1
|
Lee ES, Cha BS, Jang YJ, Woo J, Kim S, Park SS, Oh SW, Park KS. Harnessing the potential of aptamers in cell-derived vesicles for targeting colorectal cancers at Pan-Dukes' stages. Int J Biol Macromol 2024; 280:135911. [PMID: 39317285 DOI: 10.1016/j.ijbiomac.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer (CRC) remains one of the most formidable challenges in the global health arena. To address this challenge, extensive research has been directed toward developing targeted drug delivery systems (DDS). Cell-derived vesicles (CDV), which mirror the lipid bilayer structure of cell membranes, have garnered tremendous attention as ideal materials for DDS owing to their scalability in production and high biocompatibility. In this study, a novel method, termed colorectal cancer overall Dukes' staging Systematic Evolution of Ligands by Exponential enrichment (CROSS), was developed to identify Toggle Cell 1 (TC1) aptamers with high binding affinity to CRC cells at various Dukes' stages (A-D). Furthermore, a novel DDS was developed by incorporating a cholesterol-modified TC1 aptamer into CDV, which exhibited improved targeting ability and cellular uptake efficiency toward CRC cells compared to CDV alone. The results of this study highlight the potential efficacy of CDV in constructing a targeted DDS while overcoming the current challenges associated with other lipid-based DDS.
Collapse
Affiliation(s)
- Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Young Jun Jang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sung-Soo Park
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- BioDrone Research Institute, MDimune Inc., Achasanro 49, Seongdonggu, Seoul 04790, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Ram TB, Krishnan S, Jeevanandam J, Danquah MK, Thomas S. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther 2024; 28:425-453. [PMID: 38775897 DOI: 10.1007/s40291-024-00717-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/28/2024]
Abstract
Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.
Collapse
Affiliation(s)
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Sabu Thomas
- School of Polymer Science and Technology and School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
3
|
Cong Y, Zhang SY, Li HM, Zhong JJ, Zhao W, Tang YJ. A truncated DNA aptamer with high selectivity for estrogen receptor-positive breast cancer cells. Int J Biol Macromol 2023; 252:126450. [PMID: 37634779 DOI: 10.1016/j.ijbiomac.2023.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The estrogen receptor-positive (ER+) breast cancers constitute more than 50 % of breast cancers, seriously threatening the health of women. Unfortunately, the detection and targeted therapy of ER+ breast cancers remain a challenge. Here, a novel nucleic acid aptamer S1-4 was developed to specifically target ER+ breast cancer MCF-7 cells by using Cell-SELEX and nucleic acid truncation strategies. The affinity dissociation constant of the binding of aptamer S1-4 to MCF-7 cells was 97.6 ± 7.5 nM in vitro. Compared with HER2+ breast cells SK-BR-3 and triple-negative breast cancer cells MDA-MB-231, MCF-7 cells were selectively recognized and targeted by aptamer S1-4. Fluorescence tracing in vivo results also indicated that aptamer S1-4 selectively targeted the cell membrane of tumor tissues in MCF-7- but not in SK-BR3 or MDB-MA-231-bearing mice. This selectively developed novel aptamer probe S1-4 with high affinity could be used for the diagnosis and treatment of ER+ breast cancers.
