1
|
Moyo MTG, Adali T. Gellan gum as a promising transplantation carrier for differentiated progenitor cells in ophthalmic therapies. J BIOACT COMPAT POL 2025; 40:136-157. [DOI: 10.1177/08839115241278739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stem cell-based therapies for various ocular conditions are increasingly gaining traction in ophthalmic treatments, with hydrogel-based polymers playing a pivotal role. Current stem cell delivery methods face challenges such as limited cell retention, immunological rejection, and uneven dispersion. Hence, there is a critical demand for innovative delivery systems to enhance the viability, localization, and integration of transplanted stem cells while minimizing adverse effects. Central to this advancement is the meticulous selection of appropriate materials. Among the promising options, gellan gum, a versatile polysaccharide, is emerging as a potential carrier for differentiated progenitor cells in regenerative medicine, particularly in ophthalmology. This study explores the utilization of gellan gum hydrogels as carriers, focusing on their biocompatibility, customizable gelation properties, and ability to encapsulate, transplant, and biofunctionalize cells. Through a review of literature, the impact of gellan gum hydrogels on cell viability parameters is investigated, revealing their potential for promoting tissue regeneration and functional recovery in ocular diseases. Furthermore, this study compares gellan gum systems utilizing natural and synthetic polymers, discerning differences in efficacy, biocompatibility, and suitability for diverse applications in regenerative ophthalmology. This review highlights the promising role of gellan gum in ophthalmic therapies, providing valuable insights into future directions and hurdles in this evolving field.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, Nicosia, North Cyprus, Mersin, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| | - Terin Adali
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, North Cyprus, Mersin, Turkey
- Research and Application Center of Biomedical Sciences, Girne American University, North Cyprus, Mersin, Turkey
| |
Collapse
|
2
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Kaur H, Gogoi B, Sharma I, Das DK, Azad MA, Pramanik DD, Pramanik A. Hydrogels as a Potential Biomaterial for Multimodal Therapeutic Applications. Mol Pharm 2024; 21:4827-4848. [PMID: 39290162 PMCID: PMC11462506 DOI: 10.1021/acs.molpharmaceut.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Hydrogels, composed of hydrophilic polymer networks, have emerged as versatile materials in biomedical applications due to their high water content, biocompatibility, and tunable properties. They mimic natural tissue environments, enhancing cell viability and function. Hydrogels' tunable physical properties allow for tailored antibacterial biomaterial, wound dressings, cancer treatment, and tissue engineering scaffolds. Their ability to respond to physiological stimuli enables the controlled release of therapeutics, while their porous structure supports nutrient diffusion and waste removal, fostering tissue regeneration and repair. In wound healing, hydrogels provide a moist environment, promote cell migration, and deliver bioactive agents and antibiotics, enhancing the healing process. For cancer therapy, they offer localized drug delivery systems that target tumors, minimizing systemic toxicity and improving therapeutic efficacy. Ocular therapy benefits from hydrogels' capacity to form contact lenses and drug delivery systems that maintain prolonged contact with the eye surface, improving treatment outcomes for various eye diseases. In mucosal delivery, hydrogels facilitate the administration of therapeutics across mucosal barriers, ensuring sustained release and the improved bioavailability of drugs. Tissue regeneration sees hydrogels as scaffolds that mimic the extracellular matrix, supporting cell growth and differentiation for repairing damaged tissues. Similarly, in bone regeneration, hydrogels loaded with growth factors and stem cells promote osteogenesis and accelerate bone healing. This article highlights some of the recent advances in the use of hydrogels for various biomedical applications, driven by their ability to be engineered for specific therapeutic needs and their interactive properties with biological tissues.
