1
|
Singh M, Bianco D, Adam J, Capaccio A, Clemente S, Del Sorbo MR, Feoli C, Kaur J, Nappi C, Panico M, Rusciano G, Rossi M, Sasso A, Valadan M, Cuocolo A, Battista E, Netti PA, Altucci C. Gamma rays impact on 2D-MoS 2 in water solution. Sci Rep 2024; 14:22130. [PMID: 39333585 PMCID: PMC11437032 DOI: 10.1038/s41598-024-69410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024] Open
Abstract
Two-dimensional transition metal dichalcogenides, particularly MoS2, are interesting materials for many applications in aerospace research, radiation therapy and bioscience more in general. Since in many of these applications MoS2-based nanomaterials can be placed in an aqueous environment while exposed to ionizing radiation, both experimental and theoretical studies of their behaviour under these conditions is particularly interesting. Here, we study the effects of tiny imparted doses of 511 keV photons to MoS2 nanoflakes in water solution. To the best of our knowledge, this is the first study in which ionizing radiation on 2D-MoS2 occurs in water. Interestingly, we find that, in addition to the direct interaction between high-energy photons and nanoflakes, reactive chemical species, generated by γ-photons induced radiolysis of water, come into play a relevant role. A radiation transport Monte Carlo simulation allowed determining the elements driving the morphological and spectroscopical changes of 2D-MoS2, experimentally monitored by SEM microscopy, DLS, Raman and UV-vis spectroscopy, AFM, and X-ray photoelectron techniques. Our study demonstrates that radiolysis products affect the Molybdenum oxidation state, which is massively changed from the stable + 4 and + 6 states into the rarer and more unstable + 5. These findings will be relevant for radiation-based therapies and diagnostics in patients that are assuming drugs or contrast agents containing 2D-MoS2 and for aerospace biomedical applications of 2DMs investigating their actions into living organisms on space station or satellites.
Collapse
Affiliation(s)
- Manjot Singh
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
| | - Davide Bianco
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
- Italian Aerospace Research Centre (CIRA), Capua, Italy
| | - Jaber Adam
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Angela Capaccio
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
- Institute of Biosciences and Bio Resources (IBBR), National Research Council of Italy, Naples, Italy
| | | | | | - Chiara Feoli
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | - Jasneet Kaur
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
| | | | - Giulia Rusciano
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Manuela Rossi
- Department of Earth Science, Environment and Resources, University of Naples, Federico II, Naples, Italy
| | - Antonio Sasso
- Department of Physics "Ettore Pancini", University of Naples, Federico II, Naples, Italy
| | - Mohammadhassan Valadan
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy
- Superconducting and Other Innovative Materials and Devices Institute, SPIN-CNR, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy.
| | - Edmondo Battista
- Center for Advanced Biomaterials for HealthCare (CABHC), Italian Institute of Technology, Naples, Italy.
- Department of Innovative Technologies in Medicine & Dentistry (DTIMO), University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare (CABHC), Italian Institute of Technology, Naples, Italy.
- Interdisciplinary Research Centre on Biomaterials (CRIB, University of Naples, Federico II, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples, Federico II, Naples, Italy.
| | - Carlo Altucci
- Department of Advanced Biomedical Sciences, University of Naples, Federico II, Naples, Italy.
- National Institute of Nuclear Physics, Section of Naples, Naples, Italy.
- Institute of Applied Sciences and Intelligent Systems, ISASI-CNR, Naples, Italy.
| |
Collapse
|
2
|
Imberti C, Lok J, Coverdale JPC, Carter OWL, Fry ME, Postings ML, Kim J, Firth G, Blower PJ, Sadler PJ. Radiometal-Labeled Photoactivatable Pt(IV) Anticancer Complex for Theranostic Phototherapy. Inorg Chem 2023; 62:20745-20753. [PMID: 37643591 PMCID: PMC10731635 DOI: 10.1021/acs.inorgchem.3c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 08/31/2023]
Abstract
A novel photoactivatable Pt(IV) diazido anticancer agent, Pt-succ-DFO, bearing a pendant deferoxamine (DFO) siderophore for radiometal chelation, has been synthesized for the study of its in vivo behavior with radionuclide imaging. Pt-succ-DFO complexation of Fe(III) and Ga(III) ions yielded new heterobimetallic complexes that maintain the photoactivation properties and photocytotoxicity of the parent Pt complex in human cancer cell lines. Radiolabeled Pt-succ-DFO-68Ga (t1/2 = 68 min, positron emitter) was readily prepared under mild conditions and was stable in the dark upon incubation with human serum. PET imaging of Pt-succ-DFO-68Ga in healthy mice revealed a promising biodistribution profile with rapid renal excretion and limited organ accumulation, implying that little off-target uptake is expected for this class of agents. Overall, this research provides the first in vivo imaging study of the whole-body distribution of a photoactivatable Pt(IV) azido anticancer complex and illustrates the potential of radionuclide imaging as a tool for the preclinical development of novel light-activated agents.