Collapse
Affiliation(s)
- Ying Cong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shu-Yue Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hong-Mei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
5
|
Liu M, Wang Z, Li S, Deng Y, He N. Identification of PHB2 as a Potential Biomarker of Luminal A Breast Cancer Cells Using a Cell-Specific Aptamer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51593-51601. [PMID: 36346944 DOI: 10.1021/acsami.2c12291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Precise diagnosis of breast cancer molecular subtypes remains a great challenge in clinics. The present molecular biomarkers are not specific enough to classify breast cancer subtypes precisely, which requests for more accurate and specific molecular biomarkers to be discovered. Aptamers evolved by the cell-systematic evolution of ligands by exponential enrichment (SELEX) method show great potential in the discovery and identification of cell membrane targets via aptamer-based cell membrane protein pull-down, which has been regarded as a novel and powerful weapon for the discovery and identification of new molecular biomarkers. Herein, a cell membrane protein PHB2 was identified as a potential molecular biomarker specifically expressed in the cell membranes of MCF-7 breast cancer cells using a DNA aptamer MF3Ec. Further experiments demonstrated that the PHB2 protein is differentially expressed in the cell membranes of MCF-7, SK-BR-3, and MDA-MB-231 breast cancer cells and MCF-10A cells, and the binding molecular domains of aptamer MF3Ec and anti-PHB2 antibodies to the PHB2 protein are different due to there being no obvious competitions between aptamer MF3Ec and anti-PHB2 antibodies in the binding to the cell membranes of target MCF-7 cells. Due to those four cells belonging to luminal A, HER2-positive, and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, respectively, the PHB2 protein in the cell membrane may be a potential biomarker for precise diagnosis of the luminal A breast cancer cell subtype, which is endowed with the ability to differentiate the luminal A breast cancer cell subtype from HER2-positive and triple-negative breast cancer cell subtypes and human normal mammary epithelial cells, providing a new molecular biomarker and therapeutic target for the accurate and precise classification and diagnostics and personalized therapy of breast cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, P. R. China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Song Li
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Yan Deng
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province, Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
6
|
Abdelraouf EM, Hussein RRS, Shaaban AH, El-Sherief HAM, Embaby AS, Abd El-Aleem SA. Annexin A2 (AnxA2) association with the clinicopathological data in different breast cancer subtypes: A possible role for AnxA2 in tumor heterogeneity and cancer progression. Life Sci 2022; 308:120967. [PMID: 36116530 DOI: 10.1016/j.lfs.2022.120967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Breast cancer is a highly heterogeneous type of neoplasia with molecular and biochemical alterations in the ductal epithelium. AnxA2 has a diverse functions and through intracellular interaction with other molecules promotes carcinogenesis. AIMS To study the possible involvement of AnxA2 in breast cancer heterogeneity and cancer progression. PATIENTS AND METHODS Tumor tissue and serum were obtained from different breast cancer subtypes. Tumor tissues were processed for histopathological studies. AnxA2 levels were assessed in the tissues by H scoring and in the serum by ELISA. AnxA2 levels were correlated with HER2 and Ki67 and with clinicopathological data. Normal breast tissues and serum from healthy subjects were used as controls. RESULTS AnxA2 showed a peculiar distribution in tumor tissues and nearby interstitial tissues. Pattern of expressions varied in different subtypes with the highest expression in triple negative subtype. Tissue and serum AnxA2 showed significant co-upregulations in breast cancer. Moreover, they showed positive correlations with HER2 and Ki67 and associations with clinicopathological data including cancer staging and lymph node metastasis. CONCLUSION For the best of our knowledge this is the first study showing correlation between AnxA2, the proposed prognostic marker and the well-established tumor markers; HER2 and Ki67. AnxA2 might contribute to breast cancer heterogeneity and is associated with poor prognosis. AnxA2 might be a prognostic marker and an additional marker for breast cancer grading and clinical staging. Interestingly, tissue and serum AnxA2 showed a strong correlation. Thus, assessing serum AnxA2 can be a noninvasive prognostic tool.
Collapse
Affiliation(s)
| | - Raghda R S Hussein
- Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| | - Ahmed Hassan Shaaban
- Department of clinical Oncology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Egypt
| | - Azza S Embaby
- Department of Histology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Seham A Abd El-Aleem
- Department of Cell Biology and Histology, Faculty of Medicine, Minia University, Egypt.
| |
Collapse
|
7
|
Xing H, Zhang Y, Krämer M, Kissmann AK, Henkel M, Weil T, Knippschild U, Rosenau F. A Polyclonal Selex Aptamer Library Directly Allows Specific Labelling of the Human Gut Bacterium Blautia producta without Isolating Individual Aptamers. Molecules 2022; 27:molecules27175693. [PMID: 36080459 PMCID: PMC9458011 DOI: 10.3390/molecules27175693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
Recent studies have demonstrated that changes in the abundance of the intestinal bacterium Blautia producta, a potential probiotic, are closely associated with the development of various diseases such as obesity, diabetes, some neurodegenerative diseases, and certain cancers. However, there is still a lack of an effective method to detect the abundance of B. producta in the gut rapidly. Especially, DNA aptamers are now widely used as biometric components for medical testing due to their unique characteristics, including high chemical stability, low production cost, ease of chemical modification, low immunogenicity, and fast reproducibility. We successfully obtained a high-affinity nucleic acid aptamer library (B.p-R14) after 14 SELEX rounds, which efficiently discriminates B. producta in different analysis techniques including fluorometric suspension assays or fluorescence microscopy from other major gut bacteria in complex mixtures and even in human stool samples. These preliminary findings will be the basis towards aptamer-based biosensing applications for the fast and reliable monitoring of B. producta in the human gut microbiome.
