1
|
Wang G, Sun Y, Liu C, Li Z. Immuno-transcription-amplified single microbead assay for protein and exosome analysis through an S9.6 antibody-nucleic acid recognition strategy. Biosens Bioelectron 2025; 271:117043. [PMID: 39657553 DOI: 10.1016/j.bios.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
High-sensitive detection of circulating biomarkers is in high demand because many of them are found at low concentrations in bioliquids. Herein, we report an immuno-transcription-amplified single microbead (MB) assay (IT-SMA) based on the specific S9.6 antibody-DNA/RNA hybrid recognition strategy for the sensitive and universal quantification of protein biomarkers. This design rationally converts the immunoreaction events into amplified nucleic acid transcription to produce numerous RNA molecules, which can efficiently enrich fluorescent signals onto a single MB through a specific S9.6 antibody-DNA/RNA hybrid recognition mechanism, enabling sensitive protein analysis. This method exhibits excellent specificity and high sensitivity for protein analysis with a low detection limit at the fg/mL level. Furthermore, the S9.6 antibody-aided IT-SMA allows for universal detection of various proteins and even exosomes, testing target proteins in serum samples, and differentiating cancer patients from healthy individuals by directly analyzing the exosomes in human blood samples. These features make the IT-SMA strategy a promising tool for the quantitative detection of a variety of biomarkers toward precision diagnostics.
Collapse
Affiliation(s)
- Gaoting Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China
| | - Yuanyuan Sun
- Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, PR China.
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Liu H, Lv MM, Li X, Su M, Nie YG, Ying ZM. Ligation-recognition triggered RPA-Cas12a cis-cleavage fluorogenic RNA aptamer for one-pot and label-free detection of MicroRNA in breast cancer. Biosens Bioelectron 2024; 272:117106. [PMID: 39740588 DOI: 10.1016/j.bios.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
"One-pot" assays which combine amplification with CRISPR/Cas12a system are in constant attracted for biosensors development. Herein, we present a one-pot isothermal assay that Ligation-recognition triggered Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a cis-cleavage (LRPA-CRISPR) fluorescent biosensor for sensitive, specific, and label-free miRNA detection. Firstly, we reveal the programmed double-stranded DNA amplicons, which utilized the ligation-recognition and polymerization to form and amplified by the RPA system. Meanwhile, we enabled exponential ligation-recognition triggered recombinase polymerase amplification of miRNA-21 sequences and exploited the cis-cleavage mechanism of Cas12a with transcription to generate functional Mango RNA for signal output. This assay can be completed within 40 min and can allow a limit of detection of 3.43 aM for miRNA-21 detection, owing to the RPA with transcription amplification and enables to product the functional Mango RNA aptamer by in vitro transcription that binds to the TO1-Biotin fluorogenic dye. Moreover, our method exhibits the advantages of self-supply crRNA, label-free, excellent specificity, and universal detection platform via the design of one-pot detection in serum and cell samples, showing tremendous potential in biomarkers diagnostics of breast cancer.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Meng-Mei Lv
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, 410000, China
| | - Xiang Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mei Su
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yin-Gang Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
3
|
John J, Pillai AA, John J, Thomas RL, Thomas J, Thomas V, Unnikrishnan NV, Prakash P. Resonant energy transfer among naturally available bio materials for white light emission. Nat Prod Res 2024:1-8. [PMID: 38829307 DOI: 10.1080/14786419.2024.2360687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
In this work we have studied the fluorescence of natural dyes and generated nearly pure white light with chromaticity intensity (CIE) coordinate (0.35,0.35). The colour rendering index (CRI) and colour temperature corresponding to the CIE coordinate are calculated and these dyes are ideal for cool white light emission. It was observed that a broadband and simultaneous emission involving anthocyanin and polyphenol ellergic acid from jamun, curcumin and chlorophyll from spinach leaves played a vital role in obtaining a CIE index close to that of pure white light. The white light emission is due to the Förster resonance energy transfer (FRET) from curcumin to anthocyanin and ellergic acid to curcumin. Efficiency of FRET is calculated and different possibilities studied. For the polyphenol ellergic acid, curcumin FRET pair the spectral overlap integral and the efficiency are 3.29 × 10-24 m2, 99.97% and for the curcumin, anthocyanin pair, they are 4.03 × 10-24 m2, 76%, respectively.
Collapse
Affiliation(s)
- Josmi John
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Ajai A Pillai
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Jancy John
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - Rose Leena Thomas
- Department of Physics, St. Joseph's College for Women, University of Kerala, Alappuzha, India
| | | | - Vinoy Thomas
- Center for Functional Materials, Department of Physics, Christian College Chengannur, University of Kerala, Alappuzha, India
| | - N V Unnikrishnan
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India
| | - P Prakash
- Department of Chemistry, Thiagarajar College, Madurai, India
| |
Collapse
|
4
|
Zhang P, Li Y, Zhang D, Zhu X, Guo J, Ma C, Shi C. Real-time detection of SARS-CoV-2 in clinical samples via ultrafast ligation-dependent RNA transcription amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1915-1922. [PMID: 37000537 DOI: 10.1039/d3ay00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
RNA has been recognized as an important biomarker of many infectious pathogens; thus, sensitive, simple and rapid detection of RNA is urgently required for the control of epidemics. Herein, we report an ultrafast ligation-dependent RNA transcription amplification assay with high sensitivity and specificity for real-time detection of SARS-CoV-2 in real clinical samples, termed splint-based cascade transcription amplification (SCAN). Target RNA is first recognized by two DNA probes, which are then ligated together by SplintR, followed by the binding of the T7 promotor and T7 RNA polymerase to the ligated probe and the start of the transcription process. By introducing a vesicular stomatitis virus (VSV) terminator in the ligated probe, large amounts of RNA transcripts are rapidly produced within 10 min, which then directly hybridize with molecular beacons (MBs) and trigger the conformational switch of the MBs to generate a fluorescence signal that can be monitored in real time. The SCAN assay, which can be completed within 30-50 min, has a limit of detection of 104 copies per mL, while exhibiting high specificity to distinguish the target pathogen from those causing similar syndromes. More importantly, the results of SCAN for SARS-CoV-2 detection in clinical samples display great agreement with the most used qRT-PCR and qRT-LAMP, indicating great potential in the diagnosis of pathogens in clinical practice.
