1
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
2
|
Honarvar A, Setayeshmehr M, Ghaedamini S, Hashemibeni B, Moroni L, Karbasi S. Chondrogenesis of mesenchymal stromal cells on the 3D printed polycaprolactone/fibrin/decellular cartilage matrix hybrid scaffolds in the presence of piascledine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:799-822. [PMID: 38289681 DOI: 10.1080/09205063.2024.2307752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Nowadays, cartilage tissue engineering (CTE) is considered important due to lack of repair of cartilaginous lesions and the absence of appropriate methods for treatment. In this study, polycaprolactone (PCL) scaffolds were fabricated by three-dimensional (3D) printing and were then coated with fibrin (F) and acellular solubilized extracellular matrix (ECM). After extracting adipose-derived stem cells (ADSCs), 3D-printed scaffolds were characterized and compared to hydrogel groups. After inducing the chondrogenic differentiation in the presence of Piascledine and comparing it with TGF-β3 for 28 days, the expression of genes involved in chondrogenesis (AGG, COLII) and the expression of the hypertrophic gene (COLX) were examined by real-time PCR. The expression of proteins COLII and COLX was also determined by immunohistochemistry. Glycosaminoglycan was measured by toluidine blue staining. 3D-printed scaffolds clearly improved cell proliferation, viability, water absorption and compressive strength compared to the hydrogel groups. Moreover, the use of compounds such as ECM and Piascledine in the process of ADSCs chondrogenesis induction increased cartilage-specific markers and decreased the hypertrophic marker compared to TGF-β3. In Piascledine groups, the expression of COLL II protein, COLL II and Aggrecan genes, and the amount of glycosaminoglycan showed a significant increase in the PCL/F/ECM compared to the PCL and PCL/F groups.
Collapse
Affiliation(s)
- Ali Honarvar
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohsen Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sho'leh Ghaedamini
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, Maastricht, The Netherlands
| | - Saeed Karbasi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
De Vitis E, Stanzione A, Romano A, Quattrini A, Gigli G, Moroni L, Gervaso F, Polini A. The Evolution of Technology-Driven In Vitro Models for Neurodegenerative Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304989. [PMID: 38366798 DOI: 10.1002/advs.202304989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/15/2024] [Indexed: 02/18/2024]
Abstract
The alteration in the neural circuits of both central and peripheral nervous systems is closely related to the onset of neurodegenerative disorders (NDDs). Despite significant research efforts, the knowledge regarding NDD pathological processes, and the development of efficacious drugs are still limited due to the inability to access and reproduce the components of the nervous system and its intricate microenvironment. 2D culture systems are too simplistic to accurately represent the more complex and dynamic situation of cells in vivo and have therefore been surpassed by 3D systems. However, both models suffer from various limitations that can be overcome by employing two innovative technologies: organ-on-chip and 3D printing. In this review, an overview of the advantages and shortcomings of both microfluidic platforms and extracellular matrix-like biomaterials will be given. Then, the combination of microfluidics and hydrogels as a new synergistic approach to study neural disorders by analyzing the latest advances in 3D brain-on-chip for neurodegenerative research will be explored.
