1
|
Song L, Yang M, Li M, Qiu Y, Dai Y, Tian J, Zheng X, Zhao Y, Yao X, Tao H. N-( para-Methoxyphenylpropargyl) Pyrrole-2-carboxylate (PPPC) Glycosides as Donors for Glycosylation. Org Lett 2024. [PMID: 39719860 DOI: 10.1021/acs.orglett.4c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
We developed glycosyl N-(para-methoxyphenylpropargyl) pyrrole-2-carboxylates (PPPCs) as highly effective donors for chemical glycosylation. The modular design and exceptional stability of the acid precursor provide PPPC donors with synthetic versatility and ease of use. Activated by NIS/TMSOTf, PPPC donors exhibit a broad compatibility for both O- and N-glycosylation reactions. Their distinct reactivity gradient enables streamlined one-pot syntheses, complementing thioglycosides and imidates. These features position PPPC donors as promising tools for advancing carbohydrate chemistry.
Collapse
Affiliation(s)
- Li Song
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Meifang Yang
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengyu Li
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanli Qiu
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yili Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Jingyu Tian
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, Hunan 410004, China
| | - Yitian Zhao
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical University, Ningbo, Zhejiang 315100, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan 421001, China
| | - Houchao Tao
- Shanghai Frontiers Science Centre of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Alom NE, Rani N, Schlegel HB, Nguyen HM. Highly stereoselective synthesis of α-glycosylated carboxylic acids by phenanthroline catalysis. Org Chem Front 2024; 11:5769-5783. [PMID: 39211000 PMCID: PMC11347974 DOI: 10.1039/d4qo00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Carbohydrate molecules with an α-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse α-glycosylated carboxylic acids in good yields with high diastereoselectivity. Although there is no apparent correlation between reaction conversion and pK a of carboxylic acids, we found that carboxylic acids with a pK a of 4-5 provide high selectivity while those of a pK a of 2.5 or lower do not. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the α-face of the more reactive intermediate, resulting in the formation of α-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding.
Collapse
Affiliation(s)
- Nur-E Alom
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | - Neha Rani
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| | | | - Hien M Nguyen
- Department of Chemistry, Wayne State University Detroit Michigan 48202 USA
| |
Collapse
|
3
|
Efficient Synthesis of 1 H-Benzo[4,5]imidazo[1,2- c][1,3]oxazin-1-one Derivatives Using Ag 2CO 3/TFA-Catalyzed 6- endo-dig Cyclization: Reaction Scope and Mechanistic Study. Molecules 2023; 28:molecules28052403. [PMID: 36903655 PMCID: PMC10005794 DOI: 10.3390/molecules28052403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
A small library of 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one derivatives was prepared in good to excellent yields, involving a Ag2CO3/TFA-catalyzed intramolecular oxacyclization of N-Boc-2-alkynylbenzimidazole substrates. In all experiments, the 6-endo-dig cyclization was exclusively achieved since the possible 5-exo-dig heterocycle was not observed, indicating the high regioselectivity of this process. The scope and limitations of the silver catalyzed 6-endo-dig cyclization of N-Boc-2-alkynylbenzimidazoles as substrates, bearing various substituents, were investigated. While ZnCl2 has shown limits for alkynes with an aromatic substituent, Ag2CO3/TFA demonstrated its effectiveness and compatibility regardless of the nature of the starting alkyne (aliphatic, aromatic or heteroaromatic), providing a practical regioselective access to structurally diverse 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-ones in good yields. Moreover, the rationalization of oxacyclization selectivity in favor of 6-endo-dig over 5-exo-dig was explained by a complementary computational study.
Collapse
|
4
|
Cai C, Sun X, Feng Y, Zhang Q, Chai Y. Insights into the Activation of Alkyne-Installed Glycosyl Donors with Dual Acidic Metal Catalysts: Reaction Pathway, Influencing Factors, and Enlightenment for Glycosylation. Org Lett 2022; 24:6266-6271. [PMID: 35981218 DOI: 10.1021/acs.orglett.2c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of alkyne-installed glycosyl donors with dual acidic metal catalysts were studied. Lewis and/or π acidity-activated pathways were observed for alkynyl carbonate-, ester-, and ether-type donors, and π acidity-promoted reaction mode afforded higher efficiency and yields. The activation mode for a certain metal catalyst is determined by the nature of catalysts itself, protecting groups on sugar rings, type of sugars, and structure of aglycones. The discovery gives us valuable insights into the glycosylation of alkyne-containing donors.
