1
|
Tołoczko A, Kaźmierczak M, Książek M, Weselski M, Siczek M, Kusz J, Bronisz R. Expanding the dimensionality of bis(tetrazolyl)alkane-based Fe(II) coordination polymers by the application of dinitrile coligands. Dalton Trans 2024; 53:7163-7174. [PMID: 38573306 DOI: 10.1039/d4dt00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Reactions between 1,2-di(tetrazol-2-yl)ethane (ebtz), 1,6-di(tetrazol-2-yl)hexane (hbtz) or 1,1'-di(tetrazol-1-yl)methane (1ditz) and Fe(BF4)2 in the presence of adiponitrile (ADN), glutaronitrile (GLN) or suberonitrile (SUN) resulted in the formation of coordination polymers [Fe(μ-ebtz)2(μ-ADN)](BF4)2 (1), [Fe(μ-hbtz)2(μ-ADN)](BF4)2 (2), [Fe(μ-1ditz)2(GLN)2](BF4)2·GLN (3) and [Fe(μ-1ditz)2(μ-SUN)](BF4)2·SUN (4). It was established that the application of dinitriles allows an increase in the dimensionality of the ebtz and hbtz based systems while maintaining the structure of the polymeric units characteristic of previously studied mononitrile based analogues. In 3 and 4, regardless of the type of dinitrile coligand, the motif of 2D polymeric layers constituted by 1ditz molecules remains preserved. However, the dimensionality of 1ditz based networks is governed by the coordination modes of dinitriles. 3, based on a shorter molecule of glutaronitrile, crystallizes as a two-dimensional (2D) coordination polymer. In this compound, dinitriles coordinate monodentately or play the role of guest molecules. The substitution of glutaronitrile with suberonitrile enables the bridging of neighboring polymeric layers, resulting in a 3D network. The intentional selection of bis(tetrazoles) and dinitriles as building blocks has led, as expected, to obtaining systems with the structure of the first coordination sphere consisting of four tetrazole rings and two axially coordinated nitrile molecules. It created the conditions required for the occurrence of thermally induced spin crossover. Magnetic measurements and single crystal X-ray diffraction studies were used for the characterization of the spin crossover properties of 1-4.
Collapse
Affiliation(s)
- Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
2
|
Książek M, Weselski M, Kaźmierczak M, Półrolniczak A, Katrusiak A, Paliwoda D, Kusz J, Bronisz R. Extremely Slow Thermally-Induced Spin Crossover in the Two-Dimensional Network [Fe(bbtr) 3 ](BF 4 ) 2. Chemistry 2024; 30:e202302887. [PMID: 37906679 DOI: 10.1002/chem.202302887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Cooling [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) triggers very slow spin crossover below 80 K (T1/2 ↓ =76 K). The spin crossover (SCO) is accompanied by a hysteresis loop (T1/2 ↑ =89 K). In contrast to isostructural perchlorate analogue [Fe(bbtr)3 ](ClO4 )2 in which spin crossover during cooling is preceded by phase transition at TPT =126 K in tetrafluoroborate phase transition does not occur to the beginning of spin crossover (80 K). Studies of mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.5≤x≤0.9) showed that a phase transition precedes spin crossover, however, for x≅0.46 intersection of T1/2 (x) and TPT (x) dependencies takes place. The application of pressure of 1 GPa shifts the spin crossover in [Fe(bbtr)3 ](BF4 )2 to a temperature above 270 K. High-pressure studies of neat tetrafluoroborate and perchlorate, as well as mixed crystals [Fe(bbtr)3 ](BF4 )2(1-x) (ClO4 )2x (0.1≤x≤0.9), revealed that at 295 K P1/2 value changes linearly with x indicating similar mechanism of spin crossover under elevated pressure in all systems under investigation. Variable pressure single crystal X-ray diffraction studies confirmed that in contrast to thermally induced spin crossover undergoing differently in tetrafluoroborate and perchlorate an application of high pressure removes this differentiation leading to a similar mechanism depending at first on start spin crossover and then P-3→P-1 phase transition occurs. In this report we have shown that 2D coordination polymer [Fe(bbtr)3 ](BF4 )2 (bbtr=1,4-di(1,2,3-triazol-1-yl)butane) treated to date as spin crossover silent shows thermally induced spin crossover phenomenon. Spin crossover in tetrafluoroborate is extremely slow. Determination of the spin crossover curve required carrying measurement in the settle mode-cooling from 85 to 70 K took about 600 h (average velocity of change of temperature ca. 0.0004 K/min).
