1
|
Ardra M, Gayathri R, Swetha SV, Mohamed Imran P, Nagarajan S. Tweaking the Non-Volatile Write-Once-Read-Many-Times (WORM) Memory using Donor-Acceptor Architecture with Isatin as Core Acceptor. Chempluschem 2024; 89:e202400018. [PMID: 38446710 DOI: 10.1002/cplu.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Organic memory devices have attracted attention because they promise flexible electronics, low manufacturing costs, and compatibility with large-scale integration. A series of new D-A architectures were synthesized employing different donor groups and the isatin moiety as the acceptor through Suzuki-Miyaura coupling reactions. Strong intramolecular interactions were observed in the synthesized compounds, further corroborated by an optimal bandgap. The SEM investigation confirmed good molecular ordering and superior thin film surface coverage. All the compounds demonstrated notable binary Write-Once-Read-Many-Times (WORM) memory behaviour. The threshold switching voltage for these D-A systems ranged from -0.79 to -2.37 V, with the compound having isobutyl substituent showing the lowest threshold voltage and maximum ON/OFF ratio of 102, thus outperforming others. The combined effects of charge transfer and charge trapping are responsible for the resistive switching mechanism prevailing in these systems. The alterations in D-A molecules that affect molecular packing, thin film morphology, and, finally, the memory performance of the active layer are highlighted in this work.
Collapse
Affiliation(s)
- Murali Ardra
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Ramesh Gayathri
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Senthilkumar V Swetha
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | | | - Samuthira Nagarajan
- Organic Electronics Division, Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, 610005, India
| |
Collapse
|
2
|
Xia Y, Zhang C, Xu Z, Lu S, Cheng X, Wei S, Yuan J, Sun Y, Li Y. Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. NANOSCALE 2024; 16:1471-1489. [PMID: 38180037 DOI: 10.1039/d3nr06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To tackle the current crisis of Moore's law, a sophisticated strategy entails the development of multistable memristors, bionic artificial synapses, logic circuits and brain-inspired neuromorphic computing. In comparison with conventional electronic systems, iontronic memristors offer greater potential for the manifestation of artificial intelligence and brain-machine interaction. Organic iontronic memristive materials (OIMs), which possess an organic backbone and exhibit stoichiometric ionic states, have emerged as pivotal contenders for the realization of high-performance bionic iontronic memristors. In this review, a comprehensive analysis of the progress and prospects of OIMs is presented, encompassing their inherent advantages, diverse types, synthesis methodologies, and wide-ranging applications in memristive devices. Predictably, the field of OIMs, as a rapidly developing research subject, presents an exciting opportunity for the development of highly efficient neuro-iontronic systems in areas such as in-sensor computing devices, artificial synapses, and human perception.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Zheng Xu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shuanglong Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinli Cheng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shice Wei
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Junwei Yuan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yanqiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Zhang C, Chen M, Pan Y, Li Y, Wang K, Yuan J, Sun Y, Zhang Q. Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207229. [PMID: 37072642 PMCID: PMC10238223 DOI: 10.1002/advs.202207229] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/09/2023] [Indexed: 05/03/2023]
Abstract
In the era of big data and artificial intelligence (AI), advanced data storage and processing technologies are in urgent demand. The innovative neuromorphic algorithm and hardware based on memristor devices hold a promise to break the von Neumann bottleneck. In recent years, carbon nanodots (CDs) have emerged as a new class of nano-carbon materials, which have attracted widespread attention in the applications of chemical sensors, bioimaging, and memristors. The focus of this review is to summarize the main advances of CDs-based memristors, and their state-of-the-art applications in artificial synapses, neuromorphic computing, and human sensory perception systems. The first step is to systematically introduce the synthetic methods of CDs and their derivatives, providing instructive guidance to prepare high-quality CDs with desired properties. Then, the structure-property relationship and resistive switching mechanism of CDs-based memristors are discussed in depth. The current challenges and prospects of memristor-based artificial synapses and neuromorphic computing are also presented. Moreover, this review outlines some promising application scenarios of CDs-based memristors, including neuromorphic sensors and vision, low-energy quantum computation, and human-machine collaboration.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Mohan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSchool of Physical Science and TechnologySuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide SciencesDepartment of ChemistryCollege of ScienceNanjing Agricultural UniversityNanjing210095China
