials require excellent mechanical properties, biocompatibility as well as integration with bone tissue and gingival tissue to achieve early loading and long-term stability. In this study, cubic shape sodium tantalite (ST) submicro-particles with the size of around 180 nm were synthesized by a hydrothermal method, and ST/polyetheretherketone (PEEK) composites (TPC) with ST content of 20 w% (TPC20) and 40 w% (TPC40) were prepared by melting blend. The results showed that the compressive strength, thermal properties, surface roughness, hydrophilicity and surface energy as well as adsorption of proteins on TPC40 were also significantly enhanced compared with TPC20 and PEEK. Moreover, the responses (adhesion and proliferation as well as differentiation) of rat bone marrow mesenchymal stem cells (rBMSCs), and responses (adhesion, and proliferation) of human gingival epithelial (HGE-1) cells to TPC40 were significantly promoted compared with TPC20 and PEEK. The results demonstrated that ST content in TPC had remarkable effects on the surface properties, which played key roles in stimulating the responses of both rBMSCs and HGE-1 cells. TPC40 with increased surface properties and excellent cytocompatibility might have great potential as an implanted material for dental application.
Collapse
|
13
|
Wang J, He XT, Xu XY, Yin Y, Li X, Bi CS, Hong YL, Chen FM. Surface modification via plasmid-mediated pLAMA3-CM gene transfection promotes the attachment of gingival epithelial cells to titanium sheets in vitro and improves biological sealing at the transmucosal sites of titanium implants in vivo. J Mater Chem B 2019; 7:7415-7427. [PMID: 31710069 DOI: 10.1039/c9tb01715a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although titanium implants have been applied in dental clinics to replace lost teeth and to restore masticatory function for decades, strategies to design the surface of the transmucosal sites of implants to achieve ideal and predictable biological sealing following implantation remain to be optimized. In this study, we hypothesized that gingival epithelial cell (GEC) adhesion and new tissue attachment to titanium sheets/implants could be promoted by the release of plasmid pLAMA3-CM (encoding a motif of the C-terminal globular domain of LAMA3) from a titanium surface. To test this hypothesis, a chitosan/collagen (Chi/Col) coating was immobilized on the surfaces of titanium substrates with nanotube topography (NT-Ti) through cathodic electrophoretic deposition; it was found that pLAMA3-CM could be released from the coating in a highly sustained manner. After culturing on titanium with nanotube topography coated by Chi/Col with the plasmid pLAMA3-CM (Chi/Col/pLAMA3-CM-Ti), human GECs (hGECs) were found to effectively uptake the incorporated plasmids, which resulted in improved attachment, as evidenced by morphological and immunofluorescence analyses. In addition, Chi/Col/pLAMA3-CM-Ti induced better biological sealing at transmucosal sites following immediate implantation into Sprague-Dawley rats. Our findings indicate that the modification of titanium implants by plasmid-mediated pLAMA3-CM gene transfection points to a practical strategy for optimizing biological sealing around the transmucosal sites of implants.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xin-Yue Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Chun-Sheng Bi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| | - Yong-Long Hong
- Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, P. R. China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
14
|
Caballé‐Serrano J, Chappuis V, Monje A, Buser D, Bosshardt DD. Soft tissue response to dental implant closure caps made of either polyetheretherketone (PEEK) or titanium. Clin Oral Implants Res 2019; 30:808-816. [DOI: 10.1111/clr.13487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jordi Caballé‐Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine University of Bern Bern Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine University of Bern Bern Switzerland
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine Universitat Internacional de Catalunya Barcelona Spain
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine University of Bern Bern Switzerland
| | - Alberto Monje
- Department of Oral Surgery and Stomatology, School of Dental Medicine University of Bern Bern Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine University of Bern Bern Switzerland
| | - Dieter D. Bosshardt
- Department of Oral Surgery and Stomatology, School of Dental Medicine University of Bern Bern Switzerland
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine University of Bern Bern Switzerland
| |
Collapse
|
15
|
Susin C, Finger Stadler A, Fiorini T, de Sousa Rabelo M, Ramos UD, Schüpbach P. Safety and efficacy of a novel anodized abutment on soft tissue healing in Yucatan mini-pigs. Clin Implant Dent Relat Res 2019; 21 Suppl 1:34-43. [PMID: 30859699 DOI: 10.1111/cid.12755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND It is well established that electrochemical anodization of implant surfaces contributes to osseointegration and long-term implant survival. Few studies have investigated its effect on soft tissue healing. PURPOSE To evaluate the safety and efficacy of a novel abutment surface prepared by electrochemical oxidation compared to commercially available machined titanium abutments. MATERIALS AND METHODS Twelve 16-19 months-old, Yucatan mini-pigs received three dental implants in each mandibular jaw quadrant. Each side was randomized to receive either an anodized or a machined titanium abutment. Titanium healing caps were placed on both abutments. Animals were euthanized at 6 and 13 weeks. Radiographic and histological analyses were performed. RESULTS No significant differences were observed histologically between groups in regard to inflammation, epithelium length, mucosal height, bone-to-implant contact, or bone density for any time point. Radiographically, crestal bone level change from baseline to 6 weeks was significantly lower for anodized than machined abutments (P = 0.046); no significant differences were observed at 13 weeks (P = 0.12). CONCLUSIONS The novel anodized abutment showed a comparable effect on soft and hard tissue healing/remodeling and inflammation reaction to standard titanium abutments. Clinical studies should confirm these findings and explore the positive radiographic results observed at the early time point.
Collapse
Affiliation(s)
- Cristiano Susin
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amanda Finger Stadler
- Department of Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tiago Fiorini
- Department of Conservative Dentistry - Periodontology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Umberto D Ramos
- Department of Maxillofacial Surgery and Periodontics, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Peter Schüpbach
- Schupbach Ltd, Service and Research Laboratory for Histology, Electron Microscopy and Micro CT, Horgen, Switzerland
| |
Collapse
|
16
|
Lopes HB, Freitas GP, Elias CN, Tye C, Stein JL, Stein GS, Lian JB, Rosa AL, Beloti MM. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A 2019; 107:1303-1313. [PMID: 30707485 DOI: 10.1002/jbm.a.36643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin β3, which increases osteoblast differentiation. Silencing integrin β3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin β3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/β-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin β3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin β3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.
Collapse
Affiliation(s)
- Helena B Lopes
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade P Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Coralee Tye
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Adalberto L Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|