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Półrolniczak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Damian Paliwoda
- European Spallation Source ERIC, Partikelgatan 2, 224 84, Lund, Sweden
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
3
|
Deng YF, Wang YN, Zhao XH, Zhang YZ. Exploring a prototype for cooperative structural phase transition in cobalt(II) spin crossover compounds. Dalton Trans 2024; 53:699-705. [PMID: 38078541 DOI: 10.1039/d3dt03529h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The creation of magnetically switchable materials that concurrently incorporate spin crossover (SCO) and a structural phase transition (SPT) presents a significant challenge in materials science. In this study, we prepared four structurally related cobalt(II)-based SCO compounds: two one-dimensional (1D) chains of {[(enbzp)Co(μ-L)](ClO4)2·sol}n (L = bpee, sol = 2MeOH·H2O, 1; L = bpea, sol = none, 2; enbzp = N,N'-(ethane-1,2-diyl)bis(1-phenyl-1-(pyridin-2-yl)methanimine); bpee = 1,2-bis(4-pyridyl)ethylene; and bpea = 1,2-bis(4-pyridyl)ethane) and their discrete segments, [{(enbzp)Co}2(μ-L)](ClO4)4·2MeOH (L = bpee, 3; L = bpea, 4). In all of these complexes, each Co(II) center is equatorially chelated by the planar tetradentate ligand enbzp and connected to a chain or dinuclear structure through bpee or bpea ligands along its axial direction. All of the complexes, including their desolvated phases, displayed overall incomplete and gradual SCO properties. Interestingly, the desolvated phase of 1 exhibited an additional non-spin magnetic transition characterized by wide room-temperature hysteresis (>40 K), which was reversible and rate-dependent, showcasing the synergy between SCO and SPT manifested through slow kinetics. We discuss the possible reasons for the distinct features and our findings demonstrate that the combination of a rigid polymeric framework with flexible substituents holds promise for achieving synergy between SCO and SPT.
Collapse
Affiliation(s)
- Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin-Hua Zhao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
4
|
Ahmed M, Arachchige KSA, Xie Z, Price JR, Cruddas J, Clegg JK, Powell BJ, Kepert CJ, Neville SM. Guest-Induced Multistep to Single-Step Spin-Crossover Switching in a 2-D Hofmann-Like Framework with an Amide-Appended Ligand. Inorg Chem 2022; 61:11667-11674. [PMID: 35862437 DOI: 10.1021/acs.inorgchem.2c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A detailed study of the two-dimensional (2-D) Hofmann-like framework [Fe(furpy)2Pd(CN)4]·nG (furpy: N-(pyridin-4-yl)furan-2-carboxamide, G = H2O,EtOH (A·H2O,Et), and H2O (A·H2O)) is presented, including the structural and spin-crossover (SCO) implications of subtle guest modification. This 2-D framework is characterized by undulating Hofmann layers and an array of interlayer spacing environments─this is a strategic approach that we achieve by the inclusion of a ligand with multiple host-host and host-guest interaction sites. Variable-temperature magnetic susceptibility studies reveal an asymmetric multistep SCO for A·H2O,Et and an abrupt single-step SCO for A·H2O with an upshift in transition temperature of ∼75 K. Single-crystal analyses show a primitive orthorhombic symmetry for A·H2O,Et characterized by a unique FeII center─the multistep SCO character is attributed to local ligand orientation. Counterintuitively, A·H2O shows a triclinic symmetry with two inequivalent FeII centers that undergo a cooperative single-step high-spin (HS)-to-low-spin (LS) transition. We conduct detailed structure-function analyses to understand how the guest ethanol influences the delicate balance between framework communication and, therefore, the local structure and spin-state transition mechanism.