Collapse
Affiliation(s)
- Eleonora De Vitis
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Antonella Stanzione
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Romano
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Angelo Quattrini
- IRCCS San Raffaele Scientific Institute, Division of Neuroscience, Institute of Experimental Neurology, Milan, 20132, Italy
| | - Giuseppe Gigli
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Lorenzo Moroni
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
- Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, Netherlands
| | - Francesca Gervaso
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| | - Alessandro Polini
- CNR NANOTEC-Institute of Nanotechnology, Campus Ecotekn, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
4
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Wang L, Wang C, Zhou L, Bi Z, Shi M, Wang D, Li Q. Fabrication of a novel Three-Dimensional porous PCL/PLA tissue engineering scaffold with high connectivity for endothelial cell migration. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Adala I, Ramis J, Ntone Moussinga C, Janowski I, Amer MH, Bennett AJ, Alexander C, Rose FRAJ. Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. J Mater Chem B 2021; 9:4120-4133. [PMID: 33982048 DOI: 10.1039/d1tb00129a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective regenerative medicine requires delivery systems which can release multiple components at appropriate levels and at different phases of tissue growth and repair. However, there are few biomaterials and encapsulation techniques that are fully suitable for the loading and controlled release of multiple proteins. In this study we describe how proteins were physically and chemically loaded into a single coaxial electrospun fibre scaffold to obtain bi-phasic release profiles. Cyto-compatible polymers were used to construct the scaffold, using polyethylene oxide (PEO) for the core and polycaprolactone (PCL) reacted or mixed with (bis-aminopropyl)polyether (Jeffamine ED2003; JFA) for the shell. Horseradish peroxidase (HRP), a model protein, was loaded in the core and functionalised onto the scaffold surface by coupling of protein carboxyl groups to the available polymer amine groups. Fibre morphologies were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and functional group content was determined using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF SIMS). Hydrophobicity profiles of the fibres before and after protein loading were evaluated by water contact angle (WCA) and the mechanical properties of the electrospun scaffolds were determined by performing tensile tests. The electrospun fibre scaffolds generated by reacting PEO/PCL with 1,6-diaminohexane and those from mixing PEO/PCL with JFA were further characterised for protein conjugation and release. Fibres prepared by the mixed PEO/PCL/JFA system were found to be the most appropriate for the simultaneous release of protein from the core and the immobilisation of another protein on the shell of the same scaffold. Moreover, JFA enhanced scaffold properties in terms of porosity and elasticity. Finally, we successfully demonstrated the cytocompatibility and cell response to protein-loaded and -conjugated scaffolds using HepG2 cells. Enhanced cell attachment (2.5 fold) was demonstrated using bovine serum albumin (BSA)-conjugated scaffolds, and increased metabolic activity observed with retinoic acid (RA)-loaded scaffolds (2.7 fold).
Collapse
Affiliation(s)
- Inchirah Adala
- School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - Jopeth Ramis
- School of Pharmacy, University of Nottingham, Nottingham, UK.
| | | | | | - Mahetab H Amer
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | | | | | | |
Collapse
|
7
|
Molnar K, Voniatis C, Feher D, Szabo G, Varga R, Reiniger L, Juriga D, Kiss Z, Krisch E, Weber G, Ferencz A, Varga G, Zrinyi M, Nagy KS, Jedlovszky-Hajdu A. Poly(amino acid) based fibrous membranes with tuneable in vivo biodegradation. PLoS One 2021; 16:e0254843. [PMID: 34388163 PMCID: PMC8362958 DOI: 10.1371/journal.pone.0254843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022] Open
Abstract
In this work two types of biodegradable polysuccinimide-based, electrospun fibrous membranes are presented. One contains disulfide bonds exhibiting a shorter (3 days) in vivo biodegradation time, while the other one has alkyl crosslinks and a longer biodegradation time (more than 7 days). According to the mechanical measurements, the tensile strength of the membranes is comparable to those of soft the connective tissues and visceral tissues. Furthermore, the suture retention test suggests, that the membranes would withstand surgical handling and in vivo fixation. The in vivo biocompatibility study demonstrates how membranes undergo in vivo hydrolysis and by the 3rd day they become poly(aspartic acid) fibrous membranes, which can be then enzymatically degraded. After one week, the disulfide crosslinked membranes almost completely degrade, while the alkyl-chain crosslinked ones mildly lose their integrity as the surrounding tissue invades them. Histopathology revealed mild acute inflammation, which diminished to a minimal level after seven days.
