1
|
Zeng CM, Panetier JA. Computational Modeling of Electrocatalysts for CO 2 Reduction: Probing the Role of Primary, Secondary, and Outer Coordination Spheres. Acc Chem Res 2025; 58:342-353. [PMID: 39869093 DOI: 10.1021/acs.accounts.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO2 binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function. We also discuss how computational techniques provide crucial insight into implementing these findings in homogeneous CO2 reduction electrocatalysis design principles. The CO2 binding sites (e.g., Ni and "unique" Fe ion) along with the ligands that support it (e.g., iron-sulfur cluster) form the primary coordination sphere. This is replicated in molecular electrocatalysts via the metal center and ligand framework where the substrate binds. This coordination sphere has a direct impact on the electronic configuration of the catalyst. By computationally modeling a series of Ni and Co complexes with bipyridyl-N-heterocyclic carbene ligand frameworks of varying degrees of planarity, we were able to closely examine how the primary coordination sphere controls the product distribution between CO and H2 for these catalysts. The secondary coordination sphere (SCS) of Ni,Fe-CODH contains residues proximal to the active site pocket that provide hydrogen-bonding stabilizations necessary for the reaction to proceed. Enhancing the SCS when synthesizing new catalysts involves substituting functional groups onto the ligand for direct interaction with the substrate. To analyze the endless possible substitutions, computational techniques are ideal for deciphering the intricacies of substituent effects, as we demonstrated with an array of imidazolium-functionalized Mn and Re bipyridyl tricarbonyl complexes. By examining how the electrostatic interactions between the ligand, substrate, and proton source lowered activation energy barriers, we determined how best to pinpoint the SCS additions. The outer coordination sphere comprises the remaining parts of Ni,Fe-CODH, such as the elaborate protein matrix, solvent interactions, and remote metalloclusters. The challenge in elucidating and replicating the role of the vast protein matrix has understandably led to a localized focus on the primary and secondary coordination spheres. However, certain portions of Ni,Fe-CODH's expansive protein scaffold are suggested to be catalytically relevant despite considerable distance from the active site. Closer studies of these relatively overlooked areas of nature's exceptionally proficient catalysts may be crucial to continually improve upon electrocatalysis protocols. Mechanistic analysis of cobalt phthalocyanines (CoPc) immobilized onto carbon nanotubes (CoPc/CNT) reveals how the active site microenvironment and outer coordination sphere effects unlock the CoPc molecule's previously inaccessible intrinsic catalytic ability to convert CO2 to MeOH. Our research suggests that incorporating the three coordination spheres in a holistic approach may be vital for advancing electrocatalysis toward viability in mitigating climate disruption. Computational methods allow us to closely examine transition states and determine how to minimize key activation energy barriers.
Collapse
Affiliation(s)
- Christina M Zeng
- The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Julien A Panetier
- The Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
2
|
Smith A, Gotico P, Guillot R, Le Gac S, Leibl W, Aukauloo A, Boitrel B, Sircoglou M, Halime Z. Hinged Carboxylate in the Artificial Distal Pocket of an Iron Porphyrin Enhances CO 2 Electroreduction at Low Overpotential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500482. [PMID: 39840576 DOI: 10.1002/advs.202500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Indexed: 01/23/2025]
Abstract
To efficiently capture, activate, and transform small molecules, metalloenzymes have evolved to integrate a well-organized pocket around the active metal center. Within this cavity, second coordination sphere functionalities are precisely positioned to optimize the rate, selectivity, and energy cost of catalytic reactions. Inspired by this strategy, an artificial distal pocket defined by a preorganized 3D strap is introduced on an iron-porphyrin catalyst (sc-Fe) for the CO2-to-CO electrocatalytic reduction. Combined electrochemical, kinetic, and computational studies demonstrate that the adequate positioning of a carboxylate/carboxylic group acting in synergy with a trapped water molecule within this distal pocket remarkably enhances the reaction turnover frequency (TOF) by four orders of magnitude compared to the perfluorinated iron-tetraphenylporphyrin catalyst (F20Fe) operating at a similar low overpotential. A proton-coupled electron transfer (PCET) is found to be the key process responsible for the unexpected protonation of the coordinating carboxylate, which, upon CO2 insertion, shifts from the first to the second coordination sphere to play a possible secondary role as a proton relay.