Collapse
Affiliation(s)
- Cinzia Imberti
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jamie Lok
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - James P. C. Coverdale
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Millie E. Fry
- School
of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Miles L. Postings
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jana Kim
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London SE1 7EH, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Price T, Wagner L, Rosecker V, Havlíčková J, Prior TJ, Kubíček V, Hermann P, Stasiuk GJ. Inorganic Chemistry of the Tripodal Picolinate Ligand Tpaa with Gallium(III) and Radiolabeling with Gallium-68. Inorg Chem 2023; 62:20769-20776. [PMID: 37793007 PMCID: PMC10731648 DOI: 10.1021/acs.inorgchem.3c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/06/2023]
Abstract
We report here the improved synthesis of the tripodal picolinate chelator Tpaa, with an overall yield of 41% over five steps, in comparison to the previously reported 6% yield. Tpaa was investigated for its coordination chemistry with Ga(III) and radiolabeling properties with gallium-68 (68Ga). The obtained crystal structure for [Ga(Tpaa)] shows that the three picolinate arms coordinate to the Ga(III) ion, fully occupying the octahedral coordination geometry. This is supported by 1H NMR which shows that the three arms are symmetrical when coordinated to Ga(III). Assessment of the thermodynamic stability through potentiometry gives log KGa-Tpaa = 21.32, with a single species being produced across the range of pH 3.5-7.5. Tpaa achieved >99% radiochemical conversion with 68Ga under mild conditions ([Tpaa] = 6.6 μM, pH 7.4, 37 °C) with a molar activity of 3.1 GBq μmol-1. The resulting complex, [68Ga][Ga(Tpaa)], showed improved stability over the previously reported [68Ga][Ga(Dpaa)(H2O)] in a serum challenge, with 32% of [68Ga][Ga(Tpaa)] remaining intact after 30 min of incubation with fetal bovine serum.
Collapse
Affiliation(s)
- Thomas
W. Price
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Laurène Wagner
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Veronika Rosecker
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| | - Jana Havlíčková
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Timothy J. Prior
- Chemistry,
School of Natural Sciences, University of
Hull, Cottingham Road, Hull HU6 7RX, United Kingdom
| | - Vojtěch Kubíček
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Petr Hermann
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Graeme J. Stasiuk
- Department
of Imaging Chemistry and Biology, School of Biomedical Engineering
and Imaging Sciences, King’s College
London, London SE1 7EH, United
Kingdom
| |
Collapse
|
4
|
Sengupta D, Rai M, Hoque Mazumdar Z, Sharma D, Malabika Singha K, Pandey P, Gaur R. Two cationic meso-thiophenium porphyrins and their zinc-complexes as anti-HIV-1 and antibacterial agents under non-photodynamic therapy (PDT) conditions. Bioorg Med Chem Lett 2022; 65:128699. [PMID: 35341921 DOI: 10.1016/j.bmcl.2022.128699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
The anti-HIV-1 and antimicrobial activities of novel cationic meso-thiophenium porphyrins and their zinc-complex are reported under in vitro non-photodynamic (PDT) conditions. While all the cationic porphyrins led to the inhibition of de novo virus infection, the Zn(II)-complexes of T2(OH)2M (A2B2-type) and T(OH)3M (AB3-type) displayed potent inhibition of HIV-1 entry with T2(OH)2MZn displaying maximal anti-HIV activity. The Zinc complex of both the thiophenium porphyrins T2(OH)2M and T(OH)3M also depicted antibacterial activities against Escherichia coli (ATCC 25922) and more prominently against Staphylococcus aureus (ATCC 25923). Again, the antibacterial activity was more potent for T2(OH)2MZn. Our study highlighted that the presence of two thiophenium groups at the meso-positions of the A2B2-type porphyrins along with zinc strongly enhanced anti-HIV and antimicrobial properties of these novel thiophenium porphyrins under non-PDT conditions.