Collapse
Affiliation(s)
- Manan Ahmed
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zixi Xie
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Jason R Price
- Australian Synchrotron, ANSTO Clayton, Victoria 3800, Australia
| | - Jace Cruddas
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Benjamin J Powell
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Cameron J Kepert
- The School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Suzanne M Neville
- School of Chemistry, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Ghosh S, Kamilya S, Mehta S, Herchel R, Kiskin M, Veber S, Fedin M, Mondal A. Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT = 3,4-Ethylenedioxythiophene). Chem Asian J 2022; 17:e202200404. [PMID: 35617522 DOI: 10.1002/asia.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Four cobalt(II) complexes, [Co(L1)2(NCX)2(MeOH)2] (X = S (1), Se (2)) and {[Co(L2)2(NCX)2]}n (X = S (3), Se (4)) (L1 = 2,5dipyridyl-3,4,-ethylenedioxylthiophene and L2 = 2,5diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4O2 octahedral coordination geometry while 3 and 4 have a 2D [4 x 4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S = 3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46, Olomouc, Czech Republic
| | - Mikhail Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991, Moscow, Russia
| | - Sergey Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Matvey Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| |
Collapse
|
6
|
Ghosh S, Kamilya S, Pramanik T, Mohanty A, Rouzières M, Herchel R, Mehta S, Mondal A. Thermo- and photoinduced spin state switching in an iron(II) 2D coordination network associated with large light-induced thermal hysteresis and tuning of dimensionality via ligand modulation. Dalton Trans 2021; 50:7725-7735. [PMID: 33988205 DOI: 10.1039/d1dt00212k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three iron(ii) complexes, [Fe(L1)2(NCS)2(MeOH)2] (1), [Fe(L1)2(NCSe)2(MeOH)2] (2), and [Fe(L2)2(NCS)2]n (3) (L1 = 2,5-dipyridyl-3,4-ethylenedioxythiophene and L2 = 2,5-diethynylpyridinyl-3,4-ethylenedioxythiophene), have been synthesized using redox-active luminescent ethylenedioxythiophene (EDOT)-based ligands, and characterized by variable temperature single-crystal X-ray diffraction, (photo)magnetic, optical reflectivity, and spectroscopy studies. Magneto-structural investigations revealed that 1 and 2 are mononuclear with a FeN4O2 octahedral coordination geometry and remain in a high-spin (HS) (S = 2) state in a temperature range of 2-280 K. Interestingly, a 2D coordination network structure with FeN6 surrounding each iron center was observed for 3, which exhibits reversible thermo-induced spin-state switching between the paramagnetic high-spin (HS) (S = 2) and diamagnetic low-spin (LS) (S = 0) states at around 105 K (T1/2). Furthermore, optical reflectivity and photomagnetic measurements at low temperature confirmed that 3 shows reversible ON/OFF switching between the photoinduced excited paramagnetic HS metastable state and diamagnetic LS state under light irradiation (ON mode using red light and OFF mode using green light). Finally, the photoinduced excited HS state can be reversibly relaxed back to the diamagnetic ground LS state by heating the system at ca. 88 K (TLIESST = 88 K) (light-induced excited spin state trapping (LIESST) effect). Furthermore, 3 also showed an exciting and unique 18 K wide light-induced thermal hysteresis (LITH) effect above liquid nitrogen temperature (100 K). DFT and CASSCF level theoretical calculations were utilized to better understand the magneto-structural correlations of these complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Titas Pramanik
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Ashutosh Mohanty
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46 Olomouc, Czech Republic
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.