Collapse
Affiliation(s)
- Harpreet Kaur
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Bishmita Gogoi
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Ira Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, Uttar Pradesh 281 406, India
| | - Mohd Ashif Azad
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | | | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS97TF, United Kingdom
| |
Collapse
|
4
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
5
|
Cheng S, Hu X, Sun K, Huang Z, Zhao Y, Sun Y, Zeng B, Wang J, Zhao D, Lu S, Shi Q, Wang Y, Zhang W, Liu X, Shu B. Local Application of Tanshinone IIA protects mesenchymal stem cells from apoptosis and promotes fracture healing in ovariectomized mice. J Orthop Surg Res 2024; 19:309. [PMID: 38783358 PMCID: PMC11112815 DOI: 10.1186/s13018-024-04793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Elderly patients suffering from osteoporotic fractures are more susceptible to delayed union or nonunion, and their bodies then are in a state of low-grade chronic inflammation with decreased antioxidant capacity. Tanshinone IIA is widely used in treating cardiovascular and cerebrovascular diseases in China and has anti-inflammatory and antioxidant effects. We aimed to observe the antioxidant effects of Tanshinone IIA on mesenchymal stem cells (MSCs), which play important roles in bone repair, and the effects of local application of Tanshinone IIA using an injectable biodegradable hydrogel on osteoporotic fracture healing. METHODS MSCs were pretreated with or without different concentrations of Tanshinone IIA followed by H2O2 treatment. Ovariectomized (OVX) C57BL/6 mice received a mid-shaft transverse osteotomy fracture on the left tibia, and Tanshinone IIA was applied to the fracture site using an injectable hydrogel. RESULTS Tanshinone IIA pretreatment promoted the expression of nuclear factor erythroid 2-related factor 2 and antioxidant enzymes, and inhibited H2O2-induced reactive oxygen species accumulation in MSCs. Furthermore, Tanshinone IIA reversed H2O2-induced apoptosis and decrease in osteogenic differentiation in MSCs. After 4 weeks of treatment with Tanshinone IIA in OVX mice, the bone mineral density of the callus was significantly increased and the biomechanical properties of the healed tibias were improved. Cell apoptosis was decreased and Nrf2 expression was increased in the early stage of callus formation. CONCLUSIONS Taken together, these results indicate that Tanshinone IIA can activate antioxidant enzymes to protect MSCs from H2O2-induced cell apoptosis and osteogenic differentiation inhibition. Local application of Tanshinone IIA accelerates fracture healing in ovariectomized mice.
Collapse
Affiliation(s)
- Shao Cheng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
- School of Orthopedics, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Bo Zeng
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
6
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Guan X, Fan L. A novel injectable hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran for bone tissue engineering. Int J Biol Macromol 2024; 261:129666. [PMID: 38272405 DOI: 10.1016/j.ijbiomac.2024.129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Complicated fractures have always been challenging in orthopaedics. Designing a multifunctional biomaterial that can contribute to the treatment of fractures using a simple operation remains challenging. Here, we developed a trinity hydrogel system consisting of hydrogel prepared from phenylboronic acid modified gelatin and oxidized-dextran, lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (MBGNs), and irisin. This hydrogel material exhibits considerable injectability, fat-to-shape, and self-healing characteristics. In addition, compared to hydrogel prepared from gelatin and oxidized-dextran, the hydrogel material presented a noticeable enhancement in compression stress and adhesion strength towards porcine bone fragments, which enables it more effectively splice bone fragments during surgery. Based on the various interactions between irisin and the hydrogel network, the system exhibited a clear sustained release of irisin. Based on the results of in vitro cell tests, the hydrogel material showed good cytocompatibility. And it also considerably enhanced the in vitro pro-osteogenic and pro-angiogenic capacities of bone marrow mesenchymal stromal cells (BMSCs) and human umbilical vein endothelial cells (HUVECs). In vivo experimental results indicated that this hydrogel considerably improved the repair of cranial defects in rats. The current study provides a feasible strategy for the treatment of bone fractures and stimulation of fracture healing.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China; Department of Orthopaedics, the Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Kai Nan
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Yuankai Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Keke Song
- Department of Anesthesiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Zilong Geng
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Donglong Shang
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xin Guan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Lihong Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
7
|
Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels 2024; 10:158. [PMID: 38534576 DOI: 10.3390/gels10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Wu KY, Akbar D, Giunta M, Kalevar A, Tran SD. Hydrogels in Ophthalmology: Novel Strategies for Overcoming Therapeutic Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 17:86. [PMID: 38203940 PMCID: PMC10780040 DOI: 10.3390/ma17010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Michel Giunta
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
9
|
Wang X, Li F, Liu X, Zhang H. Applications and Recent Developments of Hydrogels in Ophthalmology. ACS Biomater Sci Eng 2023; 9:5968-5984. [PMID: 37906698 DOI: 10.1021/acsbiomaterials.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Hydrogels are a type of functional polymer material with a three-dimensional network structure composed of physically or chemically cross-linked polymers. All hydrogels have two common features: first, their structure contains a large number of hydrophilic groups; therefore, they have a high water content and can swell in water. Second, they have good regulation, and the physical and chemical properties of their cross-linked network can be changed by environmental factors and deliberate modification methods. In recent years, the application of hydrogels in ophthalmology has gradually attracted attention. By selecting an appropriate composition and cross-linking mode, hydrogels can be used in different fields for various applications, such as gel eye drops, in situ gel preparation, intravitreal injection, and corneal contact lenses. This Review provides a detailed introduction to the classification of hydrogels and their applications in glaucoma, vitreous substitutes, fundus diseases, corneal contact lenses, corneal diseases, and cataract surgery.