Collapse
Affiliation(s)
- Adrien Smith
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, 35000, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, 91191, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes, 35000, France
| | - Marie Sircoglou
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Orsay, 91400, France
| |
Collapse
|
3
|
Chakraborty R, Ojha B, Pain T, Tsega TW, Tarai A, Jana NC, Hung CH, Kar S. Corrolato(oxo)antimony(V) Dimer with Hydrogen-Bond Donor Groups in Secondary Coordination Sphere as a Catalyst for Hydrogen Evolution Reaction. Inorg Chem 2024; 63:21462-21473. [PMID: 39466841 DOI: 10.1021/acs.inorgchem.4c03442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The focus is on developing alternative molecular catalysts using main-group elements and implementing strategic improvements for sustainable hydrogen production. For this purpose, a FB corrole with a (2-(2-((4-methylphenyl)sulfonamido)ethoxy)phenyl) group inserted into the meso position (C-10) of the corrole, along with its high-valent (corrolato)(oxo)antimony(V) dimer, was synthesized. In the crystal structure analysis of the FB corrole and the (corrolato)(oxo)antimony(V) dimer complex, it was noted that the sulfonamido group in the ligand periphery sits atop the corrole ring. The electrochemical hydrogen evolution reaction (HER) of the (corrolato)(oxo)antimony(V) dimer was studied and compared with a previously reported (corrolato)(oxo)antimony(V) complex, which lacks hydrogen-bond donor groups in the secondary coordination sphere. The newly designed molecules, featuring hydrogen-bond donor groups in the secondary coordination sphere, demonstrated clear superiority in the electrochemical HER. Controlled potential electrolysis was employed to evaluate the charge accumulation associated with hydrogen generation in a homogeneous three-electrode system in the presence of 50 mM TFA. The produced hydrogen exhibits a Faradaic efficiency of approximately 80.96%, a turnover frequency (TOF) of 0.44 h-1, and a production rate of 52.83 μL h-1, highlighting the effective catalytic activity of the (corrolato)(oxo)antimony(V) dimer in hydrogen evolution.
Collapse
Affiliation(s)
- Rwiddhi Chakraborty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar -752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Belarani Ojha
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China
| | - Tanmoy Pain
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar -752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Tilahun Wubalem Tsega
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China
| | - Arup Tarai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar -752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- School of Advanced Sciences and Languages (SASL), VIT Bhopal University, Bhopal 466114, Madya Pradesh, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar -752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| | - Chen-Hsiung Hung
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar -752050, India, and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
| |
Collapse
|
4
|
Das C, Karim S, Guria S, Kaushik T, Ghosh S, Dutta A. Electrocatalytic Conversion of CO 2 to Formic Acid: A Journey from 3d-Transition Metal-Based Molecular Catalyst Design to Electrolyzer Assembly. Acc Chem Res 2024; 57:3020-3031. [PMID: 39312638 DOI: 10.1021/acs.accounts.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ConspectusElectrochemical CO2 reduction to obtain formate or formic acid is receiving significant attention as a method to combat the global warming crisis. Significant efforts have been devoted to the advancement of CO2 reduction techniques over the past few decades. This Account provides a unified discussion on various electrochemical methodologies for CO2 to formate conversion, with a particular focus on recent advancements in utilizing 3d-transition-metal-based molecular catalysts. This Account primarily focuses on understanding molecular functions and mechanisms under homogeneous conditions, which is essential for assessing the optimized reaction conditions for molecular catalysts. The unique architectural features of the formate dehydrogenase (FDH) enzyme provide insight into the key role of the surrounding protein scaffold in modulating the active site dynamics for stabilizing the key metal-bound CO2 intermediate. Additionally, the protein moiety also triggers a facile proton relay around the active site to drive electrocatalytic CO2 reduction forward. The fine-tuning of FDH machinery also ensures that the electrocatalytic CO2 reduction leads to the production of formic acid as the major yield without any other carbonaceous products, while limiting the competitive hydrogen evolution reaction. These lessons from the enzymes are key in designing biomimetic molecular catalysts, primarily based on multidentate ligand scaffolds containing peripheral proton relays. The subtle modifications of the ligand framework ensure the favored production of formic acid following electrocatalytic CO2 reduction in the solution phase. Next, the molecular catalysts are required to be mounted on robust electroactive surfaces to develop their corresponding heterogeneous versions. The surface-immobilization provides an edge to the molecular electrocatalysts as their reactivity can be scaled up with improved durability for long-term electrocatalysis. Despite challenges in developing high-performance, selective catalysts for the CO2 to formic acid transformation, significant progress is being made with the tactical use of graphene and carbon nanotube-based materials. To date, the majority of the research activity stops here, as the development of an operational CO2 to formic acid converting electrolyzer prototype still remains in its infancy. To elaborate on the potential future steps, this Account covers the design, scaling parameters, and existing challenges of assembling large-scale electrolyzers. A short glimpse at the utilization of electrolyzers for industrial-scale CO2 reduction is also provided here. The proper evaluation of the surface-immobilized electrocatalysts assembled in an electrolyzer is a key step for gauging their potential for practical viability. Here, the key electrochemical parameters and their expected values for industrial-scale electrolyzers have been discussed. Finally, the techno-economic aspects of the electrolyzer setup are summarized, completing the journey from tactical design of molecular catalysts to their appropriate application in a commercially viable electrolyzer setup for CO2 to formate electroreduction. Thus, this Account portrays the complete story of the evolution of a molecular catalyst to its sustainable application in CO2 utilization.