| |
Collapse
|
7
|
Kulmaczewski R, Bamiduro F, Shahid N, Cespedes O, Halcrow MA. Structural Transformations and Spin-Crossover in [FeL 2 ] 2+ Salts (L=4-{tert-Butylsulfanyl}-2,6-di{pyrazol-1-yl}pyridine): The Influence of Bulky Ligand Substituents. Chemistry 2021; 27:2082-2092. [PMID: 33073890 DOI: 10.1002/chem.202004072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Indexed: 11/06/2022]
Abstract
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2 ][BF4 ]2 ⋅solv (1[BF4 ]2 ⋅solv) and [FeL2 ][ClO4 ]2 ⋅solv (1[ClO4 ]2 ⋅solv; solv=MeNO2 , MeCN or Me2 CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4 ]2 ⋅x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a "reverse-SCO" step in its warming cycle at a scan rate of 5 K min-1 . The reverse-SCO is not observed in a slower 1 K min-1 measurement, however, confirming its kinetic nature. The final product [FeL2 ][BF4 ]2 ⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4 ]2 ⋅y Me2 CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4 ]2 ⋅0.5 Me2 CO is not isostructural with its BF4 - congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P 1 ‾ space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.
Collapse
Affiliation(s)
- Rafal Kulmaczewski
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Faith Bamiduro
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Namrah Shahid
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Oscar Cespedes
- School of Physics and Astronomy, University of Leeds, E. C. Stoner Building, Leeds, LS2 9JT, UK
| | - Malcolm A Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
8
|
Kobylarczyk J, Liberka M, Stanek JJ, Sieklucka B, Podgajny R. Tuning of the phase transition between site selective SCO and intermetallic ET in trimetallic magnetic cyanido-bridged clusters. Dalton Trans 2020; 49:17321-17330. [PMID: 33206068 DOI: 10.1039/d0dt03340e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline phases composed of trimetallic 3d-5d-5d' {Fe9[Re(CN)8]6-x[W(CN)8]x(MeOH)24}·yMeOH (x = 1 (1), 2 (2), 3 (3), 4 (4) and 5 (5); y = 10-15) clusters were obtained by altering the octacyanidometalate composition. The temperature dependent studies involving SC XRD, SQUID magnetic measurements, IR spectroscopy and 57Fe Mössbauer spectroscopy revealed reversible phase transition with the retention of single crystal character in each congener. The transition was assisted by reversible spin-crossover (SCO) HSFeII↔LSFeII transition at the central Fe1(ii) site for Fe9Re5W1 (1), Fe9Re4W2 (2), Fe9Re3W3 (3) and Fe9Re2W4 (4). In contrast, the tungsten-rich congener Fe9Re1W5 (5) exhibited nontrivial behavior with the SCO transition being stopped halfway through the cooling process, to be completed with single electron transfer (ET) from the external Fe2(ii) center towards one of the neighboring W(v) sites. The critical temperature Tc of SCO has been systematically increased from 193 K (1) to 247 K (4). All experimental data indicate the domination of the Fe(ii)-W(v) valence states in all crystals 1-5, however, with increasing quantity of [W(CN)8]3- (and decreasing quantity of [Re(CN)8]3-), the valence equilibrium Fe(ii)-W(v) ↔ Fe(iii)-W(iv) was systematically shifted to the right, starting from congener 3. The overall electronic configuration at low temperatures and variable amounts and location of spin carriers along the whole series suggest the remarkable competition between magnetic super-exchange Fe(ii)-CN-W(v) interactions and intermolecular interactions. The observed behavior is in line with the information collected previously for the bimetallic congeners Fe9Re6 and Fe9W6, to shed light on the role of the mixed tri-metallic composition in changing the properties observed for the relevant bimetallic cyanido-bridged skeletons.