Collapse
Affiliation(s)
- Xi Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - FuQiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hui Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
10
|
Zhao S, Guo L, Cui W, Zhao Y, Wang J, Sun K, Zhang H, Sun Y, Zhao D, Hu X, Huang Z, Lu S, Wang Y, Liu X, Zhang W, Shu B. Monotropein Protects Mesenchymal Stem Cells from Lipopolysaccharide-Induced Impairments and Promotes Fracture Healing in an Ovariectomized Mouse Model. Calcif Tissue Int 2023; 113:558-570. [PMID: 37747519 DOI: 10.1007/s00223-023-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023]
Abstract
Monotropein is one of the active ingredients in Morinda Officinalis, which has been used for the treatment in multiple bone and joint diseases. This study aimed to observe the in vitro effects of Monotropein on osteogenic differentiation of lipopolysaccharide treated bone marrow mesenchymal stem cells (bMSCs), and the in vivo effects of local application of Monotropein on bone fracture healing in ovariectomized mice. Lipopolysaccharide was used to set up the inflammatory model in bMSCs, which were treated by Monotropein. Molecular docking analysis was performed to evaluate the potential interaction between Monotropein and p65. Transverse fractures of middle tibias were established in ovariectomized mice, and Monotropein was locally applied to the fracture site using injectable hydrogel. Monotropein enhanced the ability of primary bMSCs in chondro-osteogenic differentiation. Furthermore, Monotropein rescued lipopolysaccharide-induced osteogenic differentiation impairment and inhibited lipopolysaccharide-induced p65 phosphorylation in primary bMSCs. Docking analysis showed that the binding activity of Monotropein and p65/14-3-3 complex is stronger than the selective inhibitor of NF-κB (p65), DP-005. Local application of Monotropein partially rescued the decreased bone mass and biomechanical properties of callus or healed tibias in ovariectomized mice. The expressions of Runx2, Osterix and Collagen I in the 2-week callus were partially restored in Monotropein-treated ovariectomized mice. Taking together, local application of Monotropein promoted fracture healing in ovariectomized mice. Inhibition of p65 phosphorylation and enhancement in osteogenesis of mesenchymal stem cells could be partial of the effective mechanisms.
Collapse
Affiliation(s)
- Shitian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Liqiang Guo
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Wei Cui
- Caolu Community Health Service Center, Shanghai, 200120, China
| | - Yongjian Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Jing Wang
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Dongfeng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xiaohui Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Ziyu Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Sheng Lu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200032, China.
- Key Laboratory, Ministry of Education of China, Shanghai, 200032, China.
| |
Collapse
|
11
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
12
|
Ho MT, Ortin-Martinez A, Yan NE, Comanita L, Gurdita A, Pham Truong V, Cui H, Wallace VA, Shoichet MS. Hydrogel assisted photoreceptor delivery inhibits material transfer. Biomaterials 2023; 298:122140. [PMID: 37163876 DOI: 10.1016/j.biomaterials.2023.122140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cell therapy holds tremendous promise for vision restoration; yet donor cell survival and integration continue to limit efficacy of these strategies. Transplanted photoreceptors, which mediate light sensitivity in the retina, transfer cytoplasmic components to host photoreceptors instead of integrating into the tissue. Donor cell material transfer could, therefore, function as a protein augmentation strategy to restore photoreceptor function. Biomaterials, such as hyaluronan-based hydrogels, can support donor cell survival but have not been evaluated for effects on material transfer. With increased survival, we hypothesized that we would achieve greater material transfer; however, the opposite occurred. Photoreceptors delivered to the subretinal space in mice in a hyaluronan and methylcellulose (HAMC) hydrogel showed reduced material transfer. We examined mitochondria transfer in vitro and cytosolic protein transfer in vivo and demonstrate that HAMC significantly reduced transfer in both contexts, which we ascribe to reduced cell-cell contact. Nanotube-like donor cell protrusions were significantly reduced in the hydrogel-transplanted photoreceptors compared to the saline control group, which suggests that HAMC limits the contact required to the host retina for transfer. Thus, HAMC can be used to manipulate the behaviour of transplanted donor cells in cell therapy strategies.