Collapse
Affiliation(s)
- Chandan Das
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suhana Karim
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Somnath Guria
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tannu Kaushik
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Suchismita Ghosh
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dutta
- Chemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- National Center of Excellence CCU, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Rotundo L, Ahmad S, Cappuccino C, Pearce AJ, Nedzbala H, Bottum SR, Mayer JM, Cahoon JF, Grills DC, Ertem MZ, Manbeck GF. Fast Catalysis at Low Overpotential: Designing Efficient Dicationic Re(bpy 2+)(CO) 3I Electrocatalysts for CO 2 Reduction. J Am Chem Soc 2024; 146:24742-24747. [PMID: 39190866 DOI: 10.1021/jacs.4c08084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report a series of isomeric, dicationic Re(bpy2+)(CO)3I complexes with bpy (2,2'-bipyridine) modified by two phenyl-CH2-(NMe3)+ pendants with cations located at variable distances from the active site for electrocatalytic CO2 reduction in CH3CN/2.8 M H2O. The position of the cationic groups dramatically increases the rate of catalysis by ∼800-fold, from 1.2 to 950 s-1, with only a minor increase in overpotential. Acceleration is due to stabilization of the initial CO2 adduct and lowering of ΔG‡ for C-OH bond cleavage by Coulombic stabilization of anionic charges. Performance may be enhanced by accumulation in the electrochemical double layer. Transition state stabilization in the optimized isomer unlocks the low overpotential "protonation-first" pathway, highlighting the sizable effects of subtle structural optimization.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Shahbaz Ahmad
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Chiara Cappuccino
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Adam J Pearce
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Hannah Nedzbala
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James M Mayer
- The Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
6
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Lawson SE, Roberts RJ, Leznoff DB, Warren JJ. Dramatic Improvement of Homogeneous Carbon Dioxide and Bicarbonate Electroreduction Using a Tetracationic Water-Soluble Cobalt Phthalocyanine. J Am Chem Soc 2024; 146:22306-22317. [PMID: 39083751 DOI: 10.1021/jacs.4c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Electrochemical conversion of carbon dioxide (CO2) offers the opportunity to transform a greenhouse gas into valuable starting materials, chemicals, or fuels. Since many CO2 capture strategies employ aqueous alkaline solutions, there is interest in catalyst systems that can act directly on such capture solutions. Herein, we demonstrate new catalyst designs where the electroactive molecules readily mediate the CO2-to-CO conversion in aqueous solutions between pH 4.5 and 10.5. Likewise, the production of CO directly from 2 M KHCO3 solutions (pH 8.2) is possible. The improved molecular architectures are based on cobalt(II) phthalocyanine and contain four cationic trimethylammonium groups that confer water solubility and contribute to the stabilization of activated intermediates via a concentrated positive charge density around the active core. Turnover frequencies larger than 103 s-1 are possible at catalyst concentrations of down to 250 nM in CO2-saturated solutions. The observed rates are substantially larger than the related cobalt phthalocyanine-containing catalysts. Density functional theory calculations support the idea that the excellent catalytic properties are attributed to the ability of the cationic groups to stabilize CO2-bound reduced intermediates in the catalytic cycle. The homogeneous, aqueous CO2 reduction that these molecules perform opens new frontiers for further development of the CoPc platform and sets a greatly improved baseline for CoPc-mediated CO2 upconversion. Ultimately, this discovery uncovers a strategy for the generation of platforms for practical CO2 reduction catalysts in alkaline solutions.