Collapse
Affiliation(s)
- Devashish Sengupta
- Department of Chemistry, Assam University, Silchar, Assam 788011, India.
| | - Madhu Rai
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | | | - Debdulal Sharma
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - K Malabika Singha
- Department of Microbiology, Assam University, Silchar, Assam 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam 788011, India.
| | - Ritu Gaur
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India.
| |
Collapse
|
5
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
6
|
Fujitsuka M, Iohara D, Oumura S, Matsushima M, Sakuragi M, Anraku M, Ikeda T, Hirayama F, Kuroiwa K. Supramolecular Assembly of Hybrid Pt(II) Porphyrin/Tomatine Analogues with Different Nanostructures and Cytotoxic Activities. ACS OMEGA 2021; 6:13284-13292. [PMID: 34056476 PMCID: PMC8158828 DOI: 10.1021/acsomega.1c01239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/23/2021] [Indexed: 05/14/2023]
Abstract
A simple strategy for synthesizing supramolecular hybrids was developed for the preparation of bioavailable nanohybrid photosensitizers by assembling visible-light-sensitive Pt(II) meso-tetrakis(4-carboxyphenyl)porphyrinporphyrin (PtTCPP)/tomatine analogues. The hybrids were self-assembled into nanofibrous or nanosheet structures approximately 3-5 nm thick and several micrometers wide. α-Tomatine generated a unique fibrous vesicle nanostructure based on intermolecular interactions, while dehydrotomatine generated nanosheet structures. Nanoassembly of these fibrous vesicles and sheets directly affected the properties of the light-responsive photosensitizer for tumor photodynamic therapy (PDT), depending on the nanostructure of the hybrid PtTCPP/tomatine analogues. The cytotoxicity of PtTCPP to cancer cells under photoirradiation was significantly enhanced by a tomatine assembly with a fibrous vesicle nanostructure, attributable to increased incorporation of the drug into cells.
Collapse
Affiliation(s)
- Mayuko Fujitsuka
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Daisuke Iohara
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Sae Oumura
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Misaki Matsushima
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Tsuyoshi Ikeda
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Department
of Pharmaceutical Science, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keita Kuroiwa
- Department
of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- . Tel/Fax: +81-96-326-3891
| |
Collapse
|
7
|
Walter EH, Ge Y, Mason JC, Boyle JJ, Long NJ. A Coumarin-Porphyrin FRET Break-Apart Probe for Heme Oxygenase-1. J Am Chem Soc 2021; 143:6460-6469. [PMID: 33845576 PMCID: PMC8154531 DOI: 10.1021/jacs.0c12864] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Heme oxygenase-1 (HO-1) is a vital enzyme in humans that primarily regulates free heme concentrations. The overexpression of HO-1 is commonly associated with cardiovascular and neurodegenerative diseases including atherosclerosis and ischemic stroke. Currently, there are no known chemical probes to detect HO-1 activity, limiting its potential as an early diagnostic/prognostic marker in these serious diseases. Reported here are the design, synthesis, and photophysical and biological characterization of a coumarin-porphyrin FRET break-apart probe to detect HO-1 activity, Fe-L1. We designed Fe-L1 to "break-apart" upon HO-1-catalyzed porphyrin degradation, perturbing the efficient FRET mechanism from a coumarin donor to a porphyrin acceptor fluorophore. Analysis of HO-1 activity using Escherichia coli lysates overexpressing hHO-1 found that a 6-fold increase in emission intensity at 383 nm was observed following incubation with NADPH. The identities of the degradation products following catabolism were confirmed by MALDI-MS and LC-MS, showing that porphyrin catabolism was regioselective at the α-position. Finally, through the analysis of Fe-L2, we have shown that close structural analogues of heme are required to maintain HO-1 activity. It is anticipated that this work will act as a foundation to design and develop new probes for HO-1 activity in the future, moving toward applications of live fluorescent imaging.
Collapse
Affiliation(s)
- Edward
R. H. Walter
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Ying Ge
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Justin C. Mason
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Joseph J. Boyle
- National
Lung and Heart Institute, Imperial College London, Du Cane Road, London W12 0NN, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
8
|
Gjuroski I, Furrer J, Vermathen M. Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques. Molecules 2021; 26:1942. [PMID: 33808335 PMCID: PMC8037866 DOI: 10.3390/molecules26071942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin-macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.