Collapse
Affiliation(s)
- Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole E Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Victor Pham Truong
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Li S, Niu D, Shi T, Yun W, Yan S, Xu G, Yin J. Injectable, In Situ Self-cross-linking, Self-healing Poly(l-glutamic acid)/Polyethylene Glycol Hydrogels for Cartilage Tissue Engineering. ACS Biomater Sci Eng 2023; 9:2625-2635. [PMID: 37068303 DOI: 10.1021/acsbiomaterials.3c00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Injectable hydrogels have drawn much attention in the field of tissue engineering because of advantages such as simple operation, strong plasticity, and good biocompatibility and biodegradability. Herein, we propose the novel design of injectable hydrogels via a Schiff base cross-linking reaction between adipic dihydrazide (ADH)-modified poly(l-glutamic acid) (PLGA-ADH) and benzaldehyde-terminated poly(ethylene glycol) (PEG-CHO). The effects of the mass fraction and the molar ratio of -CHO/-NH2 on the gelation time, mechanical properties, equilibrium swelling, and in vitro degradation of the hydrogels were examined. The PLGA/PEG hydrogels cross-linked by dynamic Schiff base linkages exhibited good self-healing ability. Additionally, the PLGA/PEG hydrogels had good biocompatibility with bone marrow-derived mesenchymal stem cells (BMSCs) and could effectively support BMSC proliferation and deposition of glycosaminoglycans and upregulate the expression of cartilage-specific genes. In a rat cartilage defect model, PLGA/PEG hydrogels significantly promoted new cartilage formation. The results suggest the prospect of the PLGA/PEG hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Shuang Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Tuhe Shi
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
14
|
Chen Z, Yao J, Zhao J, Wang S. Injectable wound dressing based on carboxymethyl chitosan triple-network hydrogel for effective wound antibacterial and hemostasis. Int J Biol Macromol 2023; 225:1235-1245. [PMID: 36435472 DOI: 10.1016/j.ijbiomac.2022.11.184] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Currently, hydrogels are widely studied for wound dressings. However, wound healing is often hindered by bacterial infection. In this study, in situ cross-linked carboxymethyl chitosan (CMCS)/oxidized dextran (OD)/poly-γ-glutamic acid (γ-PGA) (COP) hydrogel was prepared for antimicrobial and hemostasis of diffuse wounds. In the COP hydrogel, γ-PGA was able to drain the surface moisture of the wound to enhance the surface adhesion. Moreover, γ-PGA could concentrate blood by absorbing plasma, and CMCS could electrostatically adsorb negative RBCs. The antibacterial properties of CMCS and OD endowed the COP hydrogel with certain antibacterial effects. In the inhibition zone experiment, an obvious inhibition zone appeared around the COP hydrogel. In vivo studies showed that the COP hydrogel significantly inhibited bacterial growth and promoted wound healing. In the rat tail diffuse hemorrhage wound model, the COP hydrogel showed superior hemostasis ability. Therefore, the multifunctional COP hydrogel is expected to find different applications in wound hemostasis and healing.
Collapse
Affiliation(s)
- Zheng Chen
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jinpeng Yao
- Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, PR China; Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, No. 168 Changhai Road, Shanghai 200433, PR China
| | - Shige Wang
- School of Materials and Chemistry, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, the University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| |
Collapse
|
15
|
Sun N, Wang J, Dou X, Wang Y, Yang Y, Xiao D, Zhao P, Li J, Wang S, Gu P, Ji J. A chiral microenvironment promotes retinal progenitor cell proliferation by activating the Akt and ERK pathways. Biomater Sci 2022; 10:5938-5946. [PMID: 36043429 DOI: 10.1039/d2bm00886f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal progenitor cell (RPC) transplantation has been proposed as a potential strategy for the treatment of retinal degeneration, which is a leading cause of vision loss. However, a major obstacle is the poor proliferation of RPCs. Accumulating evidence suggests that the chiral features of the extracellular microenvironment are closely related to cell proliferation. Inspired by this, L/D-phenylalanine-derived molecules (LP and DP) are employed to construct a biomimetic chiral microenvironment for enhancing RPC proliferation. LP and DP self-assemble into left-handed and right-handed helical fibrous networks, respectively. It is found that DP nanofibrous films show an excellent ability in promoting RPC proliferation via the activation of the Akt and extracellular signal-regulated kinase (ERK) pathways. In addition, both LP and DP nanofibrous films have the advantage of attenuating inflammation, and LP films can maintain the stem potential of RPCs. Thus, the promotion of RPC proliferation using a bioinspired chiral fibrous microenvironment is a promising strategy for RPC-based therapies for retinal degeneration.