Collapse
Affiliation(s)
- Peng Zhang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Dongmei Zhang
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, PR China
| | - Xinghao Zhu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Jinling Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
5
|
Zhao NN, Liu WJ, Tian X, Zhang B, Zhang CY. Target-activated cascade transcription amplification lights up RNA aptamers for label-free detection of metalloproteinase-2 activity. Chem Commun (Camb) 2023; 59:1058-1061. [PMID: 36606583 DOI: 10.1039/d2cc06784f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate that target-activated cascade transcription amplification lights up RNA aptamers for label-free detection of metalloproteinase-2 (MMP-2) activity with zero background. This assay exhibits good specificity and high sensitivity with a limit of detection (LOD) of 0.6 fM. Moreover, it can analyze enzyme kinetic parameters, screen inhibitors, and accurately quantify MMP-2 in cancer cells and clinical serums.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Baogang Zhang
- Department of Clinical Pathology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Ma F, Liu YZ, Liu M, Qiu JG, Zhang CY. Transcriptionally amplified synthesis of fluorogenic RNA aptamers for label-free DNA glycosylase assay. Chem Commun (Camb) 2022; 58:10229-10232. [PMID: 36004508 DOI: 10.1039/d2cc03628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate for the first time the utilization of fluorogenic RNA aptamers for label-free uracil-DNA glycosylase (UDG) assay. Through rationally engineering the transcription machine with dU substitution, this assay requires only a single probe to simultaneously sense and amplify the UDG signal, achieving a low detection limit of 6.3 × 10-6 U mL-1. Moreover, it can be applied for screening UDG inhibitors and measuring endogenous UDG activity in different cells.
Collapse
Affiliation(s)
- Fei Ma
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ya-Zhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Du JF, Chen JS, Liu XP, Mao CJ, Jin BK. Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized Mxene composite. Mikrochim Acta 2022; 189:264. [PMID: 35776207 DOI: 10.1007/s00604-022-05359-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
The electrochemiluminescence and resonance energy transfer (ECL-RET) method was adopted to detect miRNAs, in which the two-dimensional Ti3C2 Mxenes with high surface area modified with CdS:W nanocrystals (CdS:W NCs) were used as ECL signal emitter. Mxenes with a specific surface area of 5.2755 m2/g carried more emitters and promote ECL intensity. As an energy acceptor, BiOCl nanosheets (BiOCl NSs) have a wide UV-Vis absorption peak in the range 250 nm-700 nm, including the emission band of CdS:W NCs with 520 nm emission wavelength. Hence, BiOCl NSs are covalently bound to hairpin DNA 2 by amide bond to quench the ECL signal of CdS:W NCs. In the presence of miRNA-141, the hairpin DNA 1 modified on the GCE was unfold and then paired with hairpin DNA 2 to release miRNA-141 and quench the signal of the ECL biosensor. Then, the concentration signal of miRNA-141 was amplified by catalytic hairpin assembly. The novel specific biosensor demonstrated a satisfactory linear relationship with miRNA-141 in the range 0.6 pM to 4000 pM; the detection limit was as low as 0.26 pM (3 s/m) under the potential of 0 ~ -1.3 V and showed outstanding RSD of 1.19%. The findings of the present work with high accuracy and sensitivity will be of positive significance for the clinical diagnosis of miRNA in the future work. The construction process of the biosensor and electrochemiluminescence mechanism.