Collapse
Affiliation(s)
- Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yiting Zhang
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max-Planck-Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
8
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Nanocarbon Tracer and Areola Injection Site Are Superior in the Sentinel Lymph Node Biopsy Procedure for Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4066179. [PMID: 35321201 PMCID: PMC8938060 DOI: 10.1155/2022/4066179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022]
Abstract
Background. Axillary lymph node (ALN) staging is the most effective method to evaluate the condition of patients with breast cancer, their choice of treatment options, and prognosis. The sentinel lymph node (SLN) status assessment is the key to sentinel lymph node biopsy (SLNB) in patients with breast cancer. The choice of tracer and tracer injection sites affects SLNB. Objective. This study mainly analyzes the best tracer for SLNB and the best choice of tracer injection site. Methods. A total of 165 breast cancer patients who underwent SLNB were selected and injected with methylene blue or 99mTc-labeled sodium phytate or nanocarbon 20 min before biopsy. The number of SLNs detected by different tracers in different injection sites such as peritumoral tissue (PT) and subareolar area (SA) was counted, and the sensitivity, specificity, and positive/negative prediction rates were recorded and compared. Results. The detection success rate, average detection number of SLNs, and detection accuracy of the nanocarbon tracer were higher than the other two. The detection sensitivity, specificity, and positive and negative prediction rates of nanocarbon for SLNB were also higher than those of the other two tracers. When comparing the performance of tracers in different injection sites, it was found that the detection of three tracers injected in the SA was better than the injection in the PT. Conclusion. For women with early-stage breast cancer, nanocarbon can be used as the preferred tracer for SLNB to determine the status of the patient’s ALNs, and the areola area can be used as the best injection site.
Collapse
|
10
|
Sousa DA, Carneiro M, Ferreira D, Moreira FTC, Sales MGFV, Rodrigues LR. Recent advances in the selection of cancer-specific aptamers for the development of biosensors. Curr Med Chem 2022; 29:5850-5880. [PMID: 35209816 DOI: 10.2174/0929867329666220224155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/30/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
An early diagnosis has the potential to greatly decrease cancer mortality. For that purpose, specific cancer biomarkers have been molecularly targeted by aptamer sequences to enable an accurate and rapid detection. Aptamer-based biosensors for cancer diagnostics are a promising alternative to those using antibodies, due to their high affinity and specificity to the target molecules and advantageous production. Synthetic nucleic acid aptamers are generated by in vitro Systematic Evolution of Ligands by Exponential enrichment (SELEX) methodologies that have been improved over the years to enhance the efficacy and to shorten the selection process. Aptamers have been successfully applied in electrochemical, optical, photoelectrochemical and piezoelectrical-based detection strategies. These aptasensors comprise a sensitive, accurate and inexpensive option for cancer detection being used as point-of-care devices. This review highlights the recent advances in cancer biomarkers, achievements and optimizations made in aptamer selection, as well as the different aptasensors developed for the detection of several cancer biomarkers.
Collapse
Affiliation(s)
- Diana A Sousa
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Mariana Carneiro
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Débora Ferreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
| | - Felismina T C Moreira
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- BioMark@ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti F V Sales
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- MIT-Portugal Program, Lisbon, Portugal
- BioMark@UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
11
|
Guo Z, Jin B, Fang Y, Deng Y, Chen Z, Chen H, Li S, Leung P, Wang H, Cai L, He N. Selected aptamer specially combing 5-8F cells based on automatic screening instrument. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Wang M, Li L, Zhang L, Zhao J, Jiang Z, Wang W. Peptide-Derived Biosensors and Their Applications in Tumor Immunology-Related Detection. Anal Chem 2021; 94:431-441. [PMID: 34846861 DOI: 10.1021/acs.analchem.1c04461] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-molecular targeting peptides possess features of biocompatibility, affinity, and specificity, which is widely applied in molecular recognition and detection. Moreover, peptides can be developed into highly ordered supramolecular assemblies with boosting binding affinities, diverse functions, and enhanced stabilities suitable for biosensors construction. In this Review, we summarize recent progress of peptide-based biosensors for precise detection, especially on tumor-related analysis, as well as further provide a brief overview of the progress in tumor immune-related detection. Also, we are looking forward to the prospective future of peptide-based biosensors.
