1
|
Hodgson DM, Almohseni HAA. Evolution of a Cycloaddition–Rearrangement Approach to the Squalestatins: A Quarter-Century Odyssey. Synlett 2020. [DOI: 10.1055/s-0040-1707127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The highs, lows, and diversions of a journey leading to two syntheses of 6,7-dideoxysqualestatin H5 is described. Both syntheses relied on highly diastereoselective n-alkylations of a tartrate acetonide enolate and subsequent oxidation–hydrolysis to provide an asymmetric entry to β-hydroxy-α-ketoester motifs. The latter were differentially elaborated to diazoketones which underwent stereo- and regioselective Rh(II)-catalysed cyclic carbonyl ylide formation–cycloaddition and then acid-catalysed transketalisation to generate the 2,8-dioxabicyclo[3.2.1]octane core of the squalestatins/zaragozic acids at the correct tricarboxylate oxidation level. The unsaturated side chain was either protected with a bromide substituent during the transketalisation or introduced afterwards by a stereoretentive Ni-catalyzed Csp3–Csp2 cross-electrophile coupling.1 Introduction 2 Racemic Model Studies to the Squalestatin/Zaragozic Acid Core3 Asymmetric Model Studies to a Keto α-Diazoester3.1 Dialkyl Squarate Desymmetrisation3.2 Tartrate Alkylation3.2.1 Further Studies on Seebach’s Alkylation Chemistry 4 Failure at the Penultimate Step to DDSQ 5 Second-Generation Approach to DDSQ: A Bromide Substituent Strategy 5.1 Stereoselective Routes to E-Alkenyl Halides via β-Oxido Phosphonium Ylides 5.2 Back to DDSQ Synthesis6 An Alternative Strategy to DDSQ: By Cross-Electrophile Coupling7 Alkene Ozonolysis in the Presence of Diazo Functionality: Accessing α-Ketoester Intermediates8 Summary
Collapse
|
2
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
4
|
Sintim HO, Valade A, Harling DC, Hodgson DM. Squarate desymmetrisation–ozonolysis as an approach to β-substituted-α-ketosuccinates and squalestatin synthesis. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Sintim HO, Al Mamari HH, Almohseni HAA, Fegheh-Hassanpour Y, Hodgson DM. Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids. Beilstein J Org Chem 2019; 15:1194-1202. [PMID: 31293666 PMCID: PMC6604716 DOI: 10.3762/bjoc.15.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/14/2019] [Indexed: 12/03/2022] Open
Abstract
(R,R)-Dimethyl tartrate acetonide 7 in THF/HMPA undergoes deprotonation with LDA and reaction at −78 °C during 12–72 h with a range of alkyl halides, including non-activated substrates, to give single diastereomers (at the acetonide) of monoalkylated tartrates 17, 24, 33a–f, 38a,b, 41 of R,R-configuration, i.e., a stereoretentive process (13–78% yields). Separable trans-dialkylated tartrates 34a–f can be co-produced in small amounts (9–14%) under these conditions, and likely arise from the achiral dienolate 36 of tartrate 7. Enolate oxidation and acetonide removal from γ-silyloxyalkyl iodide-derived alkylated tartrates 17 and 24 give ketones 21 and 26 and then Bamford–Stevens-derived diazoesters 23 and 27, respectively. Only triethylsilyl-protected diazoester 27 proved viable to deliver a diazoketone 28. The latter underwent stereoselective carbonyl ylide formation–cycloaddition with methyl glyoxylate and acid-catalysed rearrangement of the resulting cycloadduct 29, to give the 3,4,5-tricarboxylate-2,8-dioxabicyclo[3.2.1]octane core 31 of squalestatins/zaragozic acids. Furthermore, monoalkylated tartrates 33a,d,f, and 38a on reaction with NaOMe in MeOH at reflux favour (≈75:25) the cis-diester epimers epi-33a,d,f and epi-38a (54–67% isolated yields), possessing the R,S-configuration found in several monoalkylated tartaric acid motif-containing natural products.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.,Department of Chemistry, Purdue University, West Lafayette, IN 47907- 2112, USA
| | - Hamad H Al Mamari
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.,Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoud 123, Muscat, Sultanate of Oman
| | - Hasanain A A Almohseni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom.,permanent address: University of Kufa, Najaf Governorate, Iraq
| | - Younes Fegheh-Hassanpour
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - David M Hodgson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|