Collapse
Affiliation(s)
- Jin-Feng Du
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, Anhui, China
| |
Collapse
|
8
|
Chi Z, Wu Y, Chen L, Yang H, Khan MR, Busquets R, Huang N, Lin X, Deng R, Yang W, Huang J. CRISPR-Cas14a-integrated strand displacement amplification for rapid and isothermal detection of cholangiocarcinoma associated circulating microRNAs. Anal Chim Acta 2022; 1205:339763. [DOI: 10.1016/j.aca.2022.339763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
9
|
Park Y, Yoon J, Lee J, Lee S, Park HG. Multiplexed miRNA detection based on target-triggered transcription of multicolor fluorogenic RNA aptamers. Biosens Bioelectron 2022; 204:114071. [DOI: 10.1016/j.bios.2022.114071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
10
|
Qian S, Chang D, He S, Li Y. Aptamers from random sequence space: Accomplishments, gaps and future considerations. Anal Chim Acta 2022; 1196:339511. [DOI: 10.1016/j.aca.2022.339511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/07/2023]
|
11
|
Hua X, Fan J, Yang L, Wang J, Wen Y, Su L, Zhang X. Rapid detection of miRNA via development of consecutive adenines (polyA)-based electrochemical biosensors. Biosens Bioelectron 2022; 198:113830. [PMID: 34861526 DOI: 10.1016/j.bios.2021.113830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Herein, we report rapid electrochemical detection of miRNA let-7a based on a DNA probe consisting of a polyA and Fc-co-labeled harpin structure (the polyA-H probe). The polyA-H probe could be facilely immobilized on Au surfaces through the interactions between polyA and Au, followed by its pre-hybridization with a single strand (S1). The probe's surface density could be optimized for minimizing steric hindrance via changing the polyA block length. The target let-7a could be rapidly amplified via loop-mediated isothermal amplification (LAMP) with four simplified primers, followed by inducing the formation of dimeric i-motif (DIM) structure via H+-induced rapid folding of two C-rich sequences of motif strand 1 and strand 2. It was found that, after introducing the as-formed DIM to hybridize the S1, the immobilized polyA20-H probe could rapidly revert to its hairpin structure, sending out a turn-on electrochemical signal of the Fc. The total time for detecting the let-7a was around 80 min, obviously less than that of most of electrochemical DNA sensors reported previously. The biosensor showed a linear relationship of the current response to the let-7a in the range of 10 fM to 50 nM with a limit of detection (LOD) of 5.1 fM. Our biosensors were further tested using human serum spiked with the let-7a and the extracts of the breast adenocarcinoma cells spiked with and without the let-7a, respectively. Satisfied results were obtained. This study shows a potential promising future of development of electrochemical biosensors for rapid detection of miRNAs in the application of clinical practice.
Collapse
Affiliation(s)
- Xiaoyu Hua
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jingjing Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, 430068, PR China
| | - Yongqiang Wen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Lei Su
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518037, PR China
| |
Collapse
|
12
|
Wang X, Tang S, Ye S, Cheng Z, Xu J, Li BW, Chen Z. Ultrasensitive quantitation of circulating miR-195-5p with triple strand displacement amplification cascade. Talanta 2022; 242:123300. [PMID: 35180536 DOI: 10.1016/j.talanta.2022.123300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/14/2023]
Abstract
Circulating miR-195-5p has been proposed as a promising peripheral biomarker for the diagnosis, prognosis and severity assessment of various diseases. However, the demand for its sensitive and convenient quantification has not been met yet. Herein, we proposed a one-pot isothermal approach, in which the target signal acquisition, amplification and conversion (fluorescence read-out) system was integrated by a triple strand displacement amplification (SDA) cascade. Using this triple SDA strategy, miR-195-5p can be at least detected at 1 aM, and the linear dynamic range (from 100 aM to 1 pM) is wide enough to meet the detection needs of clinical miRNA level. A proof-of-principle study, using this novel methodology to directly analyze the spiking serum samples with different levels of miR-195-5p, demonstrated the potential of circulating miR-195-5p detection for clinical point-of-care assay. This one-pot isothermal triple SDA approach, we believe, will be a simple and feasible tool for ultrasensitive quantification of circulating miR-195-5p, and may promote the wide application of this potential biomarker in non-invasive clinical diagnosis.
Collapse
Affiliation(s)
- Xuzhi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuzhi Tang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengnan Ye
- Department of Otorhinolaryngology, Fujian Institute of Otorhinolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhou Cheng
- Breast Cancer Institute, Department of Breast Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350004, China
| | - Bo-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Hong Y, Kim DE, Park YJ, Kim DM, Byun JY, Shin YB. MicroRNA detection using light-up aptamer amplification based on nuclease protection transcription. Chem Commun (Camb) 2022; 58:2359-2362. [DOI: 10.1039/d1cc06599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quantification of microRNAs (miRNAs) is important because the miRNA expression level is closely associated with the occurrence and development of diseases. Here, we report a simple nuclease protection transcription...
Collapse
|
14
|
Citartan M. The dynamicity of light-up aptamers in one-pot in vitro diagnostic assays. Analyst 2021; 147:10-21. [PMID: 34860215 DOI: 10.1039/d1an01690c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Light-up aptamers are aptamers that ignite the fluorescence emission of certain dyes upon binding. Widely harnessed in in vivo imaging, the binding capacity of the light-up aptamers can also be deployed in in vitro diagnostic assays, engendering a mix-and-read format. Intrigued by this, I intend to provide an overview of the various formats of diagnostic assays developed using light-up aptamers from the direct modulation of the light-up aptamers, split aptamer-based configuration, strand displacement, in vitro transcription-based one-pot diagnostic assay, CRISPR-Cas system to the measurement of the ion reliance. The incorporation of the light-up aptamers into each configuration is expounded and further supported by describing the exemplary assays developed thus far. It is anticipated that the present study can be enlightening to any researchers who aspire to embark on the development of one-pot in vitro diagnostic assays based on light-up aptamers.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
15
|
Kim JH, Kim S, Hwang SH, Yoon TH, Park JS, Lee ES, Woo J, Park KS. Three-Way Junction-Induced Isothermal Amplification with High Signal-to-Background Ratio for Detection of Pathogenic Bacteria. SENSORS 2021; 21:s21124132. [PMID: 34208674 PMCID: PMC8235052 DOI: 10.3390/s21124132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
The consumption of water and food contaminated by pathogens is a major cause of numerous diseases and deaths globally. To control pathogen contamination and reduce the risk of illness, a system is required that can quickly detect and monitor target pathogens. We developed a simple and reproducible strategy, termed three-way junction (3WJ)-induced transcription amplification, to detect target nucleic acids by rationally combining 3WJ-induced isothermal amplification with a light-up RNA aptamer. In principle, the presence of the target nucleic acid generates a large number of light-up RNA aptamers (Spinach aptamers) through strand displacement and transcription amplification for 2 h at 37 °C. The resulting Spinach RNA aptamers specifically bind to fluorogens such as 3,5-difluoro-4-hydroxybenzylidene imidazolinone and emit a highly enhanced fluorescence signal, which is clearly distinguished from the signal emitted in the absence of the target nucleic acid. With the proposed strategy, concentrations of target nucleic acids selected from the genome of Salmonellaenterica serovar Typhi (S. Typhi) were quantitatively determined with high selectivity. In addition, the practical applicability of the method was demonstrated by performing spike-and-recovery experiments with S. Typhi in human serum.
