1
|
Schmarsow RN, Casado U, Ceolín M, Zucchi IA, Müller AJ, Schroeder WF. Supramolecular Networks Obtained by Block Copolymer Self-Assembly in a Polymer Matrix: Crystallization Behavior and Its Effect on the Mechanical Response. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Ruth N. Schmarsow
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Ulises Casado
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Marcelo Ceolín
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CONICET, CC 16-Suc. 4, 1900 La Plata, Argentina
| | - Ileana A. Zucchi
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Walter F. Schroeder
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Av. Cristóbal Colón 10850, 7600 Mar del Plata, Argentina
| |
Collapse
|
2
|
Núñez-Villanueva D, Hunter CA. Effect of backbone flexibility on covalent template-directed synthesis of linear oligomers. Org Biomol Chem 2022; 20:8285-8292. [PMID: 36226964 PMCID: PMC9629452 DOI: 10.1039/d2ob01627c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Covalent template-directed synthesis can be used to replicate synthetic oligomers, but success depends critically on the conformational properties of the backbone. Here we investigate how the choice of monomer building block affects the flexibility of the backbone and in turn the efficiency of the replication process for a series of different triazole oligomers. Two competing reaction pathways were identified for monomers attached to a template, resulting in the formation of either macrocyclic or linear products. For flexible backbones, macrocycles and linear oligomers are formed at similar rates, but a more rigid backbone gave exclusively the linear product. The experimental results are consistent with ring strain calculations using molecular mechanics: products with low ring strain (20-30 kJ mol-1) formed rapidly, and products with high ring strain (>100 kJ mol-1) were not observed. Template-directed replication of linear oligomers requires monomers that rigid enough to prevent the formation of undesired macrocycles, but not so rigid that the linear templating pathway leading to the duplex is inhibited. Molecular mechanics calculations of ring strain provide a straightforward tool for assessing the flexibility of potential backbones and the viability different monomer designs before embarking on synthesis.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
3
|
Zhang R, Cao W, Xia Y, Zhang H, Ding Q, Xu X, Hu L. The relationship between solid-liquid interface interaction and gelling capacity of h-BN 2D material: a rheological study. NANOTECHNOLOGY 2022; 33:15LT02. [PMID: 34965518 DOI: 10.1088/1361-6528/ac46da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Diurea modified h-BN nanosheet is a novel kind of 2D gelator that could gel the lubricating oils under the stimulus of ultrasound. Morphological analyzations in previous study confirmed that the ultrasound induced layer-by-layer (LBL) structure of BN gelator is critical for the gelation. However, the elastic response in LBL structure, which is crucial for the formation of a stable gel system, has not been explicitly illustrated yet. The challenge is that the LBL gelator structure is based on 2D material and thus lacks vertical linkage between gelator layers, which is significantly different from the traditional gel systems that generally possess highly crosslinked gelator network. In this work, by investigating the viscoelastic behavior of the BN-based gel via rheometer, it is found the solid-liquid interface interaction, which is regulated by the diurea molecular structure in the BN gelator, is the key factor for triggering the stable elastic response in the LBL structure, and the elasticity mainly originates from the interface interaction induced bending deformation of h-BN 2D material. The findings further elucidate the gelling mechanism of BN gelators and enlighten the structure design of ultrasound-responsive gelator based on 2D materials.