| | - Junwei Yuan
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Yanqiu Sun
- School of Chemistry and Life SciencesSuzhou University of Science and TechnologySuzhouJiangsu215009China
| | - Qichun Zhang
- Department of Materials Science and EngineeringDepartment of Chemistry and Center of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee AvenueHong Kong999077China
| |
Collapse
|
4
|
Li Y, Pan Y, Zhang C, Shi Z, Ma C, Ling S, Teng M, Zhang Q, Jiang Y, Zhao R, Zhang Q. Molecular-Shape-Controlled Binary to Ternary Resistive Random-Access Memory Switching of N-Containing Heteroaromatic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44676-44684. [PMID: 36128726 DOI: 10.1021/acsami.2c11960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In organic resistive random-access memory (ReRAM) devices, deeply understanding how to control the performance of π-conjugated semiconductors through molecular-shape-engineering is important and highly desirable. Herein, we design a family of N-containing heteroaromatic semiconductors with molecular shapes moving from mono-branched 1Q to di-branched 2Q and tri-branched 3Q. We find that this molecular-shape engineering can induce reliable binary to ternary ReRAM switching, affording a highly enhanced device yield that satisfies the practical requirement. The density functional theory calculation and experimental evidence suggest that the increased multiple paired electroactive nitrogen sites from mono-branched 1Q to tri-branched 3Q are responsible for the multilevel resistance switching, offering stable bidentate coordination with the active metal atoms. This study sheds light on the prospect of N-containing heteroaromatic semiconductors for promising ultrahigh-density data-storage ReRAM application.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zhiming Shi
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Min Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qijian Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Zhang C, Chen M, Wang G, Teng M, Ling S, Wang Y, Su Z, Gao K, Yang X, Ma C, Li Y, Zhang Q. Variable Learning‐Memory Behavior from π‐Conjugated Ligand to Ligand‐Containing Cobalt(II) Complex. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Mohan Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Guan Wang
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Ming Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Yanan Wang
- School of Petrochemical Engineering Changzhou University Changzhou 213164 China
| | - Zhaojun Su
- College of Energy Soochow Institute for Energy and Materials InnovationS (SIEMIS) Soochow University Suzhou 215006 China
| | - Kun Gao
- College of Energy Soochow Institute for Energy and Materials InnovationS (SIEMIS) Soochow University Suzhou 215006 China
| | - Xinbo Yang
- College of Energy Soochow Institute for Energy and Materials InnovationS (SIEMIS) Soochow University Suzhou 215006 China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Qichun Zhang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong China
- Center of Super‐Diamond and Advanced Films (COSDAF) City University of Hongkong Hong Kong SAR 999077 China
| |
Collapse
|
6
|
Zhang C, Li Y, Li Z, Jiang Y, Zhang J, Zhao R, Zou J, Wang Y, Wang K, Ma C, Zhang Q. Nanofiber Architecture Engineering Implemented by Electrophoretic-Induced Self-Assembly Deposition Technology for Flash-Type Memristors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3111-3120. [PMID: 34985856 DOI: 10.1021/acsami.1c22094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrophoretic deposition (EPD) has been recognized as a promising large-scale film preparation technology for industrial application. Inspired by the conventional EPD method and the crystal diffusion growth strategy, we propose a modified electrophoretic-induced self-assembly deposition (EPAD) technique to control the morphologies of organic functional materials. Here, an ionic-type dye with a conjugated skeleton and strong noncovalent interactions, celestine blue (CB), is chosen as a module molecule for EPAD investigation. As expected, CB molecules can assemble into different nanostructures, dominated by applied voltage, concentration effect, and duration. Compared to a nanopillar layered packing structure formed by the traditional spin-coating method, the EPAD approach can produce a nanofiber structure under a fixed condition of 10 V/10 min. Intriguingly, a memristor device based on a pillar-like nanostructure exhibits WORM-type behavior, while a device based on nanofibers presents Flash memory performance. The assemble process and the memory mechanism are uncovered by molecular dynamics simulations and density-functional theory (DFT) calculations. This work endows the typical EPD technique with a fresh application scenario, where an in-depth study on the growth mechanism of nanofibers and the positive effect of unique morphologies on memristor performance are offered.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zhuang Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yanan Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Zhang C, Li Y, Ma C, Zhang Q. Recent Progress of Organic–Inorganic Hybrid Perovskites in RRAM, Artificial Synapse, and Logic Operation. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou Jiangsu 215009 China