Collapse
|
16
|
Ryckelynck M. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. Methods Mol Biol 2021; 2166:73-102. [PMID: 32710404 DOI: 10.1007/978-1-0716-0712-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
17
|
Ma L, Ye S, Wang X, Zhang J. SERS-Microfluidic Approach for the Quantitative Detection of miRNA Using DNAzyme-Mediated Reciprocal Signal Amplification. ACS Sens 2021; 6:1392-1399. [PMID: 33591724 DOI: 10.1021/acssensors.1c00063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) play important roles in biological processes. Designing a sensitive, selective, and rapid method of miRNA detection is crucial for biological research. Here, with a reciprocal signal amplification (RSA) probe, this work established a novel surface-enhanced Raman scattering (SERS)-microfluidic approach for the quantitative analysis of miRNA. First, via a DNAzyme self-assemble cycle reaction, two types of SERS signals produce amplified reciprocal changes. The sum of the absolute signal value is first adopted for the quantitative analysis of miRNA, which results in an enhanced response and a reduced blank value. Furthermore, the assay is integrated in an electric drive microfluidic mixing reactor that enables physical mixing and enriching of the reactants for more rapid and enhanced detection sensitivity. The protocol owns the merits of the SERS technology, amplified reciprocal signals, and a microfluidic chip, with a detection limit of 2.92 fM for miR-141 in 40 min. In addition, successful determination of miRNA in a variety of cells proved the practicability of the assay. Compared with the reported strategies for miRNA analysis, this work avoids a complex and time-consuming procedure and enhances the sensitivity and specificity. The method opens a promising way for biomolecular chip detection and research.
Collapse
Affiliation(s)
- Lindong Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Sujuan Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xingxiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jihua Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
18
|
Swetha P, Fan Z, Wang F, Jiang JH. Genetically encoded light-up RNA aptamers and their applications for imaging and biosensing. J Mater Chem B 2021; 8:3382-3392. [PMID: 31984401 DOI: 10.1039/c9tb02668a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intracellular small ligands and biomacromolecules are playing crucial roles not only as executors but also as regulators. It is essential to develop tools to investigate their dynamics to interrogate their functions and reflect the cellular status. Light-up RNA aptamers are RNA sequences that can bind with their cognate nonfluorescent fluorogens and greatly activate their fluorescence. The emergence of genetically encoded light-up RNA aptamers has provided fascinating tools for studying intracellular small ligands and biomacromolecules owing to their high fluorescence activation degree and facile programmability. Here we review the burgeoning field of light-up RNA aptamers. We first briefly introduce light-up RNA aptamers with a focus on the photophysical properties of the fluorogens. Then design strategies of genetically encoded light-up RNA aptamer based sensors including turn-on, signal amplification and ratiometric rationales are emphasized.
Collapse
Affiliation(s)
- Puchakayala Swetha
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hu-nan University, Changsha, 410082, P. R. China.
| | | | | | | |
Collapse
|
19
|
Li H, Tang Y, Song D, Lu B, Guo L, Li B. Establishment of Dual Hairpin Ligation-Induced Isothermal Amplification for Universal, Accurate, and Flexible Nucleic Acid Detection. Anal Chem 2021; 93:3315-3323. [PMID: 33538577 DOI: 10.1021/acs.analchem.1c00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isothermal amplifications have found their potentials in applications of portable nucleic acid diagnostics. However, there are still several certain deficiencies existing in the current amplification methods, including high false-positive signals, limited range of targets, difficult primer design, and so forth. Here, we report an effective solution via the development of dual hairpin ligation-induced isothermal amplification (DHLA) consisting of (1) the formation of a dual hairpin probe (DHP) based on sequence specific hybridization and ligation and (2) exponential isothermal amplification of DHP in the presence of polymerase and primers. Taking both microRNA and virus RNA as model targets, DHLA is proven to be accurate, flexible, and applicable to most deoxyribonucleic acid and ribonucleic acid targets ranging from ∼20 to hundreds of nt. The detection limit is down to the ∼aM level without a false-positive signal. More importantly, the whole detection can be directly applied to a new target via a slight change in the DHP sequence, without redesigning the primer set. This unique property not only simplifies the process for new reaction development but also enables flexible multiprobe strategies to achieve antidegradation analysis.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yidan Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Defeng Song
- Department of General Surgery, China-Japan Union Hospital of JiLin University, Changchun, Jilin 130021, P. R. China
| | - Baiyang Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Lulu Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
21
|
Woo J, Kim JH, Kim S, Park KS. Promoter engineering improves transcription efficiency in biomolecular assays. Chem Commun (Camb) 2021; 57:1619-1622. [PMID: 33458724 DOI: 10.1039/d0cc07797f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We identified a novel 12 bp promoter that significantly increased transcription efficiency. Unlike the standard 20 bp promoter, which contains both recognition and initiation regions, the new promoter contains only a recognition region and is more suitable for diagnostic applications due to its smaller size. This promoter effectively produced different light-up RNA aptamers via transcription. Moreover, we used the promoter to analyze RNase H activity and achieved a detection limit of 0.009 U mL-1, which was significantly better than that achieved via previous methods. We propose that the new promoter may serve as a key component in various diagnostic applications.