Collapse
Affiliation(s)
- Ruochong Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Wenhui Cao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Xia
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Haojie Zhang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Qi Ding
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xuefeng Xu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, Zhejiang, People's Republic of China
| | - Litian Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
4
|
Liao L, Liu R, Hu S, Jiang W, Chen Y, Zhong J, Jia X, Liu H, Luo X. Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC Adv 2022; 12:20218-20226. [PMID: 35919589 PMCID: PMC9280287 DOI: 10.1039/d2ra01391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Ultrasound-induced gelation of a novel type of gelator, 1,4-naphthalenedicarbonyl- dinicotinic acid hydrazide, is reported. The gelator self-assembled into various architectures in different solvents.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Ruidong Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Shuwen Hu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenting Jiang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yali Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Guo J, Li Y, Zhang Y, Ren J, Yu X, Cao X. Switchable Supramolecular Configurations of Al 3+/LysTPY Coordination Polymers in a Hydrogel Network Controlled by Ultrasound and Heat. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40079-40087. [PMID: 34379399 DOI: 10.1021/acsami.1c10150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Coordination-driven self-assembly with controllable properties has attracted increasing interest because of its potential in biological events and material science. Herein, we report on the remote, instant, and switchable control of competitive coordination interactions via ultrasound and heat stimuli in a hydrogel network. Configurational coordination changes result in the transformation of blue-emissive and opaque Al3+-amide aggregations to yellow-green-emissive and transparent Al3+-terpyridine aggregations. Interestingly, circularly polarized luminescence "off-on" switches of the metallo-supramolecular assembly are also created by these configuration changes. Additionally, the impact of the stoichiometric ratio of Al3+ and LysTPY on the assembly is also studied in detail. With a higher content of Al3+, the hydrogel with branched and abundant junctions exhibited robust, self-healing, and self-supporting properties. This in-depth understanding of the coordination interaction adjustment will afford new insights into the preparation of stimuli-responsive metallogels.
Collapse
Affiliation(s)
- Jiangbo Guo
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajuan Li
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Yajun Zhang
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Jujie Ren
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xudong Yu
- College of Science, Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering & Green Catalysis and Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Nanhu Road 237, Xinyang 464000, PR China
| |
Collapse
|
6
|
Zacharias SC, Kamlar M, Sundén H. Exploring Supramolecular Gels in Flow-Type Chemistry—Design and Preparation of Stationary Phases. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Savannah C. Zacharias
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | - Martin Kamlar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
7
|
Ding Y, Liu W, Wu J, Zheng X, Ge J, Ren H, Zhang W, Lee CS, Wang P. Ultrasound-Enhanced Self-Exciting Photodynamic Therapy Based on Hypocrellin B. Chem Asian J 2021; 16:1221-1224. [PMID: 33881805 DOI: 10.1002/asia.202100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Indexed: 11/10/2022]
Abstract
Peroxalate CL as an energy source to excite photosensitizers has attracted tremendous attention in photodynamic therapy (PDT). In this work, peroxyoxalate CPPO and hypocrellin B (HB)-based nanoparticles (CBNPs) for ultrasound (US)-enhanced self-exciting PDT were designed and prepared. CBNPs showed an excellent therapeutic effect against cancer cells with the assistance of US. This US-enhanced-chemiluminescence system avoids the dependence on external light and provides an example for inspiring more effective and precise strategies for cancer treatment.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenjun Zhang
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Liao L, Jia X, Lou H, Zhong J, Liu H, Ding S, Chen C, Hong S, Luo X. Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Adv 2021; 11:11519-11528. [PMID: 35423629 PMCID: PMC8695936 DOI: 10.1039/d1ra00647a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most important and fruitful methods, supramolecular self-assembly has a significant advantage in designing and fabricating functional soft materials with various nanostructures. In this research, a low-molecular-weight gelator, N,N'-di(pyridin-4-yl)-pyridine-3,5-dicarboxamide (PDA-N4), was synthesized and used to construct self-assembled gels via a solvent-mediated strategy. It was found that PDA-N4 could form supramolecular gels in mixed solvents of water and DMSO (or DMF) at high water fraction (greater than or equal to 50%). By decreasing the water fraction from 50% to 30%, the gel, suspension and solution phases appeared successively, indicating that self-assembled aggregates could be efficiently modulated via water content in organic solvents. Moreover, the as-prepared PDA-N4 supramolecular gels not only displayed solid-like behavior, and pH- and thermo-reversible characteristics, but also showed a solution-gel-crystal transition with the extension of aging time. Further analyses suggested that both the crystal and gel had similar assembled structures. The intermolecular hydrogen bonding between amide groups and the π-π stacking interactions between pyridine groups played key roles in gel formation. Additionally, the release behavior of vitamin B12 (VB12) from PDA-N4 gel (H2O/DMSO, v/v = 90/10) was evaluated, and the drug controlled release process was consistent with a first-order release mechanism. The human umbilical venous endothelial cell culture results showed that the PDA-N4 xerogel has good cytocompatibility, which implied that the gels have potential biological application in tissue engineering and controlled drug release.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Haoxiang Lou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Shunming Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Sanguo Hong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
9
|
Wang X, Qian S, Wang D, Wang C, Qin H, Peng L, Lu W, Zhang Y, Qing G. Self-assembly gel-based dynamic response system for specific recognition of N-acetylneuraminic acid. J Mater Chem B 2021; 9:4690-4699. [PMID: 34076032 DOI: 10.1039/d1tb00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialic acids located at the terminal end of glycans are densely attached to cell surfaces and play crucial and distinctive roles in a variety of physiological and pathological processes, such as neural development, cell-cell interactions, autoimmunity and cancers. However, due to the subtle structural differences of sialic acid species and the complicated composition of glycans, the precise recognition of sialylated glycans is difficult. Here, a fluorescent dynamic response system based on a pyrene-conjugated histidine (PyHis) supramolecular gel is proposed. Driven by π-π stacking and intermolecular hydrogen bonds, PyHis exhibits a strong self-assembly ability and forms stable gels. It is found that introduction of N-acetylneuraminic acid (a typical sialic acid) can prevent this self-assembly process, whereas other monosaccharides or sialic acid analogs have no significant effect on it. Interestingly, a sialylated glycan also has a remarkable inhibitory effect on the gel formation, which highlights the high selectivity of the gel dynamic response system. Analysis of the mechanism reveals that the sialic acid or sialylated glycan can interact closely with two PyHis molecules stacked together in the assemblies via hydrogen bonding interactions, thereby preventing the ordered accumulation of the gelators. It is worth noting that the high-efficiency sialic acid recognition effect is not observed at the single molecule level but at the supramolecular level, indicating the unique superiority of the supramolecular self-assembly system in biomolecular recognition and response. This work shows the promising prospects of using supramolecular gels in assembly engineering, regenerative medicine, tumour cell sorting and cancer diagnosis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China and Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Shengxu Qian
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Dongdong Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Cunli Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Lang Peng
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| | - Wenqi Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Yahui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| |
Collapse
|
10
|
Shin G, Khazi MI, Kim JM. Protonation-Triggered Supramolecular Gel from Macrocyclic Diacetylene: Gelation Behavior, Topochemical Polymerization, and Colorimetric Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13971-13980. [PMID: 33175557 DOI: 10.1021/acs.langmuir.0c02469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular gels originating from the hierarchical self-assembly of low molecular weight organic molecules is a strongly emerging field of advanced material research for the fabrication of soft functional materials. Herein, a novel supramolecular gel was fabricated through the protonation-triggered unidirectional self-assembly of pyridine-attached macrocyclic diacetylene (PyMCDA). Basic nitrogen of a pyridine ring with a strong affinity toward proton transforms the neutral PyMCDA into gelator in its protonated pyridinium salt form (PyMCDA-H+), which further evolves to nano-fibrillar networks to yield a supramolecular gel. Under the irradiation of UV light, the white color gel turned to a robust covalently cross-linked blue-phase PDA gel. Interestingly, polymeric PyMCPDA-H+ gel exhibits a naked-eye detectable reversible blue-red colorimetric response for alternating acid/base (H2SO4/NH4OH) and colorimetric sensitivity toward selected anions: CH3COO-, CN-, HCOO-, and CH3CH2COO-. It is with the hope that this work point toward the utility and versatility of macrocyclic PDAs for constructing chromogenic supramolecular gels for their possible use in sensing systems.