Collapse
Affiliation(s)
- Jedrzej Kobylarczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | |
Collapse
|
9
|
Jornet-Mollá V, Giménez-Saiz C, Cañadillas-Delgado L, Yufit DS, Howard JAK, Romero FM. Interplay between spin crossover and proton migration along short strong hydrogen bonds. Chem Sci 2020; 12:1038-1053. [PMID: 34163870 PMCID: PMC8179063 DOI: 10.1039/d0sc04918b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The iron(ii) salt [Fe(bpp)2](isonicNO)2·HisonicNO·5H2O (1) (bpp = 2,6-bis(pyrazol-3-yl)pyridine; isonicNO = isonicotinate N-oxide anion) undergoes a partial spin crossover (SCO) with symmetry breaking at T 1 = 167 K to a mixed-spin phase (50% high-spin (HS), 50% low-spin (LS)) that is metastable below T 2 = 116 K. Annealing the compound at lower temperatures results in a 100% LS phase that differs from the initial HS phase in the formation of a hydrogen bond (HB) between two water molecules (O4W and O5W) of crystallisation. Neutron crystallography experiments have also evidenced a proton displacement inside a short strong hydrogen bond (SSHB) between two isonicNO anions. Both phenomena can also be detected in the mixed-spin phase. 1 undergoes a light-induced excited-state spin trapping (LIESST) of the 100% HS phase, with breaking of the O4W⋯O5W HB and the onset of proton static disorder in the SSHB, indicating the presence of a light-induced activation energy barrier for proton motion. This excited state shows a stepped relaxation at T 1(LIESST) = 68 K and T 2(LIESST) = 76 K. Photocrystallography measurements after the first relaxation step reveal a single Fe site with an intermediate geometry, resulting from the random distribution of the HS and LS sites throughout the lattice.
Collapse
Affiliation(s)
- Verónica Jornet-Mollá
- Instituto de Ciencia Molecular, Universitat de València P. O. Box 22085 46071 València Spain
| | - Carlos Giménez-Saiz
- Instituto de Ciencia Molecular, Universitat de València P. O. Box 22085 46071 València Spain
| | | | - Dmitry S Yufit
- Department of Chemistry, Durham University Durham DH1 3LE UK
| | | | - Francisco M Romero
- Instituto de Ciencia Molecular, Universitat de València P. O. Box 22085 46071 València Spain
| |
Collapse
|
10
|
Książek M, Weselski M, Kaźmierczak M, Tołoczko A, Siczek M, Durlak P, Wolny JA, Schünemann V, Kusz J, Bronisz R. Spatiotemporal Studies of the One-Dimensional Coordination Polymer [Fe(ebtz) 2 (C 2 H 5 CN) 2 ](BF 4 ) 2 : Tug of War between the Nitrile Reorientation Versus Crystal Lattice as a Tool for Tuning the Spin Crossover Properties*. Chemistry 2020; 26:14419-14434. [PMID: 32678463 DOI: 10.1002/chem.202002460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4 )2 ⋅6 H2 O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2 (RCN)2 ](BF4 )2 ⋅nRCN (n=2 for R=CH3 (1) and n=0 for R=C2 H5 (2) C3 H7 (3), C3 H5 (4), CH2 Cl (5)) exhibiting spin crossover (SCO). SCO in 1 and 3-5 is complete and occurs above 160 K. In 2, it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2 ↓ =78 K, T1/2 ↑ =123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2. An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS -VLS ) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe-nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2 (C2 H5 CN/C3 H7 CN)2 ](BF4 )2 mixed crystals (2 a, 2 b), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1-5 suggest a particular possibility of 2 to adopt a low (140-145°) value of its Fe-N-C(propionitrile) angle.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Marcin Kaźmierczak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Aleksandra Tołoczko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Piotr Durlak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Juliusz A Wolny
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Volker Schünemann
- Faculty of Physics, Technische Universität Kaiserslautern, Erwin Schrödinger Str. 46, 67663, Kaiserlautern, Germany
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
11
|
Senthil Kumar K, Del Giudice N, Heinrich B, Douce L, Ruben M. Bistable spin-crossover in a new series of [Fe(BPP-R) 2] 2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine; R = CN) complexes. Dalton Trans 2020; 49:14258-14267. [PMID: 33026376 DOI: 10.1039/d0dt02214d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spin-crossover (SCO) active transition metal complexes are a class of switchable molecular materials. Such complexes undergo hysteretic high-spin (HS) to low-spin (LS) transition, and vice versa, rendering them suitable for the development of molecule-based switching and memory elements. Therefore, the search for SCO complexes undergoing abrupt and hysteretic SCO, that is, bistable SCO, is actively carried out by the molecular magnetism community. In this study, we report the bistable SCO characteristics associated with a new series of iron(ii) complexes-[Fe(BPP-CN)2](X)2, X = BF4 (1a-d) or ClO4 (2)-belonging to the [Fe(BPP-R)2]2+ (BPP = 2,6-bis(pyrazol-1-yl)pyridine) family of complexes. Among the complexes, the lattice solvent-free complex 2 showed a stable and complete SCO (T1/2 = 241 K) with a thermal hysteresis width (ΔT) of 28 K-the widest ΔT reported so far for a [Fe(BPP-R)2](X)2 family of complexes, showing abrupt SCO. The reproducible and bistable SCO shown by the relatively simple [Fe(BPP-CN)2](X)2 series of molecular complexes is encouraging to pursue [Fe(BPP-R)2]2+ systems for the realization of technologically relevant SCO complexes.