Collapse
Affiliation(s)
- Na Sun
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Yiqi Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuan Yang
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Dong Xiao
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuting Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jing Ji
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
16
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
17
|
Development of an injectable self-healing hydrogel based on N-succinyl chitosan/ oxidized pectin for biomedical applications. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02983-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Lin KT, Wang A, Nguyen AB, Iyer J, Tran SD. Recent Advances in Hydrogels: Ophthalmic Applications in Cell Delivery, Vitreous Substitutes, and Ocular Adhesives. Biomedicines 2021; 9:1203. [PMID: 34572389 PMCID: PMC8471559 DOI: 10.3390/biomedicines9091203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
With the prevalence of eye diseases, such as cataracts, retinal degenerative diseases, and glaucoma, different treatments including lens replacement, vitrectomy, and stem cell transplantation have been developed; however, they are not without their respective shortcomings. For example, current methods to seal corneal incisions induced by cataract surgery, such as suturing and stromal hydration, are less than ideal due to the potential for surgically induced astigmatism or wound leakage. Vitrectomy performed on patients with diabetic retinopathy requires an artificial vitreous substitute, with current offerings having many shortcomings such as retinal toxicity. The use of stem cells has also been investigated in retinal degenerative diseases; however, an optimal delivery system is required for successful transplantation. The incorporation of hydrogels into ocular therapy has been a critical focus in overcoming the limitations of current treatments. Previous reviews have extensively documented the use of hydrogels in drug delivery; thus, the goal of this review is to discuss recent advances in hydrogel technology in surgical applications, including dendrimer and gelatin-based hydrogels for ocular adhesives and a variety of different polymers for vitreous substitutes, as well as recent advances in hydrogel-based retinal pigment epithelium (RPE) and retinal progenitor cell (RPC) delivery to the retina.
Collapse
Affiliation(s)
| | | | | | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada; (K.T.L.); (A.W.); (A.B.N.); (J.I.)
| |
Collapse
|
19
|
Xiao M. Advances and rational design of chitosan-based autonomic self-healing hydrogels for biomedical applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02688-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Han X, Lai JHC, Huang J, Park SW, Liu Y, Chan KWY. Imaging Self-Healing Hydrogels and Chemotherapeutics Using CEST MRI at 3 T. ACS APPLIED BIO MATERIALS 2021; 4:5605-5616. [PMID: 35006724 DOI: 10.1021/acsabm.1c00411] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Imaging hydrogel-based local drug delivery to the brain after tumor resection has implications for refining treatments, especially for brain tumors with poor prognosis and high recurrence rate. Here, we developed a series of self-healing chitosan-dextran (CD)-based hydrogels for drug delivery to the brain. These hydrogels are injectable, self-healing, mechanically compatible, and detectable by chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). CD hydrogels have an inherent CEST contrast at 1.1 ppm, which decreases as the stiffness increases. We further examined the rheological properties and CEST contrast of various chemotherapeutic-loaded CD hydrogels, including gemcitabine (Gem), doxorubicin, and procarbazine. Among these formulations, Gem presented the best compatibility with the rheological (G': 215.3 ± 4.5 Pa) and CEST properties of CD hydrogels. More importantly, the Gem-loaded CD hydrogel generated another CEST readout at 2.2 ppm (11.6 ± 0.1%) for monitoring Gem. This enabled independent and simultaneous imaging of the drug and hydrogel integrity using a clinically relevant 3 T MRI scanner. In addition, the Gem-loaded CD hydrogel exhibited a longitudinal antitumor efficacy of Gem over a week in vitro. Furthermore, the CD hydrogel could be visualized by CEST after brain injection with a contrast of 7.38 ± 2.31%. These natural labels on both the chemotherapeutics and hydrogels demonstrate unique image-guided local drug delivery for brain applications.
Collapse
Affiliation(s)
- Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Se Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore MD21205, United States.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
21
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
22
|
Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021; 42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Injectable hydrogel possesses great application potential in disease treatment and tissue engineering, but damage to gel often occurs due to the squeezing pressure from injection devices and the mechanical forces from limb movement, and leads to the rapid degradation of gel matrix and the leakage of the load material. The self-healing injectable hydrogels can overcome these drawbacks via automatically repairing gel structural defects and restoring gel function. The polysaccharide hydrogels constructed through the Schiff base reaction own advantages including simple fabrication, injectability, and self-healing under physiological conditions, and therefore have drawn extensive attention and investigation recently. In this short review, the preparation and self-healing properties of the polysaccharide hydrogels that is established on the Schiff base reaction are focused on and their biological applications in drug delivery and cell therapy are discussed.