Collapse
Affiliation(s)
- Geon Shin
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
11
|
Núñez-Villanueva D, Hunter CA. Molecular replication using covalent base-pairs with traceless linkers. Org Biomol Chem 2019; 17:9660-9665. [PMID: 31691702 DOI: 10.1039/c9ob02336d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique feature of kinetically inert covalent base-pairing is that the nature of the chemical information that is transferred can be modulated by changing the chemical connectivity between the two bases. Formation of esters between phenols and benzoic acids has been used as a base-pairing strategy for sequence information transfer in template-directed synthesis of linear oligomers, but the copy strand produced by this process has the complementary sequence to the template strand. It is possible to form a base-pair between two benzoic acids by using a hydroquinone linker, which is eliminated when the product duplex is hydrolysed. Using this approach, covalent template-directed synthesis was carried out using a benzoic acid 3-mer template to produce an identical copy. This direct replication process was used in iterative rounds of replication leading to an increase of the population of the copied oligomer.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
12
|
Zhang R, Ding Q, Zhang S, Niu Q, Ye J, Hu L. Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear. NANOSCALE 2019; 11:12553-12562. [PMID: 31179465 DOI: 10.1039/c9nr03685g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, to endow h-BN nanosheets with gelling ability, a diurea compound was decorated on the h-BN nanosheets via designed adsorption and in situ reaction processes. The prepared h-BN-based gelator, BTO, exhibited excellent dispersibility in non-polar liquid media, and the gelation of BTO dispersions could be readily triggered by ultrasonic treatments. The sol-gel transformation of the system was found to be highly reversible by stirring and sonication. Based on the investigation on the self-assembly behavior of BTO nanosheets in the liquid phase, it was proposed that a continuous and layered structure formed by BTO during sonication was the key factor for the gelling properties of these nanosheets. The viscoelasticity of the sonication-induced gel was studied using a rheometer. Tribological evaluations show that the prepared h-BN nanogel exhibits outstanding lubricating performances, and more importantly, it has been proved that the gel state of the h-BN nanosheets provides superior and more reliable lubricating performances than the corresponding dispersion state under certain conditions; this can be ascribed to the formation of a continuous and uniform structure of modified h-BN nanosheets during gelation. Thus, this study not only clarifies the key role of the assembly structure in the tribological performances of 2D nanomaterials, but also demonstrates the potential of gelation in improving the macroscopic friction reduction and wear resistance of 2D nanomaterials.
Collapse
Affiliation(s)
- Ruochong Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Ding
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Songwei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qingbo Niu
- Luoyang Bearing Research Institute Co., Ltd., Luoyang 471000, China.
| | - Jun Ye
- Luoyang Bearing Research Institute Co., Ltd., Luoyang 471000, China.
| | - Litian Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
13
|
Ge Y, Gong H, Shang J, Jin L, Pan T, Zhang Q, Dong S, Wang Y, Qi Z. Supramolecular Gel Based on Crown-Ether-Appended Dynamic Covalent Macrocycles. Macromol Rapid Commun 2019; 40:e1800731. [PMID: 30672634 DOI: 10.1002/marc.201800731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/21/2018] [Indexed: 01/08/2023]
Abstract
A new type of dynamic covalent macrocycle with self-promoted supramolecular gelation behavior is developed. Under oxidative conditions, the dithiol compound containing a diamide alkyl linker with an odd number (7) of carbon chain and an appended crown ether shows a remarkable gelation ability in acetonitrile, without any template molecules. Due to the existence of crown ethers and disulfide bonds, the obtained gel shows a multiple stimuli-responsiveness behavior. The mechanical properties and reversibility of the gel are investigated. Computational modeling suggests that the peripheral chain for diamide hydrogen bonding is responsible for the gelation process.
Collapse
Affiliation(s)
- Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hanlin Gong
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China.,Institute of Biomedical Materials and Engineering, Northwestern Polytechincial University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|