| | - Qichun Zhang
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong SAR 999077 China
- Center of Super-Diamond and Advanced Films (COSDAF) City University of Hongkong Hong Kong SAR 999077 China
| |
Collapse
|
8
|
Zhang C, Li H, Lin S, Su Y, Zhang Q, Li Y, Wang K, Lu J. Fabrication of One-Dimensional Organic Nanofiber Networks via Electrophoretic Deposition for a Nonvolatile Memory Device. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57254-57263. [PMID: 33315365 DOI: 10.1021/acsami.0c09763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite many advanced growth methodologies for organic nanofibers (ONFs), the lack of efficient and scalable ONF-based film preparation technologies has long been a hindrance in their practical application in organic electronic devices. Here, a typical cathode electrophoretic deposition (C-EPD) technology was developed to controllably produce ONFs and their corresponding thin films. Using the solvent effect and an external electric field force during the C-EPD process, a one-dimensional ONF network was formed, which exhibits compact molecular packing and superior optoelectronic properties in the thin-film state. Prototype sandwich-structure memory devices based on these ONF films exhibited a binary nonvolatile memory performance significantly superior than that of the bulk materials. This study provides an efficient and scalable ONF fabrication technology for high-performance electronic devices in various potential applications.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shixin Lin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yanna Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Qijian Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
9
|
Zhang C, Li H, Su Y, Zhang Q, Li Y, Lu J. Controllable and Versatile Electrophoretic Deposition Technology for Monolithic Organic Memory Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15482-15490. [PMID: 32148022 DOI: 10.1021/acsami.0c02190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Scaling up organic nanofilm deposition from the laboratory scale to the industrial scale is an important challenge for the booming organic electronics. Herein, we propose a high-efficiency technology for organic nanofilm deposition called electrophoretic deposition (EPD). EPD was used to produce scalable films based on an ingenious molecular design by introducing the pyridinium group and flexible substituents to versatile solution-processable organic salts. EPD films with an area of 104 mm2 and controllable film thickness ranging from 50 nm to 1.55 μm can be easily fabricated using an organic solvent under different deposition conditions. Compared with traditional spin-coated films, the superior electrochemical and mechanical properties of EPD films are ascribed to their compact molecular packing, high purity, and uniform morphology. Evaluation of 2745 device units integrated into a 104 mm2 monolithic organic memory device showed that 95% of the device units possessed excellent binary data-storage performance with high stability and reproducibility, small reading bias (1.0 V), and large ON/OFF ratio (>103). Furthermore, decoating tests of EPD-based films and devices by the process of reverse EPD with switched electrode polarity suggested the potential application for information storage security and active environmental protection by simultaneously separating and recycling metal electrodes and organic materials.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yanna Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Qijian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Zhang C, Wang Z, Li H, Lu J, Zhang Q. Recent progress in the usage of tetrabromo-substituted naphthalenetetracarboxylic dianhydride as a building block to construct organic semiconductors and their applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00637h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent synthetic strategies and significant applications of TBNDA and their derivatives as promising building blocks to construct π-expanded semiconductors have been carefully summarized in this review.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Zongrui Wang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Hua Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Jianmei Lu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou 215123
| | - Qichun Zhang
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- Department of Materials Science and Engineering
| |
Collapse
|
11
|
Barman BK, Guru MM, Panda GK, Maji B, Vijayaraghavan RK. Pyrene-affixed triazoles: a new class of molecular semiconductors for robust, non-volatile resistive memory devices. Chem Commun (Camb) 2019; 55:4643-4646. [DOI: 10.1039/c8cc10185j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bistable resistive switching in devices with molecular semiconductor with pyrene appended triazole as active stratum.
Collapse
Affiliation(s)
- Biswajit K. Barman
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Murali M. Guru
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Gaurav K. Panda
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
- Centre for Advanced Functional Materials
| |
Collapse
|