Collapse
Affiliation(s)
- Jisu Woo
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | | | | | | |
Collapse
|
22
|
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Anal Chem 2021; 93:198-214. [PMID: 33147015 PMCID: PMC7855502 DOI: 10.1021/acs.analchem.0c04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Cui Y, Zheng J, Zhuang W, Wang H. A target-activated plasmon coupling surface-enhanced Raman scattering platform for the highly sensitive and reproducible detection of miRNA-21. NEW J CHEM 2021. [DOI: 10.1039/d1nj00173f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have developed an SERS-based platform for the miRNA-21 assay with nucleic acid and Raman dye-modified AuNPs as capture substrates.
Collapse
Affiliation(s)
- Yanfang Cui
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Jing Zheng
- Science and Technology Division
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Wei Zhuang
- Department of Clinical Laboratory
- Binzhou Medical University Hospital
- Binzhou
- P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology
- University of Jinan
- Jinan
- P. R. China
- Institute of Disaster Medicine
| |
Collapse
|
24
|
Affiliation(s)
| | - Lifeng Zhou
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
25
|
Fan Y, Liu Y, Zhou Q, Du H, Zhao X, Ye F, Zhao H. Catalytic hairpin assembly indirectly covalent on Fe 3O 4@C nanoparticles with signal amplification for intracellular detection of miRNA. Talanta 2020; 223:121675. [PMID: 33303136 DOI: 10.1016/j.talanta.2020.121675] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
Fluorescence resonance energy transfer, a promising method for in situ imaging of miRNA in living cells, has intrinsic limitation on sensitivity and selectivity. Herein, a fluorescent amplification strategy based on catalyzed hairpin assembly indirectly covalent on Fe3O4@C nanoparticles via short single-stranded DNA was investigated for cellular miRNA detection in living cells, integrating non-enzyme target-active releasing for amplifying the signal output, highly quenching efficiency of Fe3O4@C nanoparticles with low background, ssDNA assisted fluorescent group-fueled chain releasing from Fe3O4@C nanoparticles with enhanced fluorescence response. The designed platform exhibits highly sensitive in a wide linear concentration range of 0.450 pM-190 pM and is highly specific for miRNA-20a detection with the ability of discriminating one mistake base. Additionally, the CHA-Fe3O4@C was successfully applied in imaging visualization of miRNA-20a in the living cell. The strategy provides a promising bioassay approach for clinical research.
Collapse
Affiliation(s)
- Yaofang Fan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xueyang Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fei Ye
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
26
|
Suea-Ngam A, Bezinge L, Mateescu B, Howes PD, deMello AJ, Richards DA. Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sens 2020; 5:2701-2723. [PMID: 32838523 PMCID: PMC7485284 DOI: 10.1021/acssensors.0c01488] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
Driven by complex and interconnected factors, including population growth, climate change, and geopolitics, infectious diseases represent one of the greatest healthcare challenges of the 21st century. Diagnostic technologies are the first line of defense in the fight against infectious disease, providing critical information to inform epidemiological models, track diseases, decide treatment choices, and ultimately prevent epidemics. The diagnosis of infectious disease at the genomic level using nucleic acid disease biomarkers has proven to be the most effective approach to date. Such methods rely heavily on enzymes to specifically amplify or detect nucleic acids in complex samples, and significant effort has been exerted to harness the power of enzymes for in vitro nucleic acid diagnostics. Unfortunately, significant challenges limit the potential of enzyme-assisted nucleic acid diagnostics, particularly when translating diagnostic technologies from the lab toward the point-of-use or point-of-care. Herein, we discuss the current state of the field and highlight cross-disciplinary efforts to solve the challenges associated with the successful deployment of this important class of diagnostics at or near the point-of-care.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Léonard Bezinge
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Bogdan Mateescu
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
- Brain Research Institute,
Medical Faculty of the University of
Zürich, Winterthurerstrasse 190, 8057
Zürich, Switzerland
| | - Philip D. Howes
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Andrew J. deMello
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| | - Daniel A. Richards
- Institute for Chemical &
Bioengineering, Department of Chemistry & Applied Biosciences,
ETH Zürich,
Vladimir-Prelog-Weg 1, 8093 Zürich,
Switzerland
| |
Collapse
|
27
|
Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription. Nat Biomed Eng 2020; 4:1168-1179. [PMID: 32948855 PMCID: PMC7499000 DOI: 10.1038/s41551-020-00617-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023]
Abstract
The control of viral outbreaks requires nucleic acid diagnostic tests that are sensitive, simple and fast. Here, we report a highly sensitive and specific one-pot assay for the fluorescence-based detection of RNA from pathogens. The assay, which can be performed within 30-50 min of incubation time and can reach a limit of detection of 0.1-attomolar RNA concentration, relies on a sustained isothermal reaction cascade producing an RNA aptamer that binds to a fluorogenic dye. The RNA aptamer is transcribed by the T7 RNA polymerase from the ligation product of a promoter DNA probe and a reporter DNA probe that hybridize with the target single-stranded RNA sequence via the SplintR ligase (a Chlorella virus DNA ligase). In 40 nasopharyngeal SARS-CoV-2 samples, the assay reached positive and negative predictive values of 95 and 100%, respectively. We also show that the assay can rapidly detect a range of viral and bacterial RNAs.