Collapse
Affiliation(s)
- Kuppusamy Senthil Kumar
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Nicolas Del Giudice
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Laurent Douce
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.
| | - Mario Ruben
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France. and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. and Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Książek M, Weselski M, Dreczko A, Maliuzhenko V, Kaźmierczak M, Tołoczko A, Kusz J, Bronisz R. Two ways of spin crossover in an iron(ii) coordination polymer associated with conformational changes of a bridging ligand. Dalton Trans 2020; 49:9811-9819. [DOI: 10.1039/d0dt01696a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural phase transition in [Fe(bbtre)3](ClO4)2·2CH3CN (bbtre = 1,4-di(1-ethyl-1,2,3-triazol-5-yl)butane) plays the role of a switch, allowing spin crossover to be carried out in two ways.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Marek Weselski
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | | | | | | | - Joachim Kusz
- Institute of Physics
- University of Silesia
- 41-500 Chorzów
- Poland
| | - Robert Bronisz
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
13
|
Valverde-Muñoz FJ, Seredyuk M, Meneses-Sánchez M, Muñoz MC, Bartual-Murgui C, Real JA. Discrimination between two memory channels by molecular alloying in a doubly bistable spin crossover material. Chem Sci 2019; 10:3807-3816. [PMID: 31015922 PMCID: PMC6457193 DOI: 10.1039/c8sc05256e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 11/21/2022] Open
Abstract
A multistable spin crossover (SCO) molecular alloy system [Fe1-x M x (nBu-im)3(tren)](P1-y As y F6)2 (M = ZnII, NiII; (nBu-im)3(tren) = tris(n-butyl-imidazol(2-ethylamino))amine) has been synthesized and characterized. By controlling the composition of this isomorphous series, two cooperative thermally induced SCO events featuring distinct critical temperatures (T c) and hysteresis widths (ΔT c, memory) can be selected at will. The pristine derivative 100As (x = 0, y = 1) displays a strong cooperative two-step SCO and two reversible structural phase transitions (PTs). The low temperature PTLT and the SCO occur synchronously involving conformational changes of the ligand's n-butyl arms and two different arrangements of the AsF6 - anions [T1c = 174 K (ΔT1c = 17 K), T2c = 191 K (ΔT2c = 23 K) (scan rate 2 K min-1)]. The high-temperature PTHT takes place in the high-spin state domain and essentially involves rearrangement of the AsF6 - anions [TPTc = 275 K (ΔTPTc = 16 K)]. This behavior strongly contrasts with that of the homologous 100P [x = 0, y = 0] derivative where two separate cooperative one-step SCO can be selected by controlling the kinetics of the coupled PTLT at ambient pressure: (i) one at low temperatures, T c = 122 K (ΔT c = 9 K), for temperature scan rates (>1 K min-1) (memory channel A) where the structural modifications associated with PTLS are inhibited; (ii) the other centered at T c = 155 K (ΔT c = 41 K) for slower temperature scan rates ≤0.1 K min-1 (memory channel B). These two SCO regimes of the 100P derivative transform reversibly into the two-step SCO of 100As upon application of hydrostatic pressure (ca. 0.1 GPa) denoting the subtle effect of internal chemical pressure on the SCO behavior. Precise control of AsF6 - ↔ PF6 - substitution, and hence of the PTLT kinetics, selectively selects the memory channel B of 100P when x = 0 and y ≈ 0.7. Meanwhile, substitution of FeII with ZnII or NiII [x ≈ 0.2, y = 0] favors the low temperature memory channel A at any scan rate. This intriguing interplay between PT, SCO and isomorphous substitution was monitored by single crystal and powder X-ray diffractometries, and magnetic and calorimetric measurements.