Collapse
Affiliation(s)
- Kristof Molnar
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States of America
| | - Constantinos Voniatis
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Daniella Feher
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Gyorgyi Szabo
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Rita Varga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1 Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - David Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Zoltan Kiss
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
- Biomechanical Research Center, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eniko Krisch
- Department of Food, Agricultural and Biological Engineering, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States of America
| | - Gyorgy Weber
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Andrea Ferencz
- Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Gabor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Miklos Zrinyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztina S. Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Tu H, Dai F, Cheng G, Yuan M, Zhou X, Wang Y, Zhang R, Zheng Y, Cheng Y, Deng H. Incorporation of Layered Rectorite into Biocompatible Core-Sheath Nanofibrous Mats for Sustained Drug Delivery. ACS Biomater Sci Eng 2021; 7:4509-4520. [PMID: 34346208 DOI: 10.1021/acsbiomaterials.1c00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Searching for drug carries with controlled release and good biocompatibility has always been one of the research hotspots and difficulties. Herein, core-sheath nanofibrous mats (NFs) consisting of biocompatible poly(ethylene oxide) (PEO, core) and poly(l-lactic acid) (PLLA, sheath) for drug delivery were fabricated via coaxial electrospinning strategy. The nontoxic layered silicate rectorite (REC) with 0.5-1 wt % amount was introduced in the sheath for sustained drug delivery. Layered REC could be intercalated with PLLA macromolecule chains, leading to the densified structure for loading and keeping doxorubicin hydrochloride (DOX) while reversibly capturing and releasing DOX to delay the drug migration due to its high cation activity. The addition of REC in NFs could delay the initial burst release of DOX and prolong the residence time from 12 to 96 h. Moreover, DOX-loaded core-sheath NFs had in vitro culture with strong antitumor activity, which was confirmed by cytotoxicity results and live and dead assay. HepG2 tumor-bearing xenograft further demonstrated the tumor-suppression effect and the excellent safety of the DOX-loaded core-sheath NFs in vivo. The constructed NFs as drug carriers showed great potential in the local treatment of solid tumors.
Collapse
Affiliation(s)
- Hu Tu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.,State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Gu Cheng
- Hubei-MOST KLOS & KLOBME, Department of Oral and Maxillofical Trauma and Plastic Surgery, Wuhan University Stomatological Hospital, Wuhan University, Wuhan 430079, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xue Zhou
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Setayeshmehr M, Hafeez S, van Blitterswijk C, Moroni L, Mota C, Baker MB. Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. Int J Mol Sci 2021; 22:ijms22083901. [PMID: 33918892 PMCID: PMC8069267 DOI: 10.3390/ijms22083901] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 01/19/2023] Open
Abstract
Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.
Collapse
Affiliation(s)
- Mohsen Setayeshmehr
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
| | - Shahzad Hafeez
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
| | - Clemens van Blitterswijk
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
| | - Lorenzo Moroni
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
| | - Carlos Mota
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
- Correspondence: (C.M.); (M.B.B.)
| | - Matthew B. Baker
- MERLN Institute for Technology Inspired Regenerative Medicine, Complex Tissue Regeneration, Maastricht University, 6229 Maastricht, The Netherlands; (S.H.); (C.v.B.); (L.M.)
- Correspondence: (C.M.); (M.B.B.)
| |
Collapse
|
10
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Huang S, Zhao Q. Nanomedicine-Combined Immunotherapy for Cancer. Curr Med Chem 2020; 27:5716-5729. [PMID: 31250752 DOI: 10.2174/0929867326666190618161610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy for cancer includes Chimeric Antigen Receptor (CAR)-T cells, CAR-natural Killer (NK) cells, PD1, and the PD-L1 inhibitor. However, the proportion of patients who respond to cancer immunotherapy is not satisfactory. Concurrently, nanotechnology has experienced a revolution in cancer diagnosis and therapy. There are few clinically approved nanoparticles that can selectively bind and target cancer cells and incorporate molecules, although many therapeutic nanocarriers have been approved for clinical use. There are no systematic reviews outlining how nanomedicine and immunotherapy are used in combination to treat cancer. OBJECTIVE This review aims to illustrate how nanomedicine and immunotherapy can be used for cancer treatment to overcome the limitations of the low proportion of patients who respond to cancer immunotherapy and the rarity of nanomaterials in clinical use. METHODS A literature review of MEDLINE, PubMed / PubMed Central, and Google Scholar was performed. We performed a structured search of literature reviews on nanoparticle drug-delivery systems, which included photodynamic therapy, photothermal therapy, photoacoustic therapy, and immunotherapy for cancer. Moreover, we detailed the advantages and disadvantages of the various nanoparticles incorporated with molecules to discuss the challenges and solutions associated with cancer treatment. CONCLUSION This review identified the advantages and disadvantages associated with improving health care and outcomes. The findings of this review confirmed the importance of nanomedicinecombined immunotherapy for improving the efficacy of cancer treatment. It may become a new way to develop novel cancer therapeutics using nanomaterials to achieve synergistic anticancer immunity.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| |
Collapse
|
12
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
13
|
Reid G, Magarotto F, Marsano A, Pozzobon M. Next Stage Approach to Tissue Engineering Skeletal Muscle. Bioengineering (Basel) 2020; 7:E118. [PMID: 33007935 PMCID: PMC7711907 DOI: 10.3390/bioengineering7040118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 02/08/2023] Open
Abstract
Large-scale muscle injury in humans initiates a complex regeneration process, as not only the muscular, but also the vascular and neuro-muscular compartments have to be repaired. Conventional therapeutic strategies often fall short of reaching the desired functional outcome, due to the inherent complexity of natural skeletal muscle. Tissue engineering offers a promising alternative treatment strategy, aiming to achieve an engineered tissue close to natural tissue composition and function, able to induce long-term, functional regeneration after in vivo implantation. This review aims to summarize the latest approaches of tissue engineering skeletal muscle, with specific attention toward fabrication, neuro-angiogenesis, multicellularity and the biochemical cues that adjuvate the regeneration process.