Collapse
Affiliation(s)
- Chenglin Cai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Xingchun Sun
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yingle Feng
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an, Shaanxi 710119, P. R. China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| |
Collapse
|
5
|
Javed, Khanam A, Mandal PK. Glycosyl 3-Phenyl-4-pentenoates as Versatile Glycosyl Donors: Reactivity and Their Application in One-Pot Oligosaccharide Assemblies. J Org Chem 2022; 87:6710-6729. [PMID: 35522927 DOI: 10.1021/acs.joc.2c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both glycoconjugates and oligosaccharides are important biomolecules having significant roles in several biological processes, and a new strategy for their synthesis is crucial. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf) promoted glycosidation approach with shelf-stable 3-phenyl-4-pentenoate glycosyl as a donor for the efficient synthesis of O/C-glycosides with free alcohols, silylated alcohols, and C-type nucleophile acceptors in good to excellent yields. The mild activation conditions and outstanding reactivity of phenyl substituted pentenoate donors analogous to 4-pentenoate glycosyl donors enhance their applicability to various one-pot strategies for the synthesis of oligosaccharides, such as single-catalyst one-pot and acceptor reactivity-controlled one-pot strategies.
Collapse
Affiliation(s)
- Javed
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ariza Khanam
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR─Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
El Qami A, Jismy B, Akssira M, Jacquemin J, Tikad A, Abarbri M. A Ag 2CO 3/TFA-catalyzed intramolecular annulation approach to imidazo[1,2- c][1,3]oxazin-5-one derivatives. Org Biomol Chem 2022; 20:1518-1531. [PMID: 35112683 DOI: 10.1039/d1ob02352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 2,7-disubstituted 3-methylimidazo[1,2-c][1,3]oxazin-5-ones were synthesized in good yields via Ag2CO3/TFA-mediated intramolecular annulation of N-Boc-2-alkynyl-4-bromo(alkynyl)-5-methylimidazoles. This methodology was carried out in the presence of a catalytic amount of silver carbonate and trifluoroacetic acid in dichloroethane at 60 °C. In all experiments, only the six-membered ring product was obtained since the possible five-membered compound was not observed, proving the high regioselectivity of this approach. A complementary computational study was performed in order to rationalize the mechanism of 6-endo-dig heterocycle formation. In addition, 2-bromo-3-methyl-7-phenylimidazo[1,2-c][1,3]oxazin-5-one was used as a building block to synthesize a small library of new 2-substituted imidazo[1,2-c][1,3]oxazin-5-one derivatives through the Suzuki, Sonogashira and Heck cross coupling reactions.
Collapse
Affiliation(s)
- Abdelkarim El Qami
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299, Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France. .,Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22. Université Hassan II de Casablanca, Faculté des Sciences et Techniques de Mohammedia, B.P. 146, 28800 Mohammedia, Morocco
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299, Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| | - Mohamed Akssira
- Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22. Université Hassan II de Casablanca, Faculté des Sciences et Techniques de Mohammedia, B.P. 146, 28800 Mohammedia, Morocco
| | - Johan Jacquemin
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299, Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| | - Abdellatif Tikad
- Laboratoire de Chimie Moléculaire et Substances Naturelles. Université Moulay Ismail, Faculté des Sciences, B.P. 11201, Zitoune, Meknès, Morocco
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299, Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
7
|
Qiao Z, Wang P, Ni J, Li D, Sun Y, Li T, Li M. Triflic Imide‐Catalyzed Glycosylation of Disarmed Glycosyl
ortho
‐Isopropenylphenylacetates and
ortho
‐Isopropenylbenzyl Thioglycosides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi Qiao
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Peng Wang
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Jingxuan Ni
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Dongwei Li
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Yao Sun
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Tiantian Li
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Ming Li
- School of Medicine and Pharmacy Key Laboratory of Marine Medicine Chinese Ministry of Education Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 P. R. China
| |
Collapse
|
8
|
Chen J, Tang Y, Yu B. A Mild Glycosylation Protocol with Glycosyl 1‐Methylimidazole‐2‐carboxylates as Donors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianpeng Chen
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
9
|
Meng S, Li X, Zhu J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Liu R, Hua Q, Lou Q, Wang J, Li X, Ma Z, Yang Y. NIS/TMSOTf-Promoted Glycosidation of Glycosyl ortho-Hexynylbenzoates for Versatile Synthesis of O-Glycosides and Nucleosides. J Org Chem 2021; 86:4763-4778. [PMID: 33689328 DOI: 10.1021/acs.joc.1c00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycosidation plays a pivotal role in the synthesis of O-glycosides and nucleosides that mediate a diverse range of biological processes. However, efficient glycosidation approach for the synthesis of both O-glycosides and nucleosides remains challenging in terms of glycosidation yields, mild reaction conditions, readily available glycosyl donors, and cheap promoters. Here, we report a versatile N-iodosuccinimide/trimethylsilyl triflate (NIS/TMSOTf)-promoted glycosidation approach with glycosyl ortho-hexynylbenzoates as donors for the highly efficient synthesis of O-glycosides and nucleosides. The glycosidation approach highlights the merits of mild reaction conditions, cheap promoters, extremely wide substrate scope, and good to excellent yields. Notably, the glycosidation approach performs very well in the construction of a series of challenging O- and N-glycosidic linkages. The glycosidation approach is then applied to the efficient synthesis of oligosaccharides via the one-pot strategy and the stepwise strategy. On the basis of the isolation and characterization of the departure species derived from the leaving group, a plausible mechanism of NIS/TMSOTf-promoted glycosidation of glycosyl ortho-hexynylbenzoates is proposed.