Collapse
|
28
|
Liu L, Li N, Huang ZM, Tang LJ, Ying ZM, Jiang JH. Gold Nanoflares with Computing Function as Smart Diagnostic Automata for Multi-miRNA Patterns in Living Cells. Anal Chem 2020; 92:10925-10929. [PMID: 32806902 DOI: 10.1021/acs.analchem.0c02325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Investigating the multimolecule patterns in living cells is of vital importance for clinical and biomedical studies. Herein, we reported for the first time the engineering of gold nanoflares as smart automata to implement computing-based diagnosis in living mammalian cells. Defining the logic combinations of miR122 and miR21 as the detection patterns, the corresponding OR and AND diagnostic automata were designed. The results showed that they could recognize the correct patterns rapidly and sensitively. The automata could enter cells via self-delivery and have good biocompatibility. They enabled accurate diagnosis on miRNA signatures in different cell lines and differentiation of fluctuations in the same cell line at single cell resolution. Moreover, the automata afforded an innovative diagnostic mode. It simplified the complicated process of detecting, data-collecting, computing, and evaluating. The direct diagnosing result ("1" or "0") was exported according to the embedded computation code. It highlighted the new possibility of using smart automata for intelligent diagnostics and cancer therapy at single cell resolution.
Collapse
Affiliation(s)
- Lan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Na Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhi-Mei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhan-Ming Ying
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
29
|
Zhang L, Guo W, Lu Y. Advances in Cell‐Free Biosensors: Principle, Mechanism, and Applications. Biotechnol J 2020; 15:e2000187. [DOI: 10.1002/biot.202000187] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/22/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Wei Guo
- Department of Ecology Shenyang Agricultural University Shenyang Liaoning Province 110866 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis Ministry of Education Department of Chemical Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
30
|
Wang G, Tian W, Liu X, Ren W, Liu C. New CRISPR-Derived microRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting. Anal Chem 2020; 92:6702-6708. [DOI: 10.1021/acs.analchem.0c00680] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gaoting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Weimin Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
31
|
Wang G, Fan W, Ren W, Liu X, Liu C. High-sensitive sensing of plant microRNA by integrating click chemistry with an unusual on-bead poly(T)-promoted transcription amplification. Anal Chim Acta 2020; 1111:16-22. [PMID: 32312392 DOI: 10.1016/j.aca.2020.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/12/2020] [Accepted: 03/16/2020] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) act as pivotal regulators in plants. Therefore, sensing strategies with high specificity and high sensitivity are desired for plant miRNA analysis in order to unveil the exact biofunctions of miRNAs. Toward this goal, a fluorescent assay is developed based on a two-step signal amplification strategy. In the first step, target miRNA-templated cycling click nucleic acid ligation is employed for target recognition and amplification, the product of which can bind to magnetic microbeads (MBs) and introduce the T7 promoter sequence to the surface. In the second step, the poly(T) containing transcription template partially hybridizes with the T7 promoter sequence on the ligated strand and then regulates the on-bead transcription in a cycling manner with the participation of T7 RNA polymerase. Surprisingly, different from other reported templates, the poly(T) template improves the transcription efficiency to an unexpectedly high level by releasing ultra-long RNA chains in the reaction system. Finally, the RNA intercalating dye, RiboGreen, is utilized to specifically light up the as-produced RNA chains for low-background signal readout. Benefiting from the elaborate design, the detection limit of plant miRNA is down to ∼0.1 amol. This strategy provides a highly specific and highly sensitive platform for plant miRNA detection, which promises potential in the practical applications of miRNA-related biofunctions.
Collapse
Affiliation(s)
- Gaoting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China
| | - Xiaoling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China.
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, PR China.