Collapse
Affiliation(s)
- Scheryn E Lawson
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Ryan J Roberts
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| |
Collapse
|
8
|
Zhang C, Follana-Berná J, Dragoe D, Halime Z, Gotico P, Sastre-Santos Á, Aukauloo A. Cobalt Tetracationic 3,4-Pyridinoporphyrazine for Direct CO 2 to Methanol Conversion Escaping the CO Intermediate Pathway. Angew Chem Int Ed Engl 2024:e202411967. [PMID: 39087310 DOI: 10.1002/anie.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Molecular catalysts offer a unique opportunity to implement different chemical functionalities to steer the efficiency and selectivity for the CO2 reduction for instance. Metalloporphyrins and metallophthalocyanines are under high scrutiny since their most classic derivatives the tetraphenylporphyrin (TPP) and parent phthalocyanine (Pc), have been used as the molecular platform to install, hydrogen bonds donors, proton relays, cationic fragments, incorporation in MOFs and COFs, to enhance the catalytic power of these catalysts. Herein, we examine the electrocatalytic properties of the tetramethyl cobalt (II) tetrapyridinoporphyrazine (CoTmTPyPz) for the reduction of CO2 in heterogeneous medium when adsorbed on carbon nanotubes (CNT) at a carbon paper (CP) electrode. Unlike reported electrocatalysis with cobalt based phthalocyanine where CO was advocated as the two electron and two protons reduced intermediate on the way to the formation of methanol, we found here that CoTmTPyPz does not reduce CO to methanol. Henceforth, ruling out a mechanistic pathway where CO is a reaction intermediate.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
- Current address: Electrochemical Excellent Center, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Jorge Follana-Berná
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Maguire S, Strachan G, Norvaiša K, Donohoe C, Gomes-da-Silva LC, Senge MO. Porphyrin Atropisomerism as a Molecular Engineering Tool in Medicinal Chemistry, Molecular Recognition, Supramolecular Assembly, and Catalysis. Chemistry 2024; 30:e202401559. [PMID: 38787350 DOI: 10.1002/chem.202401559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Porphyrin atropisomerism, which arises from restricted σ-bond rotation between the macrocycle and a sufficiently bulky substituent, was identified in 1969 by Gottwald and Ullman in 5,10,15,20-tetrakis(o-hydroxyphenyl)porphyrins. Henceforth, an entirely new field has emerged utilizing this transformative tool. This review strives to explain the consequences of atropisomerism in porphyrins, the methods which have been developed for their separation and analysis and present the diverse array of applications. Porphyrins alone possess intriguing properties and a structure which can be easily decorated and molded for a specific function. Therefore, atropisomerism serves as a transformative tool, making it possible to obtain even a specific molecular shape. Atropisomerism has been thoroughly exploited in catalysis and molecular recognition yet presents both challenges and opportunities in medicinal chemistry.
Collapse
Affiliation(s)
- Sophie Maguire
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Grant Strachan
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Karolis Norvaiša
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Claire Donohoe
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- CQC, Coimbra Chemistry Centre, University of Coimbra, Coimbra, 3004-535, Portugal
| | | | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg Str. 2a, 85748, Garching, Germany
| |
Collapse
|
10
|
Yuan H, Krishna A, Wei Z, Su Y, Chen J, Hua W, Zheng Z, Song D, Mu Q, Pan W, Xiao L, Yan J, Li G, Yang W, Deng Z, Peng Y. Ligand-Bound CO 2 as a Nonclassical Route toward Efficient Photocatalytic CO 2 Reduction with a Ni N-Confused Porphyrin. J Am Chem Soc 2024; 146:10550-10558. [PMID: 38584353 DOI: 10.1021/jacs.3c14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Implementing the synergistic effects between the metal and the ligand has successfully streamlined the energetics for CO2 activation and gained high catalytic activities, establishing the important breakthroughs in photocatalytic CO2 reduction. Herein, we describe a Ni(II) N-confused porphyrin complex (NiNCP) featuring an acidic N-H group. It is readily deprotonated and exists in an anion form during catalysis. Owing to this functional site, NiNCP gave rise to an outstanding turnover number (TON) as high as 217,000 with a 98% selectivity for CO2 reduction to CO, while the parent Ni(II) porphyrin (NiTPP) was found to be nearly inactive. Our mechanistic analysis revealed a nonclassical reaction pattern where CO2 was effectively activated via the attack of the Lewis-basic ligand. The resulting ligand-bound CO2 adduct could be further reduced to produce CO. This new metal-ligand synergistic effect is anticipated to inspire the design of highly active catalysts for small molecule activations.