Collapse
Affiliation(s)
- Chunxiang Mo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xiang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
23
|
Bagewadi S, Parameswaran S, Krishnakumar S, Sethuraman S, Subramanian A. Tissue engineering approaches towards the regeneration of biomimetic scaffolds for age-related macular degeneration. J Mater Chem B 2021; 9:5935-5953. [PMID: 34254105 DOI: 10.1039/d1tb00976a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Age-related macular degeneration (AMD) is the third major cause of blindness in people aged above 60 years. It causes dysfunction of the retinal pigment epithelium (RPE) and leads to an irreversible loss of central vision. The present clinical treatment options are more palliative in controlling the progression of the disease and do not functionally restore the degenerated RPE monolayer and photoreceptors. Currently, the clinical transplantation of RPE cells has shown poor engraftment potential due to the absence of an intact Bruch's membrane in AMD patients, thereby the vision is unable to be restored completely. Although tissue engineering strategies target the development of Bruch's membrane-mimetic substrates, the challenge still lies in the development of an ultrathin, biologically and mechanically equivalent membrane to restore visual acuity. Further, existing limitations such as cellular aggregation, surgical complications including retinal tissue damage, tissue rejection, disease transmission, inferior mechanical strength, and the loss of vision over time demand the search for an ideal strategy to restore the functional RPE. Hence, this review aims to provide insights into various approaches, from conventional cell therapy to 3D bioprinting, and their unmet challenges in treating AMD by outlining the pathophysiology of AMD and the host tissue response with respect to injury, treatment and preclinical animal models.
Collapse
Affiliation(s)
- Shambhavi Bagewadi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology Vision Research Foundation, Chennai, India
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| | - Anuradha Subramanian
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
24
|
Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, Zheng Y, Cui Z, Yeung KWK, Liang Y, Zhu S, Wu S. Antibacterial Hybrid Hydrogels. Macromol Biosci 2020; 21:e2000252. [PMID: 32881309 DOI: 10.1002/mabi.202000252] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Bacterial infectious diseases and bacterial-infected environments have been threatening the health of human beings all over the world. In view of the increased bacteria resistance caused by overuse or improper use of antibiotics, antibacterial biomaterials are developed as the substitutes for antibiotics in some cases. Among them, antibacterial hydrogels are attracting more and more attention due to easy preparation process and diversity of structures by changing their chemical cross-linkers via covalent bonds or noncovalent physical interactions, which can endow them with various specific functions such as high toughness and stretchability, injectability, self-healing, tissue adhesiveness and rapid hemostasis, easy loading and controlled drug release, superior biocompatibility and antioxidation as well as good conductivity. In this review, the recent progress of antibacterial hydrogel including the fabrication methodologies, interior structures, performances, antibacterial mechanisms, and applications of various antibacterial hydrogels is summarized. According to the bacteria-killing modes of hydrogels, several representative hydrogels such as silver nanoparticles-based hydrogel, photoresponsive hydrogel including photothermal and photocatalytic, self-bacteria-killing hydrogel such as inherent antibacterial peptides and cationic polymers, and antibiotics-loading hydrogel are focused on. Furthermore, current challenges of antibacterial hydrogels are discussed and future perspectives in this field are also proposed.
Collapse
Affiliation(s)
- Zhongming Cao
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Yue Luo
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Lei Tan
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Xiangmei Liu
- Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan, 430062, China
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
| | - Yufeng Zheng
- College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Yanqin Liang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
25
|
Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomater 2020; 113:84-100. [PMID: 32634482 DOI: 10.1016/j.actbio.2020.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Self-healing hydrogels can heal themselves on the damaged sites, which opens up a fascinating way for enhancing lifetimes of materials. Polypeptide/poly(amino acid) is a class of polymers in which natural amino acid monomers or derivatives are linked by amide bonds with a stable and similar secondary structure as natural proteins (α-helix or β-fold). They have the advantages of nontoxicity, biodegradability, and low immunogenicity as well as easy modification. All these properties make polypeptides extremely suitable for the preparation of self-healing hydrogels for biomedical applications. In this review, we mainly focus on the progress in the fabrication strategies of polypeptide-based self-healing hydrogels and their biomedical applications in the recent 5 years. Various crosslinking methods for the preparation of polypeptide-based self-healing hydrogels are first introduced, including host-guest interactions, hydrogen bonding, electrostatic interactions, supramolecular self-assembly of β-sheets, and reversible covalent bonds of imine and hydrazone as well as molecular multi-interactions. Some representative biomedical applications of these self-healing hydrogels such as delivery system, tissue engineering, 3D-bioprinting, antibacterial and wound healing as well as bioadhesion and hemostasis are also summarized. Current challenges and perspectives in future for these "smart" hydrogels are proposed at the end . STATEMENT OF SIGNIFICANCE: Polypeptides with the advantages of nontoxicity, biodegradability, hydrophilicity and low immunogenicity, are extremely suitable for the preparation of self-healing hydrogels in biomedical applications. Recently, the researches of polypeptide-based self-healing hydrogel have drawn the great attentions for scientists and engineers. A review to summarize the recent progress in design and biomedical applications of these polypeptide-based self-healing hydrogels is highly needed. In this review, we mainly focus on the progress in fabrication strategies of polypeptide-based self-healing hydrogels and biomedical applications in recent five years and aim to draw the increased attention to the importance of these "smart" hydrogels, facilitating the advances in biomedical applications. We believe this work would draw interest from readers of Acta Biomaterialia.