| |
Collapse
|
32
|
Gao T, Luo Y, Li W, Cao Y, Pei R. Progress in the isolation of aptamers to light-up the dyes and the applications. Analyst 2020; 145:701-718. [DOI: 10.1039/c9an01825e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The progress in the selection of aptamers to light-up the dyes and the related applications are reviewed.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yu Luo
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
- China
| |
Collapse
|
33
|
Lee KH, Kim DM. In Vitro Use of Cellular Synthetic Machinery for Biosensing Applications. Front Pharmacol 2019; 10:1166. [PMID: 31680954 PMCID: PMC6803485 DOI: 10.3389/fphar.2019.01166] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022] Open
Abstract
The application of biosensors is expanding in diverse fields due to their high selectivity and sensitivity. Biosensors employ biological components for the recognition of target analytes. In addition, the amplifying nature of biosynthetic processes can potentially be harnessed to for biological transduction of detection signals. Recent advances in the development of highly productive and cost-effective cell-free synthesis systems make it possible to use these systems as the biological transducers to generate biosensing signals. This review surveys recent developments in cell-free biosensors, focusing on the newly devised mechanisms for the biological recognition of analytes to initiate the amplification processes of transcription and translation.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
34
|
Wang H, Wang H, Zhang M, Jia Y, Li Z. A label-free aptamer-based biosensor for microRNA detection by the RNA-regulated fluorescence of malachite green. RSC Adv 2019; 9:32906-32910. [PMID: 35529731 PMCID: PMC9073149 DOI: 10.1039/c9ra07552f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) have been considered as promising molecular biomarkers for disease diagnosis, prognosis, as well as drug development. Herein, we wish to report a low background and label-free aptamer-based biosensor for miRNA assay by RNA-regulated fluorescence of malachite green (MG). In this biosensor-based strategy, target miRNA can specifically hybridize with the DNA extension template to form the T7 in vitro transcription system. Then the following transcription amplification produces a large number of MG RNA aptamers (MGAs) which light up the fluorescence of the MG, achieving significant fluorescence enhancement for miRNA quantitative analysis. The aptamer-based biosensor exhibits high sensitivity with a quite low detection limit of 10 amol target miRNA and high specificity to clearly discriminate very similar miRNA family members, even only one base difference. Furthermore, we have demonstrated that the biosensor is practical and reliable for the quantitative detection of miRNA in complex real samples.
Collapse
Affiliation(s)
- Honghong Wang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Hui Wang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Mai Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yuting Jia
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhengping Li
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
35
|
Rodríguez-Serrano AF, Hsing IM. 110th Anniversary: Engineered Ribonucleic Acid Control Elements as Biosensors for in Vitro Diagnostics. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alan F. Rodríguez-Serrano
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
36
|
Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, Gao H, Liu D, Deng R, Li J. A transcription aptasensor: amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb) 2019; 55:10096-10099. [PMID: 31380872 DOI: 10.1039/c9cc05036a] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report a transcription aptasensor by using a light-up RNA aptamer. It allows for sensitive, label-free and culture-free detection of intact foodborne pathogens, and no separation, purification or enrichment processes are involved.
Collapse
Affiliation(s)
- Lele Sheng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Soni R, Sharma D, Krishna AM, Sathiri J, Sharma A. A highly efficient Baby Spinach-based minimal modified sensor (BSMS) for nucleic acid analysis. Org Biomol Chem 2019; 17:7222-7227. [PMID: 31329202 DOI: 10.1039/c9ob01414d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular recognition between nucleic acids has proven to be a powerful tool for designing hybridization probes for the detection of DNA and RNA sequences. Most detection probes rely on the conjugation of small molecule dyes to nucleic acids for fluorescence output, which is not cost-effective and also limits their applications in vivo, as they are not genetically encodable. More affordable sensors devoid of any chemical labeling are needed that show high fluorescence output and are genetically encodable. Here, we have designed a label-free Baby Spinach-based minimal modified sensor (BSMS) for the analysis of nucleic acids. The minimal modification in the sensor design reduces the complexity of the design, and provides additional stabilization after binding the target nucleic acids, leading to a high fluorescence output. BSMS is able to detect both DNA and RNA of potentially any lengths and is based on a Baby Spinach aptamer that binds and enhances the fluorescence of a small molecule dye. BSMS shows specificity towards its analyte in the presence of other sequences and selectively differentiates between closely related sequences. BSMS comprises genetically encodable unmodified RNA and has been shown to function at ambient temperature, and thus is anticipated to provide nucleic acid monitoring in vivo.
Collapse
Affiliation(s)
- Rashi Soni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Deepti Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - A Murali Krishna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Jagadeesh Sathiri
- Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Ashwani Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India. and Department of Biology, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| |
Collapse
|
38
|
Neubacher S, Hennig S. RNA Structure and Cellular Applications of Fluorescent Light-Up Aptamers. Angew Chem Int Ed Engl 2019; 58:1266-1279. [PMID: 30102012 PMCID: PMC6391945 DOI: 10.1002/anie.201806482] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/16/2022]
Abstract
The cellular functions of RNA are not limited to their role as blueprints for protein synthesis. In particular, noncoding RNA, such as, snRNAs, lncRNAs, miRNAs, play important roles. With increasing numbers of RNAs being identified, it is well known that the transcriptome outnumbers the proteome by far. This emphasizes the great importance of functional RNA characterization and the need to further develop tools for these investigations, many of which are still in their infancy. Fluorescent light-up aptamers (FLAPs) are RNA sequences that can bind nontoxic, cell-permeable small-molecule fluorogens and enhance their fluorescence over many orders of magnitude upon binding. FLAPs can be encoded on the DNA level using standard molecular biology tools and are subsequently transcribed into RNA by the cellular machinery, so that they can be used as fluorescent RNA tags (FLAP-tags). In this Minireview, we give a brief overview of the fluorogens that have been developed and their binding RNA aptamers, with a special focus on published crystal structures. A summary of current and future cellular FLAP applications with an emphasis on the study of RNA-RNA and RNA-protein interactions using split-FLAP and Förster resonance energy transfer (FRET) systems is given.