Collapse
Affiliation(s)
- Gregory Reid
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Fabio Magarotto
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| | - Anna Marsano
- Department of Cardiac Surgery, University Hospital Basel, 4031 Basel, Switzerland; (G.R.); (A.M.)
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Michela Pozzobon
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Institute of Pediatric Research, Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
14
|
Sheng D, Li J, Ai C, Feng S, Ying T, Liu X, Cai J, Ding X, Jin W, Xu H, Chen J, Chen S. Electrospun PCL/Gel-aligned scaffolds enhance the biomechanical strength in tendon repair. J Mater Chem B 2020; 7:4801-4810. [PMID: 31389951 DOI: 10.1039/c9tb00837c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tendons can transmit mechanical force from muscles to bones for movement. However, the mechanical strength of tendons is compromised after surgery, thus causing a high rate of tendon retear. Hence, the design and preparation of biodegradable materials with excellent mechanical properties have become an urgent demand for sports medicine. In this study, biomimetic polycaprolactone (PCL)/gelatin (Gel)-aligned scaffolds were fabricated for the mechanical restoration of the injured tendon in a rabbit model. The diameter of nanofibers was about 427.82 ± 56.99 nm, which was approximate to that of the native collagen fibrils; the directional consistency of the nanofibers in PCL/Gel-aligned scaffolds reached 77.33 ± 3.22%, which were ultrastructurally biomimetic. Compared to the observations for the control group, the in vitro mechanical results showed that the PCL/Gel-aligned scaffolds (P/G-A) were anisotropic in terms of failure load, tensile strength, and Young's modulus. After verifying their good cytocompatibility, the scaffolds were implanted into the rabbit patellar tendon in situ. The biomechanical properties of the repaired tendon in P/G-A reached 343.97 ± 65.30 N in failure load, 85.99 ± 16.33 MPa in tensile strength, 590.84 ± 201.87 MPa in Young's modulus, and 171.29 ± 61.50 N mm-1 in stiffness in vivo at 8 weeks post operation. In a word, our results demonstrated that P/G-A could support the regenerated tissue of injured patellar tendons to restore the biomechanical strength in a rabbit model. This suggested that the PCL/Gel-aligned scaffolds can pave a promising way to improve the healing of injured tendons in the clinic in the future.