Collapse
|
26
|
Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020; 8:654. [PMID: 32793562 PMCID: PMC7385058 DOI: 10.3389/fbioe.2020.00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hydrogels, a type of three-dimensional (3-D) crosslinked network of polymers containing a high water concentration, have been receiving increasing attention in recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, and conductivity, which enable them to be used in the manufacturing of drug/cell delivery vehicles, glues, electronic devices, and so on. MAIN BODY This review will focus on the synthesis and applications of self-healing hydrogels. Their repair mechanisms and potential applications in pharmaceutical, biomedical, and other areas will be introduced. CONCLUSION Self-healing hydrogels are used in various fields because of their ability to recover. The prospect of self-healing hydrogels is promising, and they may be further developed for various applications.
Collapse
Affiliation(s)
- Leqi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
27
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
28
|
Li J, Gao F, Ma S, Zhang Y, Zhang J, Guan F, Yao M. Control the fate of human umbilical cord mesenchymal stem cells with dual-enzymatically cross-linked gelatin hydrogels for potential applications in nerve regeneration. J Tissue Eng Regen Med 2020; 14:1261-1271. [PMID: 32633057 DOI: 10.1002/term.3098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Stem-cell-based therapy is a promising strategy to treat challenging neurological diseases, while its application is hindered primarily by the low viability and uncontrolled differentiation of stem cell. Hydrogel can be properly engineered to share similar characteristics with the target tissue, thus promoting cell viability and directing cell differentiation. In this study, we proposed a new dual-enzymatically cross-linked and injectable gelatin hydrogel for regulating survival, proliferation, and differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in a three-dimensional matrix. This injectable gelatin hydrogel was formed by oxidative coupling of gelatin-hydroxyphenyl acid conjugates catalyzed by hydrogen horseradish peroxidase (HRP) and choline oxidase (ChOx). Modulus and H2 O2 release can be well controlled by ChOx activity. Results from calcein-AM/PI staining and Ki67 immunofluorescence tests demonstrated that the survival and proliferation behavior of hUC-MSCs were highly enhanced in HRP1U ChOx0.25U hydrogel with lower modulus and less H2 O2 release compared with other groups. Attractively, the expression of neuron-specific markers β-III tubulin, neurofilament light chain (NFL), and synapsin-1 was significantly increased in HRP1U ChOx0.25U hydrogel as well. Additionally, in vitro hemolysis test and in vivo HE staining data highlighted the good biocompatibility. Undoubtedly, this injectable gelatin hydrogel's ability to control hUC-MSCs' fate holds enormous potentials in nervous disorders' therapy and nerve regeneration.
Collapse
Affiliation(s)
- Jinrui Li
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Feng Gao
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Yanting Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Junni Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
29
|
Gao F, Li J, Wang L, Zhang D, Zhang J, Guan F, Yao M. Dual-enzymatically crosslinked hyaluronic acid hydrogel as a long-time 3D stem cell culture system. ACTA ACUST UNITED AC 2020; 15:045013. [PMID: 31995791 DOI: 10.1088/1748-605x/ab712e] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cell-based tissue engineering shows enormous potential for regenerative medicine. Three-dimensional (3D) stem cell culture is the most basic aspect of tissue engineering. However, achievement of a perfect scaffold for highly efficient 3D cell culture is currently still limited. Herein, a new hyaluronic acid hydrogel dual-enzymatically crosslinked by horseradish peroxidase and choline oxidase is developed as a 3D stem cell culture system. This hydrogel possesses superior stability over two months, controllable biodegradability with hyaluronidases, a high swelling ratio exceeding 6000%, and excellent cytocompatibility in vitro and biocompatibility in vivo. More importantly, a long-time and highly cellular activity 3D culture of bone marrow-derived mesenchymal stem cells was achieved in vitro over 20 days. All these encouraging results highlight the great potential of this new hydrogel for 3D culture and tissue engineering.