Collapse
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhi Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
11
|
Ikeuchi K, Matsumoto S, Ikuta D, Yamada H. Glycosylation by Alkyne Activation of the 2-O-Substituted Propargyl Group in a β-Phenylthioglucoside with a 5
S
1 Conformation. Synlett 2021. [DOI: 10.1055/a-1384-2931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractGenerally, glycosylation reactions activate an anomeric substituent in a glycosyl donor to generate an oxocarbenium ion intermediate. Here we report a novel glycosylation reaction triggered by the activation of a 2-O-substituted propargyl group in a 3,6-O-1,1′-[(ethane-1,2-diyl)bibenzene-2,2′-bis(methylene)]-β-thioglucoside. This reaction proceeds through a cationic Au(I)-mediated intramolecular migration of the anomeric substituent onto the alkyne moiety of the propargyl group, followed by α-attack by the hydroxy group in the glycosyl acceptor on the oxocarbenium ion. The migration of the anomeric group occurs selectively through a 6-exo-dig pathway. The 2-(phenylsulfanyl)prop-2-en-1-yl group produced during the glycosylation is removable under conditions similar to those used for removing an allyl group. This reaction will be developed for further applications in orthogonal oligosaccharide synthesis.
Collapse
Affiliation(s)
- Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University
- School of Science and Technology, Kwansei Gakuin University
| | | | - Daiki Ikuta
- School of Science and Technology, Kwansei Gakuin University
| | | |
Collapse
|
12
|
Li X, Li C, Liu R, Wang J, Wang Z, Chen Y, Yang Y. Gold(I)-Catalyzed Glycosylation with Glycosyl Ynenoates as Donors. Org Lett 2019; 21:9693-9698. [DOI: 10.1021/acs.orglett.9b03851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenyu Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zixuan Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yan Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Liu R, Li X, Li X, Wang J, Yang Y. Gold(I)-Catalyzed Intermolecular Rearrangement Reaction of Glycosyl Alkynoic β-Ketoesters for the Synthesis of 4-O-Glycosylated 2-Pyrones. J Org Chem 2019; 84:14141-14150. [DOI: 10.1021/acs.joc.9b01582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongkun Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoqian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiazhe Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
14
|
Meng L, Wu P, Fang J, Xiao Y, Xiao X, Tu G, Ma X, Teng S, Zeng J, Wan Q. Glycosylation Enabled by Successive Rhodium(II) and Brønsted Acid Catalysis. J Am Chem Soc 2019; 141:11775-11780. [DOI: 10.1021/jacs.9b04619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Peng Wu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guangsheng Tu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuang Teng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|
15
|
Hu Z, Tang Y, Yu B. Glycosylation with 3,5-Dimethyl-4-(2′-phenylethynylphenyl)phenyl (EPP) Glycosides via a Dearomative Activation Mechanism. J Am Chem Soc 2019; 141:4806-4810. [DOI: 10.1021/jacs.9b00210] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhifei Hu
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
16
|
Shaw M, Thakur R, Kumar A. Gold(III)-Catalyzed Glycosylation using Phenylpropiolate Glycosides: Phenylpropiolic Acid, An Easily Separable and Reusable Leaving Group. J Org Chem 2019; 84:589-605. [PMID: 30569713 DOI: 10.1021/acs.joc.8b02422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient and operationally simple gold(III)-catalyzed glycosylation protocol was developed using newly synthesized benchtop stable phenylpropiolate glycosyl (PPG) donors. Gold(III)-catalyzed activation of PPGs proceeds well with various carbohydrate and noncarbohydrate-based glycosyl acceptors and leads to their corresponding O/ N-glycosides in good to excellent yields with regeneration of reusable and easily separable phenylpropiolic acid. Differentially protected PPGs reacted well under the optimized reaction conditions. In particular, good anomeric selectivity was observed with mannosyl and rhamnosyl PPG donors. A preliminary mechanistic study reveals that the presence of a triple bond adjacent to the ester group is essential for activation, and PPG-based donor shows higher reactivity than analogous acetate and benzoate donors.
Collapse
Affiliation(s)
- Mukta Shaw
- Department of Chemistry , Indian Institute of Technology Patna , Bihta 801106 , Bihar , India
| | - Rima Thakur
- Department of Chemistry , National Institute of Technology Patna , Patna 800005 , Bihar , India
| | - Amit Kumar
- Department of Chemistry , Indian Institute of Technology Patna , Bihta 801106 , Bihar , India
| |
Collapse
|