Collapse
Affiliation(s)
- Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Juhasz AG, Molnar K, Idrissi A, Jedlovszky-Hajdu A. Salt induced fluffy structured electrospun fibrous matrix. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Semitela Â, Girão AF, Fernandes C, Ramalho G, Bdikin I, Completo A, Marques PA. Electrospinning of bioactive polycaprolactone-gelatin nanofibres with increased pore size for cartilage tissue engineering applications. J Biomater Appl 2020; 35:471-484. [PMID: 32635814 DOI: 10.1177/0885328220940194] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Polycaprolactone (PCL) electrospun scaffolds have been widely investigated for cartilage repair application. However, their hydrophobicity and small pore size has been known to prevent cell attachment, proliferation and migration. Here, PCL was blended with gelatin (GEL) combining the favorable biological properties of GEL with the good mechanical performance of the former. Also, polyethylene glycol (PEG) particles were introduced during the electrospinning of the polymers blend by simultaneous electrospraying. These particles were subsequently removed resulting in fibrous scaffolds with enlarged pore size. PCL, GEL and PEG scaffolds formulations were developed and extensively structural and biologically characterized. GEL incorporation on the PCL scaffolds led to a considerably improved cell attachment and proliferation. A substantial pore size and interconnectivity increase was obtained, allowing cell infiltration through the porogenic scaffolds. All together these results suggest that this combined approach may provide a potentially clinically viable strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Ângela Semitela
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - André F Girão
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Carla Fernandes
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Gonçalo Ramalho
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Igor Bdikin
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - António Completo
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Paula Aap Marques
- TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
17
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
18
|
Lauer A, Wolf P, Mehler D, Götz H, Rüzgar M, Baranowski A, Henrich D, Rommens PM, Ritz U. Biofabrication of SDF-1 Functionalized 3D-Printed Cell-Free Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2020; 21:E2175. [PMID: 32245268 PMCID: PMC7139557 DOI: 10.3390/ijms21062175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Large segmental bone defects occurring after trauma, bone tumors, infections or revision surgeries are a challenge for surgeons. The aim of our study was to develop a new biomaterial utilizing simple and cheap 3D-printing techniques. A porous polylactide (PLA) cylinder was printed and functionalized with stromal-derived factor 1 (SDF-1) or bone morphogenetic protein 7 (BMP-7) immobilized in collagen type I. Biomechanical testing proved biomechanical stability and the scaffolds were implanted into a 6 mm critical size defect in rat femur. Bone growth was observed via x-ray and after 8 weeks, bone regeneration was analyzed with µCT and histological staining methods. Development of non-unions was detected in the control group with no implant. Implantation of PLA cylinder alone resulted in a slight but not significant osteoconductive effect, which was more pronounced in the group where the PLA cylinder was loaded with collagen type I. Addition of SDF-1 resulted in an osteoinductive effect, with stronger new bone formation. BMP-7 treatment showed the most distinct effect on bone regeneration. However, histological analyses revealed that newly formed bone in the BMP-7 group displayed a holey structure. Our results confirm the osteoinductive character of this 3D-biofabricated cell-free new biomaterial and raise new options for its application in bone tissue regeneration.
Collapse
Affiliation(s)
- Alina Lauer
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Philipp Wolf
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Dorothea Mehler
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Hermann Götz
- CBU—Cell Biology Unit, PKZI, University Medical Center, BiomaTiCS, Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Mehmet Rüzgar
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Andreas Baranowski
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (A.L.); (P.W.); (D.M.); (M.R.); (A.B.); (P.M.R.)
| |
Collapse
|
19
|
PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers (Basel) 2019; 11:polym11050916. [PMID: 31126035 PMCID: PMC6572693 DOI: 10.3390/polym11050916] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) systems provide a suitable environment for cells cultured in vitro since they reproduce the physiological conditions that traditional cell culture supports lack. Electrospinning is a cost-effective technology useful to manufacture scaffolds with nanofibers that resemble the extracellular matrix that surround cells in the organism. Poly(lactic acid) (PLA) is a synthetic polymer suitable for biomedical applications. The main objective of this study is to evaluate electrospun (ES)-PLA scaffolds to be used for culturing cancer cells. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no validated targeted therapy and a high relapse rate. MDA-MB-231 TNBC cells were grown in scaffolds from two different PLA concentrations (12% and 15% w/v). The appropriateness of ES-PLA scaffolds was evaluated using a cell proliferation assay. EGFR and STAT3 gene expression and protein levels were compared in cells grown in 2D versus in 3D cultures. An increase in STAT3 activation was shown, which is related to self-renewal of cancer stem cells (CSCs). Therefore, the enrichment of the breast CSC (BCSC) population was tested using a mammosphere-forming assay and gene expression of BCSC-related stemness and epithelial-to-mesenchymal transition markers. Based on the results obtained, ES-PLA scaffolds are useful for 3D cultures in short culture periods with no BCSC-enrichment.
Collapse
|