Collapse
Affiliation(s)
- Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zhenqi Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
13
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
14
|
Pei Y, Wang C, Chen Z, Li S, Chen H, Wang Z, He N. AutoCell Systematic Evolution of Ligands by Exponential Enrichment: The Software Designed and Developed for the Automated Screening System of Nucleic Acid Aptamers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5363-5369. [PMID: 33875130 DOI: 10.1166/jnn.2021.19342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aptamers are a new kind of nano-probes for bioassays and drug delivery, etc. In this paper, software has been developed as an automatic control center for the automated aptamer selecting system which realized the high integration of aptamer selection, data acquisition and processing. This software, applied in windows system, is developed by C# with the Microsoft Visual Studio 2015 integrated developing environment and the database used in this software is implemented using open source relational database MYSQL. According to the requirement analysis, this software realized various important necessary functions including feasible experiment design, auto-control of the hardware, real time process monitoring and efficient data management which perfectly satisfies the users' demands. During the actual experiment operation, this software worked smoothly and assumed stable serial port communication between it and the hardware, meanwhile, the interaction between the software and MYSQL remained good stability. As a consequence, it is practical and reasonable to apply this software to the automated aptamer selecting system for research.
Collapse
Affiliation(s)
- Yuhong Pei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Chao Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhu Chen
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Song Li
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Hui Chen
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Zunliang Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Applications of Aptamer-Bound Nanomaterials in Cancer Therapy. BIOSENSORS-BASEL 2021; 11:bios11090344. [PMID: 34562934 PMCID: PMC8468797 DOI: 10.3390/bios11090344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023]
Abstract
Cancer is still a major disease that threatens human life. Although traditional cancer treatment methods are widely used, they still have many disadvantages. Aptamers, owing to their small size, low toxicity, good specificity, and excellent biocompatibility, have been widely applied in biomedical areas. Therefore, the combination of nanomaterials with aptamers offers a new method for cancer treatment. First, we briefly introduce the situation of cancer treatment and aptamers. Then, we discuss the application of aptamers in breast cancer treatment, lung cancer treatment, and other cancer treatment methods. Finally, perspectives on challenges and future applications of aptamers in cancer therapy are discussed.
Collapse
|
16
|
Ma F, Xu J, Yang W, Bian F. Clinical Study of Ultrasonic Extreme Velocity Imaging Pulse Wave Technique in Carotid Elasticity in Patients with Type II Diabetes Mellitus. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, extreme velocity ultrasonic imaging pulse wave technology was used to detect the main indices of atherosclerosis such as carotid intima-media thickness (IMT) and carotid elasticity, and biochemical indices such as glycated hemoglobin, blood glucose and blood lipids in
one hundred twenty 18–60-year-old patients with type II diabetes mellitus (T2DM) and 120 healthy controls. We analyzed the correlations between carotid elasticity, carotid IMT, and a range of biochemical indices. The results indicated that when the carotid IMT in young and middle-aged
patients with T2DM was within the normal range (0.56±0.03 mm), the carotid artery elasticity was abnormal [Pulse wave propagation velocity (PWV)-BS = 7.69± 1.26 m/s; PWV-ES = 8.34±1.51 m/s; P < 0.05]. Additionally, PWV-BS was positively correlated with age, course
of the disease, glycated hemoglobin (HbA1c), and fasting blood glucose (FBG) (r = 0.297, 0.377, 0.369, 0.382), and PWV-ES was positively correlated with age, course of the disease, HbA1c, and FBG (r = 0.318, 0.386, 0.392, 0.339). This finding provides a basis for extreme velocity
ultrasonic imaging pulse wave technology to become a new method for the early screening of atherosclerosis in patients with T2DM; this is important for timely clinical intervention in patients with T2DM.