Collapse
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081HZAmsterdamThe Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical SciencesVU University AmsterdamDe Boelelaan 11081081HZAmsterdamThe Netherlands
| |
Collapse
|
39
|
Zhou D, Lin X, Gao W, Piao J, Li S, He N, Qian Z, Zhao M, Gong X. A novel template repairing-PCR (TR-PCR) reaction platform for microRNA detection using translesional synthesis on DNA templates containing abasic sites. Chem Commun (Camb) 2019; 55:2932-2935. [DOI: 10.1039/c8cc10226k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report template repairing-PCR, a novel reverse transcription-free RNA PCR based on miRNA-primed bypass synthesis at the abasic sites on the PCR template.
Collapse
Affiliation(s)
- Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaohui Lin
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Jiafang Piao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| | - Shufei Li
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Ning He
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Zhiyong Qian
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Miao Zhao
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology
- Tianjin 300072
- China
| |
Collapse
|
40
|
Neubacher S, Hennig S. RNA Structure and Cellular Applications of Fluorescent Light-Up Aptamers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Saskia Neubacher
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; De Boelelaan 1108 1081 HZ Amsterdam The Netherlands
| |
Collapse
|
41
|
Li D, Wu Y, Gan C, Yuan R, Xiang Y. Bio-cleavable nanoprobes for target-triggered catalytic hairpin assembly amplification detection of microRNAs in live cancer cells. NANOSCALE 2018; 10:17623-17628. [PMID: 30204195 DOI: 10.1039/c8nr05229h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The monitoring and imaging of intracellular microRNAs (miRNAs) with specific sequences plays a vital role in cell biology as it can potentially elucidate many cellular processes and diseases related to miRNAs in living cells with accurate information. However, the detection of trace amounts of under-expressed intracellular miRNAs in living cells represents one of the current major challenges. In an effort to address this issue, we describe the establishment of an in cell catalytic hairpin assembly (CHA) signal amplification strategy for imaging under-expressed intracellular miRNAs in this work. Gold nanoparticles functionalized with FAM- and TAMRA-labeled hairpins with disulfide bonds in the stems are readily delivered into cells via endocytosis. Glutathione with evaluated concentrations in cancer cells cleaves the disulfide bonds in the hairpins by reduction to release the hairpins, and the target miRNAs further trigger CHA between the two hairpins to form many DNA duplexes, which bring the FAM and TAMRA labels into close proximity to generate apparently enhanced fluorescence resonance energy transfer (FRET) for the sensitive monitoring of low amounts of under-expressed miRNAs in live cancer cells. Using CHA to amplify the signal output and FRET to reduce the background noise, a significantly enhanced signal-to-noise ratio, thereby high sensitivity, over conventional fluorescence imaging can be realized, making our method particularly suitable for monitoring low levels of intracellular species.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | | | |
Collapse
|
42
|
Ying ZM, Xiao HY, Tang H, Yu RQ, Jiang JH. Light-up RNA aptamer enabled label-free protein detection via a proximity induced transcription assay. Chem Commun (Camb) 2018; 54:8877-8880. [PMID: 30043035 DOI: 10.1039/c8cc04498h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel proximity induced transcription assay for highly sensitive protein detection based on protein mediated ligation of a DNA template with the transcription of a light-up RNA aptamer for signal amplification has been developed.
Collapse
Affiliation(s)
- Zhan-Ming Ying
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
43
|
Tang X, Deng R, Sun Y, Ren X, Zhou M, Li J. Amplified Tandem Spinach-Based Aptamer Transcription Enables Low Background miRNA Detection. Anal Chem 2018; 90:10001-10008. [PMID: 30016869 DOI: 10.1021/acs.analchem.8b02471] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MicroRNAs (miRNAs) play key roles in regulating gene expression and cell functions, which are recognized as potential biomarkers for many human diseases. Sensitive, specific, and reliable detection of miRNA is highly demanded for clinical diagnosis and therapy. Herein, we describe a label-free and low-background fluorescent assay, termed amplified tandem Spinach-based aptamer transcription assay (AmptSpi assay) for highly sensitive miRNA detection by polymeric rolling circle amplicon mediated multiple transcription. Target miRNA is recognized by padlock probe to form polymeric rolling circle amplicon. Then the following transcription process rapidly produces large amounts of repeats of RNA Spinach aptamers, lightened up by the addition of fluorescent dye DFHBI for miRNA quantitative analysis, achieving label-free and nearly zero-background. Besides, the assay could also confer high selectivity to distinguish miRNA among the miRNA family members with 1- or 2-nucleotide (nt) difference. This method was capable of completing detection in human serum sample or cell extracts in hours, indicating great potential in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Xin Tang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Ruijie Deng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Yupeng Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Xiaojun Ren
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Mengxi Zhou
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
44
|
Zhang K, Song S, Yang L, Min Q, Wu X, Zhu JJ. Enhancing intracellular microRNA imaging: a new strategy combining double-channel exciting single colour fluorescence with the target cycling amplification reaction. Chem Commun (Camb) 2018; 54:13131-13134. [DOI: 10.1039/c8cc07112h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enhancing microRNA imaging in living cells using double-channel exciting single colour fluorescence coupled with the target cycling amplification reaction.
Collapse
Affiliation(s)
- Keying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Shuting Song
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Lin Yang
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Xingcai Wu
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- Key Laboratory of Mesoscopic Chemistry of MOE
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|