Collapse
Affiliation(s)
| | | | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (I.G.); (J.F.)
| |
Collapse
|
9
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
10
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
11
|
Yap SY, Savoie H, Renard I, Burke BP, Sample HC, Michue-Seijas S, Archibald SJ, Boyle RW, Stasiuk GJ. Synthesis of a porphyrin with histidine-like chelate: an efficient path towards molecular PDT/SPECT theranostics. Chem Commun (Camb) 2020; 56:11090-11093. [PMID: 32812554 DOI: 10.1039/d0cc03958f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The goal of "personalised" medicine has seen a growing interest in the development of theranostic agents. Bifunctional, and targeted-trifunctional, theranostic water-soluble porphyrins with a histidine-like chelating group have been synthesised via copper-catalysed azide-alkyne cycloaddition (CuAAC) "click" chemistry in high yield and purity. They are capable of photodynamic treatment and [99mTc(CO)3]+ complexation for single-photon emission computed tomography (SPECT) imaging, with a radiochemical yield of >95%. The toxicity and phototoxicity were evaluated on HT-29 cells, DU145, and DU145-PSMA cell lines, with the targeted theranostic showing more potent phototoxicity towards DU145-PSMA expressing cells.
Collapse
Affiliation(s)
- Steven Y Yap
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Hull, HU6 7RX, UK.
| | - Huguette Savoie
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Hull, HU6 7RX, UK.
| | - Isaline Renard
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Benjamin P Burke
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Harry C Sample
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Hull, HU6 7RX, UK.
| | - Saul Michue-Seijas
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Hull, HU6 7RX, UK.
| | - Stephen J Archibald
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Positron Emission Tomography Research Centre, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Ross W Boyle
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, University of Hull, HU6 7RX, UK.
| | - Graeme J Stasiuk
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK and Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Fourth Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.
| |
Collapse
|
12
|
Price TW, Yap SY, Gillet R, Savoie H, Charbonnière LJ, Boyle RW, Nonat AM, Stasiuk GJ. Evaluation of a Bispidine‐Based Chelator for Gallium‐68 and of the Porphyrin Conjugate as PET/PDT Theranostic Agent. Chemistry 2020; 26:7602-7608. [DOI: 10.1002/chem.201905776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas W. Price
- School of Life SciencesFaculty of Health SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Positron Emission Tomography Research CenterUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College London Cottingham Road London SE1 7EH UK
| | - Steven Y. Yap
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Raphaël Gillet
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Huguette Savoie
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Loïc J. Charbonnière
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Ross W. Boyle
- Chemistry, School of Mathematical and Physical SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
| | - Aline M. Nonat
- Equipe de Synthèse pour l'Analyse (SynPA)CNRS, IPHC UMR 7178Université de Strasbourg 67000 Strasbourg France
| | - Graeme J. Stasiuk
- School of Life SciencesFaculty of Health SciencesUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Positron Emission Tomography Research CenterUniversity of Hull Cottingham Road Hull HU6 7RX UK
- Department of Imaging Chemistry and BiologySchool of Biomedical Engineering and Imaging SciencesKing's College London Cottingham Road London SE1 7EH UK
| |
Collapse
|
13
|
Sandland J, Savoie H, Boyle RW, Murray BS. Synthesis and In Vitro Biological Evaluation of a Second-Generation Multimodal Water-Soluble Porphyrin-RAPTA Conjugate for the Dual-Therapy of Cancers. Inorg Chem 2020; 59:7884-7893. [DOI: 10.1021/acs.inorgchem.0c01044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jordon Sandland
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, United Kingdom
| | - Huguette Savoie
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, United Kingdom
| | - Ross W. Boyle
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, United Kingdom
| | - Benjamin S. Murray
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, United Kingdom
| |
Collapse
|
14
|
Chu JQ, Wang DX, Zhang LM, Cheng M, Gao RZ, Gu CG, Lang PF, Liu PQ, Zhu LN, Kong DM. Green Layer-by-Layer Assembly of Porphyrin/G-Quadruplex-Based Near-Infrared Nanocomposite Photosensitizer with High Biocompatibility and Bioavailability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7575-7585. [PMID: 31958010 DOI: 10.1021/acsami.9b21443] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple and green layer-by-layer assembly strategy is developed for the preparation of a highly bioavailable nanocomposite photosensitizer by assembling near-infrared (NIR) light-sensitive porphyrin/G-quadruplex complexes on the surface of a highly biocompatible nanoparticle that is prepared via Zn2+-assisted coordination self-assembly of an amphiphilic amino acid. After being efficiently delivered to the target site and internalized into tumor cells via enhanced permeability and retention effect and interactions between aptamers and tumor markers, the as-prepared nanoassembly can be directly used as an NIR light-responsive photosensitizer for tumor photodynamic therapy (PDT) since the porphyrin/G-quadruplex complexes are exposed on the nanoassembly surface and kept in an active state. It can also disassemble under the synergistic stimuli of an acidic pH environment and overexpressed glutathione, leasing more efficient porphyrin/G-quadruplex composite photosensitizers while reducing the interference caused by glutathione-dependent 1O2 consumption. Since the nanoassembly can work no matter if it is disassembled or not, the compulsory requirement for in vivo photosensitizer release is eliminated, thus resulting in the great improvement of the bioavailability of the photosensitizer. The PDT applications of the nanoassembly were well demonstrated in both in vitro cell and in vivo animal experiments.