Collapse
Affiliation(s)
- Huihong Yuan
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Akash Krishna
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Zhihe Wei
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanhui Su
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jinzhou Chen
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Wei Hua
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhangyi Zheng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Daqi Song
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Qiaoqiao Mu
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Weiyi Pan
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Long Xiao
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, Wageningen 6708 WG, The Netherlands
| | - Wenjun Yang
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhao Deng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
11
|
Sonea A, Crudo NR, Warren JJ. Understanding the Interplay of the Brønsted Acidity of Catalyst Ancillary Groups and the Solution Components in Iron-porphyrin-Mediated Carbon Dioxide Reduction. J Am Chem Soc 2024; 146:3721-3731. [PMID: 38307036 DOI: 10.1021/jacs.3c10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The rapid and efficient conversion of carbon dioxide (CO2) to carbon monoxide (CO) is an ongoing challenge. Catalysts based on iron-porphyrin cores have emerged as excellent electrochemical mediators of the two proton + two electron reduction of CO2 to CO, and many of the design features that promote function are known. Of those design features, the incorporation of Brønsted acids in the second coordination sphere of the iron ion has a significant impact on catalyst turnover kinetics. The Brønsted acids are often in the form of hydroxyphenyl groups. Herein, we explore how the acidity of an ancillary 2-hydroxyphenyl group affects the performance of CO2 reduction electrocatalysts. A series of meso-5,10,15,20-tetraaryl porphyrins were prepared where only the functional group at the 5-meso position has an ionizable proton. A series of cyclic voltammetry (CV) experiments reveal that the complex with -OMe positioned para to the ionizable -OH shows the largest CO2 reduction rate constants in acetonitrile solvent. This is the least acidic -OH of the compounds surveyed. The turnover frequency of the -OMe derivative can be further improved with the addition of 4-trifluoromethylphenol to the solution. In contrast, the iron-porphyrin complex with -CF3 positioned opposite the ionizable -OH shows the smallest CO2 reduction rate constants, and its turnover frequency is less enhanced with the addition of phenols to the reaction solutions. The origin of this effect is rationalized based on kinetic isotope effect experiments and density functional calculations. We conclude that catalysts with weaker internal acids coupled with stronger external acid additives provide superior CO2 reduction kinetics.
Collapse
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas R Crudo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
12
|
Nguyen BX, Sonea A, Warren JJ. Further Understanding the Roles of Solvent, Brønsted Acids, and Hydrogen Bonding in Iron Porphyrin-Mediated Carbon Dioxide Reduction. Inorg Chem 2023; 62:17602-17611. [PMID: 37847220 DOI: 10.1021/acs.inorgchem.3c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Improving our understanding of how molecules and materials mediate the electrochemical reduction of carbon dioxide (CO2) to upgraded products is of great interest as a means to address climate change. A leading class of molecules that can facilitate the electrochemical conversion of CO2 to carbon monoxide (CO) is iron porphyrins. These molecules can have high rate constants for CO2-to-CO conversion; they are robust, and they rely on abundant and inexpensive synthetic building blocks. Important foundational work has been conducted using chloroiron 5,10,15,20-tetraphenylporphyrin (FeTPPCl) in N,N-dimethylformamide (DMF) solvent. A related and recent report points out that the corresponding perchlorate complex, FeTPPClO4, can have superior function due to its solubility in other organic solvents. However, the importance of hydrogen bonding and solvent effects was not discussed. Herein, we present a detailed kinetic study of the triflate (CF3SO3-) complex of FeTPP in DMF and in MeCN using a range of phenol Brønsted acid additives. We also detected the formation of Fe(III)TPP-phenolate complexes using cyclic voltammetry experiments. Importantly, our new analysis of apparent rate constants with different added phenols allows for a modification to the established mechanistic model for CO2-to-CO conversion. Critically, our improved model accounts for hydrogen bonding and solvent effects by using simple hydrogen bond acidity and basicity descriptors. We use this augmented model to rationalize function in other reported porphyrin systems and to make predictions about operational conditions that can enhance the CO2 reduction chemistry.