Collapse
Affiliation(s)
- Feng Gao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang Y, Chen M, Dai Z, Cao H, Li J, Zhang W. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomater Sci 2020; 8:682-693. [PMID: 31776523 DOI: 10.1039/c9bm01455a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Bone tissue engineering based on stem cells, growth factors and bioactive scaffolds presents an appealing but challenging approach for rehabilitation of patients with bone defects. A versatile system with the capability for easy operation and precise protein delivery in specific locations is attractive for enhancing bone regeneration. Here, we develop a non-invasive delivery system based on injectable and self-healing nanocomposite hydrogels for sustained protein release, which has the potential to improve the current orthopedic strategy. Specifically, LAPONITE® (LAP) nanoplatelets are able to accelerate the gelation process through hydrogen bonds with polysaccharide matrices, endowing hydrogels with superior mechanical and rheological behaviors, along with better injectability and self-healing ability. Attractively, the strong static binding between LAP nanoplatelets and bone morphogenetic protein-2 (BMP-2) can form stable LAP@BMP-2 complexes. The results indicate that the complexes effectively preserve the intrinsic bioactivity of BMP-2 and prolong the release period for more than four weeks. Moreover, hydrogels incorporating with the LAP@BMP-2 complexes synergistically boost cell spreading, proliferation activity and osteogenesis, both in vitro and in vivo, compared with LAP or BMP-2 alone. Overall, this study proposes a valid platform for protein therapeutics and non-invasive bone repair.
Collapse
Affiliation(s)
- Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
31
|
Zhou Y, Zhang Y, Dai Z, Jiang F, Tian J, Zhang W. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker. Biomater Sci 2020; 8:3359-3369. [DOI: 10.1039/d0bm00290a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Supramolecular hydrogels based on host–guest interactions have drawn considerable attention due to their unique properties and promising applications.
Collapse
Affiliation(s)
- Yang Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Fang Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
32
|
Wang L, Li J, Zhang D, Ma S, Zhang J, Gao F, Guan F, Yao M. Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Adv 2020; 10:2870-2876. [PMID: 35496102 PMCID: PMC9048911 DOI: 10.1039/c9ra09531d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, in situ formed injectable hydrogels have shown great potential in biomedical applications as therapeutic implants or carriers in tissue repair and regeneration. They can seal or fill the damaged tissue to function as cell/drug delivery vehicle perfectly through a minimally invasive surgical procedure. In this study, hyaluronic acid (HA) is functionalized with tyramine to produce an injectable hydrogel dual-enzymatically crosslinked by horseradish peroxidase (HRP) and galactose oxidase (GalOX). This new tyramine-modified HA (HT) hydrogel exhibited good injectability, favorable cytocompatibility to mice bone marrow mesenchymal stem cells (BMSCs), and low inflammatory response verified by cytotoxicity assay in vitro and an in situ subcutaneous injection study in vivo. In addition, the gelation time, swelling behavior, and degradation rate of the HT hydrogel could be adjusted through varying the concentrations of HT and GalOX in a certain range. These encouraging results suggest that such biocompatible HT hydrogels might have potential application in three-dimensional stem cell culture and tissue engineering. A new hyaluronic acid hydrogel dual-enzymatically cross-linked by HRP and GalOX and application for three-dimensional stem cell culture and tissue engineering.![]()
Collapse
Affiliation(s)
- Luyu Wang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jinrui Li
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dan Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shanshan Ma
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Junni Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Feng Gao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Fangxia Guan
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Minghao Yao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
33
|
Xie C, Huang W, Sun W, Jiang X. Injectable polymeric gels based on chitosan and chitin for biomedical applications. HANDBOOK OF CHITIN AND CHITOSAN 2020:281-306. [DOI: 10.1016/b978-0-12-817966-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
34
|
Teng L, Chen Y, Jia YG, Ren L. Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 2019; 7:6705-6736. [DOI: 10.1039/c9tb01698h] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights the most recent progress in gelation strategies of biomedical supramolecular and dynamic covalent crosslinking hydrogels and their applications for enhancing cell retention and cartilage regeneration.
Collapse
Affiliation(s)
- Lijing Teng
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Yong-Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| |
Collapse
|