Collapse
Affiliation(s)
- Fang Ma
- Department of Ultrasound, The Second People’s Hospital of Hefei, Heifei 230011, Anhui Province, PR China
| | - Jimei Xu
- Department of Ultrasound, The Second People’s Hospital of Hefei, Heifei 230011, Anhui Province, PR China
| | - Weiwei Yang
- Department of Ultrasound, The Second People’s Hospital of Hefei, Heifei 230011, Anhui Province, PR China
| | - Fuqin Bian
- Department of Ultrasound, The Second People’s Hospital of Hefei, Heifei 230011, Anhui Province, PR China
| |
Collapse
|
17
|
Yin F, Cao N, Xiang X, Feng H, Li F, Li M, Xia Q, Zuo X. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1159-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Askari Rizvi SF, Zhang H. Emerging trends of receptor-mediated tumor targeting peptides: A review with perspective from molecular imaging modalities. Eur J Med Chem 2021; 221:113538. [PMID: 34022717 DOI: 10.1016/j.ejmech.2021.113538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
Natural peptides extracted from natural components such are known to have a relatively short in-vivo half-life and can readily metabolize by endo- and exo-peptidases. Fortunately, synthetic peptides can be easily manipulated to increase in-vivo stability, membrane permeability and target specificity with some well-known natural families. Many natural as well as synthetic peptides target to their endogenous receptors for diagnosis and therapeutic applications. In order to detect these peptides externally, they must be modified with radionuclides compatible with single photon emission computed tomography (SPECT) or positron emission tomography (PET). Although, these techniques mainly rely on physiological changes and have profound diagnostic strength over anatomical modalities such as MRI and CT. However, both SPECT and PET observed to possess lack of anatomical reference frame which is a key weakness of these techniques, and unfortunately, cannot be available freely in most clinical centres especially in under-developing countries. Hence, it is need of the time to design and develop economic, patient friendly and versatile strategies to grapple with existing problems without any hazardous side effects. Optical molecular imaging (OMI) has emerged as a novel technique in field of medical science using fluorescent probes as imaging modality and has ability to couple with organic drugs, small molecules, chemotherapeutics, DNA, RNA, anticancer peptide and protein without adding chelators as necessary for radionuclides. Furthermore, this review focuses on difference in imaging modalities and provides ample knowledge about reliable, economic and patient friendly optical imaging technique rather radionuclide-based imaging techniques.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Gansu, PR China.
| |
Collapse
|
19
|
Liu M, Xi L, Tan T, Jin L, Wang Z, He N. A novel aptamer-based histochemistry assay for specific diagnosis of clinical breast cancer tissues. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
He L, Huang R, Xiao P, Liu Y, Jin L, Liu H, Li S, Deng Y, Chen Z, Li Z, He N. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Selection of aptamers against triple negative breast cancer cells using high throughput sequencing. Sci Rep 2021; 11:8614. [PMID: 33883615 PMCID: PMC8060331 DOI: 10.1038/s41598-021-87998-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer is the most aggressive subtype of invasive breast cancer with a poor prognosis and no approved targeted therapy. Hence, the identification of new and specific ligands is essential to develop novel targeted therapies. In this study, we aimed to identify new aptamers that bind to highly metastatic breast cancer MDA-MB-231 cells using the cell-SELEX technology aided by high throughput sequencing. After 8 cycles of selection, the aptamer pool was sequenced and the 25 most frequent sequences were aligned for homology within their variable core region, plotted according to their free energy and the key nucleotides possibly involved in the target binding site were analyzed. Two aptamer candidates, Apt1 and Apt2, binding specifically to the target cells with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{d}$$\end{document}Kd values of 44.3 ± 13.3 nM and 17.7 ± 2.7 nM, respectively, were further validated. The binding analysis clearly showed their specificity to MDA-MB-231 cells and suggested the targeting of cell surface receptors. Additionally, Apt2 revealed no toxicity in vitro and showed potential translational application due to its affinity to breast cancer tissue sections. Overall, the results suggest that Apt2 is a promising candidate to be used in triple-negative breast cancer treatment and/or diagnosis.
Collapse
|
22
|
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Aptamers are short single-stranded RNA or DNA molecules that can recognize a series of targets with high affinity and specificity. Known as "chemical antibodies", aptamers have many unique merits, including ease of chemical synthesis, high chemical stability, low molecular weight, lack of immunogenicity, and ease of modification and manipulation compared to their protein counterparts. Using aptamers as the recognition groups, fluorescent aptasensors provide exciting opportunities for sensitive detection and quantification of analytes. Herein, we give an overview on the recent development of aptamer-based fluorescent sensors for the detection of cancer biomarkers. Based on various nanostructured sensor designs, we extended our discussions on sensitivity, specificity and the potential applications of aptamer-based fluorescent sensors in early diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Suya Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaohua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongmin Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
23
|