Collapse
Affiliation(s)
- Bach Xuan Nguyen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
13
|
Imai M, Kosugi K, Saga Y, Kondo M, Masaoka S. Introducing proton/electron mediators enhances the catalytic ability of an iron porphyrin complex for photochemical CO 2 reduction. Chem Commun (Camb) 2023; 59:10741-10744. [PMID: 37526275 DOI: 10.1039/d3cc01862h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A novel iron porphyrin complex with hydroquinone moieties as proton/electron mediators at meso positions was designed and synthesised. The complex serves as an efficient catalyst for photochemical CO2 reduction, and its turnover frequency (TOF = 1.3 × 104 h-1) was the highest among those of comparable systems with sufficient durability.
Collapse
Affiliation(s)
- Maho Imai
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-4 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, NE-6, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Wu F, Jiang F, Yang J, Dai W, Lan D, Shen J, Fang Z. Investigation of Molecular Mechanism of Cobalt Porphyrin Catalyzed CO 2 Electrochemical Reduction in Ionic Liquid by In-Situ SERS. Molecules 2023; 28:molecules28062747. [PMID: 36985719 PMCID: PMC10059646 DOI: 10.3390/molecules28062747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
This study explores the electrochemical reduction in CO2 using room temperature ionic liquids as solvents or electrolytes, which can minimize the environmental impact of CO2 emissions. To design effective CO2 electrochemical systems, it is crucial to identify intermediate surface species and reaction products in situ. The study investigates the electrochemical reduction in CO2 using a cobalt porphyrin molecular immobilized electrode in 1-n-butyl-3-methyl imidazolium tetrafluoroborate (BMI.BF4) room temperature ionic liquids, through in-situ surface-enhanced Raman spectroscopy (SERS) and electrochemical technique. The results show that the highest faradaic efficiency of CO produced from the electrochemical reduction in CO2 can reach 98%. With the potential getting more negative, the faradaic efficiency of CO decreases while H2 is produced as a competitive product. Besides, water protonates porphyrin macrocycle, producing pholorin as the key intermediate for the hydrogen evolution reaction, leading to the out-of-plane mode of the porphyrin molecule. Absorption of CO2 by the ionic liquids leads to the formation of BMI·CO2 adduct in BMI·BF4 solution, causing vibration modes at 1100, 1457, and 1509 cm-1. However, the key intermediate of CO2-· radical is not observed. The υ(CO) stretching mode of absorbed CO is affected by the electrochemical Stark effect, typical of CO chemisorbed on a top site.
Collapse
Affiliation(s)
- Feng Wu
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Fengshuo Jiang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Jiahao Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Weiyan Dai
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Donghui Lan
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Jing Shen
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Zhengjun Fang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, School of Material and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| |
Collapse
|
15
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
16
|
Zhao J, Lyu H, Wang Z, Ma C, Jia S, Kong W, Shen B. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: progress in regulation strategies and applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
17
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202207666. [PMID: 35878059 PMCID: PMC9452489 DOI: 10.1002/anie.202207666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 08/26/2023]
Abstract
Microenvironments tailored by multifunctional secondary coordination sphere groups can enhance catalytic performance at primary metal active sites in natural systems. Here, we capture this biological concept in synthetic systems by developing a family of iron porphyrins decorated with imidazolium (im) pendants for the electrochemical CO2 reduction reaction (CO2 RR), which promotes multiple synergistic effects to enhance CO2 RR and enables the disentangling of second-sphere contributions that stem from each type of interaction. Fe-ortho-im(H), which poises imidazolium units featuring both positive charge and hydrogen-bond capabilities proximal to the active iron center, increases CO2 binding affinity by 25-fold and CO2 RR activity by 2000-fold relative to the parent Fe tetraphenylporphyrin (Fe-TPP). Comparison with monofunctional analogs reveals that through-space charge effects have a greater impact on catalytic CO2 RR performance compared to hydrogen bonding in this context.
