1
|
Chen H, Feng G, Liang Q, Zhang E, Shen Y, Lei S, Hu W. An intermolecular hydrogen bond plays a determining role in product selection of a surface confined Schiff-base reaction. Chem Commun (Camb) 2021; 57:6495-6498. [PMID: 34100485 DOI: 10.1039/d1cc01801a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we illustrate how the cooperation of intermolecular hydrogen bonds and conformation flexibility leads to the formation of diverse complex covalent nanostructures on the surface, while the relative abundance of the final products can be further tuned by adjusting the molar ratio and concentration of monomers.
Collapse
Affiliation(s)
- Huamei Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Enbing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yongtao Shen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Liang Q, Yu Y, Feng G, Shen Y, Yang L, Lei S. Two-dimensional co-crystallization of two carboxylic acid derivatives having dissimilar symmetries at the liquid/solid interface. Chem Commun (Camb) 2020; 56:12182-12185. [PMID: 32914798 DOI: 10.1039/d0cc05216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By the co-assembly of two carboxylic acids with distinct symmetries and different numbers of carboxyl groups, we obtained two novel cocrystal structures at the n-octanoic acid/HOPG interface, one of which was sustained by unoptimized R22(8) hydrogen bonding. Benefiting from the bias-sensitivity of the BTB (1,3,5-tris(4-carboxyphenyl)benzene) molecule, a structure transition between the cocrystal network and a denser BTB lamella is achieved.
Collapse
Affiliation(s)
- Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Yanxia Yu
- Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China and MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Yongtao Shen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Ling Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
3
|
Fu C, Mikšátko J, Assies L, Vrkoslav V, Orlandi S, Kalbáč M, Kovaříček P, Zeng X, Zhou B, Muccioli L, Perepichka DF, Orgiu E. Surface-Confined Macrocyclization via Dynamic Covalent Chemistry. ACS NANO 2020; 14:2956-2965. [PMID: 32068388 DOI: 10.1021/acsnano.9b07671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products-oligomers, macrocycles, or polymers-will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.
Collapse
Affiliation(s)
- Chaoying Fu
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Jiří Mikšátko
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Lea Assies
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 542/2, 166 10 Praha, Czech Republic
| | - Silvia Orlandi
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
| | - Martin Kalbáč
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Petr Kovaříček
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Praha, Czech Republic
| | - Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Boping Zhou
- Center Lab of Longhua Branch and Department of Infectious disease, Shenzhen People's Hospital, second Clinical Medical College of Jinan University, Shenzhen 518120, Guangdong Province, China
| | - Luca Muccioli
- Dipartimento di Chimica Industriale " Toso Montanari ", Università di Bologna, 40136 Bologna, Italy
- Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France
| | - Dmitrii F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street W., Montreal, Quebec, Canada H3A 0B8
| | - Emanuele Orgiu
- INRS, Énergie Matériaux Télécommunications Centre, 1650 boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S2
| |
Collapse
|
4
|
Seidi F, Couffon A, Prawatborisut M, Crespy D. Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Antoine Couffon
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Mongkhol Prawatborisut
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Daniel Crespy
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|