Discussion of the protein characterization techniques used in the identification of membrane protein targets corresponding to tumor cell aptamers. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Liu M, Zhang B, Li Z, Wang Z, Li S, Liu H, Deng Y, He N. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo. NANOSCALE 2020; 12:19689-19701. [PMID: 32966497 DOI: 10.1039/d0nr03324c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Precise discrimination of breast cancer remains a challenge in clinical medicine, which depends on the development of novel specific molecular probes. However, the current technologies and antibodies cannot achieve precise discrimination of breast cancer subtypes very well. To address this problem, a novel truncated DNA aptamer MF3Ec was developed in this work. Aptamer MF3Ec exhibited high specificity and binding affinity against MCF-7 breast cancer cells with a Kd value of 18.95 ± 2.9 nM which is four times lower than that of the original aptamer, and could work at 4 °C, 25 °C and 37 °C with no obvious differences. Besides, aptamer MF3Ec displayed better stability in serum samples with a long existence time of about 12 h. Moreover, fluorescence imaging experiments indicated that aptamer MF3Ec was able to distinguish MCF-7 breast cancer cells from SK-BR-3, MDA-MB-231 and MCF-10A breast cancer cell subtypes, and differentiate the tumor-bearing mice and xenografted tissue sections of MCF-7 breast cancer cells from those of MDA-MB-231 and SK-BR-3 breast cancer cells in vivo and in vitro, respectively. Finally, clinical experiments indicated that aptamer MF3Ec could distinguish Luminal A breast cancer subtype from Luminal B (HER2+), HER2-enriched, and triple-negative breast cancer subtypes, para-carcinoma tissues and normal breast tissues. Collectively, all these results suggest that aptamer MF3Ec is a promising probe for precise discrimination and targeted therapy of Luminal A breast cancer molecular subtype.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Marshall ML, Wagstaff KM. Internalized Functional DNA Aptamers as Alternative Cancer Therapies. Front Pharmacol 2020; 11:1115. [PMID: 32848740 PMCID: PMC7396948 DOI: 10.3389/fphar.2020.01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/08/2020] [Indexed: 01/22/2023] Open
Abstract
Despite major advances, cancer remains one of the largest burdens of disease worldwide. One reason behind this is that killing tumor cells without affecting healthy surrounding tissue remains a largely elusive prospect, despite the widespread availability of cytotoxic chemotherapeutic agents. To meet these modern healthcare requirements, it is essential to develop precision therapeutics that minimise off-target side-effects for various cancer types. To this end, highly specific molecular targeting agents against cancer are of great interest. These agents may work by targeting intracellular signalling pathways following receptor binding, or via internalization and targeting to specific subcellular compartments. DNA aptamers represent a promising molecular tool in this arena that can be used for both specific cell surface targeting and subsequent internalization and can also elicit a functional effect upon internalization. This review examines various cancer targeting cell-internalizing aptamers, with a particular focus towards functional aptamers that do not require additional conjugation to nanoparticles or small molecules to elicit a biological response. With a deeper understanding and precise exploitation of cancer specific molecular pathways, functional intracellular DNA aptamers may be a powerful step towards more widespread development of precision therapeutics.
Collapse
Affiliation(s)
- Morgan L Marshall
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kylie M Wagstaff
- Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
26
|
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020; 53:e12822. [PMID: 32530560 PMCID: PMC7377933 DOI: 10.1111/cpr.12822] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early‐stage breast cancer is significantly higher than those with middle‐ and late‐stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Miduo Tan
- Surgery Department of Galactophore, Central Hospital of Zhuzhou City, Zhuzhou, China
| | - Sauli Elingarami
- School of Life Sciences and Bioengineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Yuan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
27
|
Xing KY, Peng J, Shan S, Liu DF, Huang YN, Lai WH. Green Enzyme-Linked Immunosorbent Assay Based on the Single-Stranded Binding Protein-Assisted Aptamer for the Detection of Mycotoxin. Anal Chem 2020; 92:8422-8426. [PMID: 32403920 DOI: 10.1021/acs.analchem.0c01073] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, a green enzyme-linked immunosorbent assay (ELISA) based on the single-stranded binding protein (SSB)-assisted aptamer was designed for biosensing applications. Combined with the biotin-streptavidin (SA) system and the high catalytic activity of horseradish peroxidase (HRP), this SSB-assisted aptamer sensor was applied for the detection of aflatoxin B1, ochratoxin A, and zearalenone. In this novel ELISA, mycotoxin-protein conjugations were replaced by SSB to avoid the hazard of mycotoxin, whereas antibodies were replaced by aptamer to avoid the complex and tedious preparation of antibodies. In the absence of target mycotoxins, SSB can bind the aptamer-biotin specifically. Detection was performed using the strong combination of biotin and SA after adding SA-HRP and substrate/chromogen solution, thereby resulting in a strong yellow color signal. In the presence of target mycotoxins, the aptamer-biotin cannot bind to the SSB, thereby leading to a weak yellow color signal. Under optimal conditions, the designed method was successfully applied for the determination of real sample and exhibited high specificity and low limits of detection in corn (112 ng L-1 for aflatoxin B1, 319 ng L-1 for ochratoxin A, and 377 ng L-1 for zearalenone). The green ELISA may also be extended to the detection of other biohazardous targets by changing the aptamer.