Collapse
Affiliation(s)
- Jun-Qing Chu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Dong-Xia Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Li-Ming Zhang
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Meng Cheng
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Rong-Zhi Gao
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Cheng-Guang Gu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Peng-Fei Lang
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Pei-Qi Liu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Li-Na Zhu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
15
|
Cheng M, Cui YX, Wang J, Zhang J, Zhu LN, Kong DM. G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13158-13167. [PMID: 30901194 DOI: 10.1021/acsami.9b02695] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photosensitizer is one of the most important elements of photodynamic therapy (PDT). Herein, we reported a novel strategy to prepare a new series of composite photosensitizers. The composite photosensitizer was prepared by simply mixing DNA G-quadruplexes with a hydrophilic porphyrin (TMPipEOPP)4+·4I-. Compared with the conventional porphyrin photosensitizers, the excitation wavelength of the composite one has been ∼50 nm redshifted (from 650 to 700 nm), which is beneficial to the penetration of the light. Moreover, the composite photosensitizer showed an about 7.4-fold increase of light absorption efficiency, thus greatly enhancing the singlet oxygen (1O2) generation capacity and PDT efficacy. What is more, the introduction of nucleic acids in the composite photosensitizer could also provide some extra charming properties, such as the targeted recognition ability conferred by aptamer and high capability to assemble with various drug carriers. We demonstrated that the composite photosensitizer could be easily assembled with MnO2 nanosheet. The obtained nanodevice integrated the merits of a composite photosensitizer and MnO2 nanosheet, thus showing strong near-infrared absorption, high 1O2 generation efficiency, avoidance of nonideal 1O2 consumption by glutathione, and in situ O2 generation to relieve tumor hypoxia. This nanodevice showed greatly improved PDT efficacy both in vitro and in vivo, presenting a huge potential for applications in clinical therapy for tumors.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , China
| | - Yun-Xi Cui
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Jing Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Jing Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Li-Na Zhu
- Department of Chemistry, School of Science , Tianjin University , Tianjin 300072 , China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
16
|
Sandland J, Boyle RW. Photosensitizer Antibody–Drug Conjugates: Past, Present, and Future. Bioconjug Chem 2019; 30:975-993. [DOI: 10.1021/acs.bioconjchem.9b00055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Zhang C, Zhao Y, Li D, Liu J, Han H, He D, Tian X, Li S, Wu J, Tian Y. Aggregation-induced emission (AIE)-active molecules bearing singlet oxygen generation activities: the tunable singlet–triplet energy gap matters. Chem Commun (Camb) 2019; 55:1450-1453. [DOI: 10.1039/c8cc09230c] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two-photon active photosensitizers showed relatively strong intersystem crossing facilitating 1O2 generation and cell apoptosis with near-infrared excitation.
Collapse
|
18
|
Nakamoto Y, Pradipta AR, Mukai H, Zouda M, Watanabe Y, Kurbangalieva A, Ahmadi P, Manabe Y, Fukase K, Tanaka K. Expanding the Applicability of the Metal Labeling of Biomolecules by the RIKEN Click Reaction: A Case Study with Gallium-68 Positron Emission Tomography. Chembiochem 2018; 19:2055-2060. [DOI: 10.1002/cbic.201800335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yuka Nakamoto
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Ambara R. Pradipta
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Maki Zouda
- Laboratory for Molecular Delivery and Imaging Technology; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science; RIKEN Center for Biosystems Dynamics Research; 6-7-3 Minatojima-minamimachi Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory; Butlerov Institute of Chemistry; Kazan Federal University; 18 Kremlyovskaya Street Kazan 420008 Russia
| | - Peni Ahmadi
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry; Graduate School of Science; Osaka University; 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory; RIKEN Cluster for Pioneering Research; 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Biofunctional Chemistry Laboratory; Butlerov Institute of Chemistry; Kazan Federal University; 18 Kremlyovskaya Street Kazan 420008 Russia
- GlycoTargeting Research Laboratory; RIKEN Baton Zone Program; 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|