Collapse
Affiliation(s)
| | - Maksym Seredyuk
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
- On leave from Department of Chemistry , Taras Shevchenko National University of Kyiv , 64/13, Volodymyrska Street , 01601 , Kyiv , Ukraine . ;
| | - Manuel Meneses-Sánchez
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| | - M Carmen Muñoz
- Departament de Física Aplicada , Universitat Politècnica de València , Camino de Vera s/n , E-46022 , Valencia , Spain
| | - Carlos Bartual-Murgui
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| | - José A Real
- Departament de Química Inorgànica , Institut de Ciència Molecular (ICMol) , Universitat de València , Valencia , Spain .
| |
Collapse
|
14
|
Książek M, Weselski M, Ilczyszyn M, Kusz J, Bronisz R. Sliding Polymeric Layers and Anion Displacement Coupled with Spin Crossover in Two-Dimensional Networks of [Fe(hbtz) 2 (CH 3 CN) 2 ](BF 4 ) 2. Chemistry 2019; 25:2250-2261. [PMID: 30637819 DOI: 10.1002/chem.201804721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/14/2018] [Indexed: 11/08/2022]
Abstract
The abrupt high spin (HS)→low spin (LS) transition (T↓ 1/2 =136 K) in [Fe(hbtz)2 (CH3 CN)2 ](BF4 )2 (hbtz=1,6-di(tetrazol-2-yl)hexane) is finished at 100 K and further thermal treatment influences the spin crossover. Subsequent heating involves a change of the spin state in the same way (T↑ 1/2 =136 K) on cooling. In contrast, cooling below 100 K triggers different behavior and T↑ 1/2 is shifted to 170 K. The extraordinary structural changes that occurred below 100 K are responsible for the observed diversity of properties. A unique feature of the low-temperature phase is the rebuilding of the anion network expressed by a shift of anions inside the polymeric layer at a distance of 1.2 Å as well as the relative shift of neighboring layers at over 4 Å. These structural alterations, connected with a phase transition, become the origin of the strain, which in most cases causes crystal cleaving. In a sample composed from crystals crushed as a result of the phase transition or as a result of mechanical crumbling, the hysteresis loop vanishes; however, annealing the sample allows to its partial restoration. A replacement of acetonitrile by other nitriles leads to preservation of the polymeric structure and spin crossover, but no phase transition follows.
Collapse
Affiliation(s)
- Maria Książek
- Institute of Physics, University of Silesia, 40-007, Katowice, Poland
| | - Marek Weselski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Maria Ilczyszyn
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - Joachim Kusz
- Institute of Physics, University of Silesia, 40-007, Katowice, Poland
| | - Robert Bronisz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| |
Collapse
|
15
|
Weselski M, Książek M, Mess P, Kusz J, Bronisz R. “Normal” and “reverse” spin crossover induced by two different structural events in iron(ii) coordination polymer. Chem Commun (Camb) 2019; 55:7033-7036. [DOI: 10.1039/c9cc02755f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational changes of the bridging ligand and reorientation of the anions are associated with a sequence of HT(HS) ⇆ HT(HS/LS) ⇆ IP(HS) ⇆ LT(LS) transitions accompanied by existence of two hysteresis loops, “normal” and “reverse”, separated by a region of the stability of the HS form.
Collapse
Affiliation(s)
| | | | - Pamela Mess
- Faculty of Chemistry
- University of Wrocław
- Wrocław
- Poland
| | | | | |
Collapse
|
16
|
Sun XP, Liu T, Yao ZS, Tao J. Spin crossover and photomagnetic behaviors in one-dimensional looped coordination polymers. Dalton Trans 2019; 48:9243-9249. [DOI: 10.1039/c9dt01520e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal- and light-induced SCO behaviors have been studied on two one-dimensional looped coordination polymers.
Collapse
Affiliation(s)
- Xiao-Peng Sun
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Tao Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|