Collapse
Affiliation(s)
- Ke-Yu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Shan Shan
- College of life sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Dao-Feng Liu
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, 330029, China
| | - Yi-Na Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| |
Collapse
|
28
|
Rizvi SFA, Mu S, Wang Y, Li S, Zhang H. Fluorescent RGD-based pro-apoptotic peptide conjugates as mitochondria-targeting probes for enhanced anticancer activities. Biomed Pharmacother 2020; 127:110179. [PMID: 32387862 DOI: 10.1016/j.biopha.2020.110179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/10/2023] Open
Abstract
We have designed 2-domain anticancer peptides with RGD-based KLAK bi-functional short motifs (linear and cyclic analogues). RGD tripeptide acts as tumor blood vessel 'homing' motif while KLAK tetrapeptide internalized in mitochondria and causes cell apoptosis. All three peptides (RGDKLAK; HM, cyclic-RGDKLAK; HMC-1, and RGD-cyclic-KLAK; HMC-2) were conjugated with fluorescein isothiocyanate isomer-I (5-FITC; F) for in-vivo and in-vitro optical imaging studies. These fluorescent-peptide (FL-peptide) analogues were analyzed to possess αvβ3-integrin targeting affinity, high uptake in in-vitro cell binding assays followed by in-vivo tumor xenograft mice studies. Pharmacological profile reveals that F-HMC-1 analogue exhibited selectively and specifically higher affinity for αvβ3-integrin than other analogues in U87MG cells in comparison with HeLa cells. The subcutaneous U87MG tumor xenograft mice models clearly visualized the uptake of F-HMC-1 in tumor tissue in contrast with normal tissues with tumor-to-normal tissue ratio (T/NT = 15.9 ± 1.1) at 2 h post-injection. These results suggested that F-HMC-1 peptide has potential diagnostic applications for targeting αvβ3-integrin assessed by optical imaging study in U87MG tumor xenograft mice models.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuai Mu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Yaya Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Shuangqin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
29
|
Wu YZ, Shen YK, Chen YJ, Sun J. From Ancient Medicine to Targeted Nanocarrier: A Sparganii Rhizoma-Derived Nanoparticle for Diagnostic Imaging and Endocrine Therapy in Cancer. ACS APPLIED BIO MATERIALS 2020; 3:2028-2039. [DOI: 10.1021/acsabm.9b01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi-Zhou Wu
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Kai Shen
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
- First School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu-Jia Chen
- Department of Cell Biology, School of Basic Medicine, Nanjing Medical University, Nanjing 211166, China
- First School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jie Sun
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
30
|
Zhong Y, Zhao J, Li J, Liao X, Chen F. Advances of aptamers screened by Cell-SELEX in selection procedure, cancer diagnostics and therapeutics. Anal Biochem 2020; 598:113620. [PMID: 32087127 DOI: 10.1016/j.ab.2020.113620] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022]
Abstract
Aptamers are a class of short artificial single-stranded oligo(deoxy) nucleotides that can bind to different targets, which generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to excellent selectivity and high affinity to targets, aptamers hold considerable potential as molecular probe in diverse applications ranging from ensuring food safety, monitoring environment, disease diagnosis to therapy. This review highlights recent development and challenges about aptamers screened by Cell-SELEX, and its application about cancer diagnostics and therapeutics. Advances about some operation methods such as seperation method and culture method in aptamers selection procedure were summarized in this paper. Some common challenges and technological difficulties such as nonspecific binding and biostability were discussed. Up to now, the recent endeavors about cancer diagnostic and therapeutic applications of aptamers are summarized and expatiated. Most of aptamers screened by Cell-SELEX took tumor cells as target cells, and such aptamers have been assembled to various aptasensor for cancer diagnosis. Aptamers conjugated various drugs or nanomaterials are functioned for cancer target therapy to improve drugs delivery efficiency and reduce side effects. Furthermore, the duplexed aptamer is discussed to be applied for cancer cells detection and some conflicts of theories about duplexed aptamer designs are analyzed.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiayao Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China; National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiazhao Li
- Qionglai maternal&Child health care hospital, Chengdu, 611530, Sichuan, China
| | - Xin Liao
- School of laboratory medical and Life science, Wenzhou Medical University, Wenzhou, 325000, Fujian, China
| | - Fengling Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
31
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Bing T, Zhang N, Shangguan D. Cell-SELEX, an Effective Way to the Discovery of Biomarkers and Unexpected Molecular Events. ACTA ACUST UNITED AC 2019; 3:e1900193. [PMID: 32648677 DOI: 10.1002/adbi.201900193] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Abstract
Cell-SELEX can not only generate aptamers for specific cell isolation/detection, diagnosis, and therapy, but also lead to the discovery of biomarkers and unexpected molecular events. However, most cell-SELEX research is concentrated on aptamer generation and applications. In this progress report, recent research progress with cell-SELEX in terms of the discovery of biomarkers and unexpected molecular events is highlighted. In particular, the key technical challenges for cell-SELEX-based biomarker discovery, namely, the methods for identification and validation of target proteins of aptamers, are discussed in detail. Finally, the prospects of the applications of cell-SELEX in this field now and in the near future are described. It is expected that this report will attract attention to the benefit of cell-SELEX and provide a practical reference for biomedical researchers.
Collapse
Affiliation(s)
- Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
33
|
Zhan Y, Ma W, Zhang Y, Mao C, Shao X, Xie X, Wang F, Liu X, Li Q, Lin Y. DNA-Based Nanomedicine with Targeting and Enhancement of Therapeutic Efficacy of Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15354-15365. [PMID: 30924334 DOI: 10.1021/acsami.9b03449] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, a DNA tetrahedron has been reported to be a novel nanomedicine and promising drug vector because of its compactness, biocompatibility, biosafety, and editability. Here, we modified the DNA tetrahedron with a DNA aptamer (AS1411) as a DNA-based delivery system, which could bind to nucleolin for its cancer cell selectivity. Nucleolin is a specific biomarker protein overexpressed on membranes of malignant cancer cells and its deregulation is implicated in cell proliferation. The antimetabolite drug 5-fluorouracil (5-FU) is an extensively used anticancer agent; however, its major limitation is the lack of target specificity. Cyanine 5 (Cy5), a fluorescent probe, can be used to label DNA tetrahedron and enhance photostability with minimal effects on its basic functions. In this study, we additionally attached 5-FU to the DNA-based delivery system as a new tumor-targeting nanomedicine (AS1411-T-5-FU) to enhance the therapeutic efficacy and targeting of breast cancer. We examined the difference of the cellular uptake of AS1411-T-5-FU between breast cancer cells and normal breast cells and concluded that AS1411-T-5-FU had a better targeting ability to kill breast cancer cells than 5-FU. We further evaluated the expressions of cell apoptosis-related proteins and genes, which are associated with the mitochondrial apoptotic pathway. Ultimately, our results suggest the potential of DNA tetrahedron in cancer therapies, and we develop a novel approach to endow 5-FU with targeting property.
Collapse
Affiliation(s)
- Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| | - Fei Wang
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Qian Li
- School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology , Sichuan University , Chengdu 610041 , P. R. China
| |
Collapse
|
34
|
Aptasensors for pesticide detection. Biosens Bioelectron 2019; 130:174-184. [PMID: 30738246 DOI: 10.1016/j.bios.2019.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Accepted: 01/12/2019] [Indexed: 12/16/2022]
Abstract
Pesticide contamination has become one of the most serious problems of public health in the world, due to their wide application in agriculture industry to guarantee the crop yield and quality. The detection of pesticide residues plays an important role in food safety management and environment protection. However, the conventional detection methodologies cannot realize highly sensitive, selective and on-site detection, which limits their applications. Aptamers are short single-stranded oligonucleotides (RNA or DNA) selected by SELEX method, which can selectively bind to their targets with high affinity. Compared with the commonly used antibodies or enzymes in designing biosensors, aptamers exhibit better stability, low molecular weight, easy modification and low cost, and were regarded as excellent candidates for developing aptasensors for pesticide detection. In this review, application of aptamers for pesticide detection was reviewed. Firstly, aptamers specifically bind to various pesticides were first summarized. Secondly, the progresses and highlights of developing aptasensors for highly-sensitive and selective detection of pesticide residues were systematically provided. Finally, the present challenges and future perspectives for developing novel highly-effective aptasensor for the detection of pesticide residues were discussed.
Collapse
|
35
|
Li Y, Yan T, Chang W, Cao C, Deng D. Fabricating an intelligent cell-like nano-prodrug via hierarchical self-assembly based on the DNA skeleton for suppressing lung metastasis of breast cancer. Biomater Sci 2019; 7:3652-3661. [DOI: 10.1039/c9bm00630c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new intelligent cell-like nanostructure is designed for suppressing lung metastasis of breast cancer.
Collapse
Affiliation(s)
- Yunyan Li
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Tong Yan
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Wenya Chang
- Department of Pharmaceutical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Chongjiang Cao
- National R&D Center for Chinese Herbal Medicine Processing
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Dawei Deng
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|