Collapse
Affiliation(s)
- Mina R Narouz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
18
|
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022; 61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
|
19
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang X, Zhang W, Apfel U, Cao R. Role‐Specialized Division of Labor in CO
2
Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022; 61:e202209602. [DOI: 10.1002/anie.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xiaotong Jin
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xue‐Peng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
20
|
Garg S, Li M, Hussain T, Idros MN, Wu Y, Zhao XS, Wang GGX, Rufford TE. Urea-Functionalized Silver Catalyst toward Efficient and Robust CO 2 Electrolysis with Relieved Reliance on Alkali Cations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35504-35512. [PMID: 35912581 DOI: 10.1021/acsami.2c05918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a new strategy to improve the reactivity and durability of a membrane electrode assembly (MEA)-type electrolyzer for CO2 electrolysis to CO by modifying the silver catalyst layer with urea. Our experimental and theoretical results show that mixing urea with the silver catalyst can promote electrochemical CO2 reduction (CO2R), relieve limitations of alkali cation transport from the anolyte, and mitigate salt precipitation in the gas diffusion electrode in long-term stability tests. In a 10 mM KHCO3 anolyte, the urea-modified Ag catalyst achieved CO selectivity 1.3 times better with energy efficiency 2.8-fold better than an untreated Ag catalyst, and operated stably at 100 mA cm-2 with a faradaic efficiency for CO above 85% for 200 h. Our work provides an alternative approach to fabricating catalyst interfaces in MEAs by modifying the catalyst structure and the local reaction environment for critical electrochemical applications such as CO2 electrolysis and fuel cells.
Collapse
Affiliation(s)
- Sahil Garg
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mengran Li
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tanveer Hussain
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| | - Mohamed Nazmi Idros
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Yuming Wu
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Xiu Song Zhao
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Geoff G X Wang
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| | - Thomas E Rufford
- School of Chemical Engineering, the University of Queensland, St Lucia, 4072, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mina R. Narouz
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | | | - Lun An
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | - Christopher J. Chang
- University of California Department of Chemistry 532A Latimer Hall 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
22
|
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Wen Yang
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Jin-Mei Chen
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Li-Qi Qiu
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Wen-Jun Xie
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Liang-Nian He
- Nankai University College of Chemistry Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
23
|
Guo K, Li X, Lei H, Guo H, Jin X, Zhang XP, Zhang W, Apfel UP, Cao R. Role‐Specialized Division of Labor in CO2 Reduction with Doubly‐Functionalized Iron Porphyrin Atropisomers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xialiang Li
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haitao Lei
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Hongbo Guo
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaotong Jin
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xue-Peng Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Wei Zhang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Ulf-Peter Apfel
- Ruhr-Universitat Bochum Fakultät für Chemie und Biochemie GERMANY
| | - Rui Cao
- Shaanxi Normal University School of Chemistry and Chemical Engineering Shaanxi Normal UniversityChang'an CampusNumber 620 West Chang'an AvenueChang'an District 710119 Xi'an CHINA
| |
Collapse
|
24
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
25
|
Loipersberger M, Derrick JS, Chang CJ, Head-Gordon M. Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO 2 Reduction Catalyzed by an Iron-Terpyridine Complex. Inorg Chem 2022; 61:6919-6933. [PMID: 35452213 DOI: 10.1021/acs.inorgchem.2c00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
[Fe(tpyPY2Me)]2+ ([Fe]2+) is a homogeneous electrocatalyst for converting CO2 into CO featuring low overpotentials of <100 mV, near-unity selectivity, and high activity with turnover frequencies faster than 100 000 s-1. To identify the origins of its exceptional performance and inform future catalyst design, we report a combined computational and experimental study that establishes two distinct mechanistic pathways for electrochemical CO2 reduction catalyzed by [Fe]2+ as a function of applied overpotential. Electrochemical data shows the formation of two catalytic regimes at low (ηTOF/2 of 160 mV) and high (ηTOF/2 of 590 mV) overpotential plateaus. We propose that at low overpotentials [Fe]2+ undergoes a two-electron reduction, two-proton-transfer mechanism (electrochemical-electrochemical-chemical-chemical, EECC), where turnover occurs through the dicationic iron complex, [Fe]2+. Computational analysis supports the importance of the singlet ground-state electronic structure for CO2 binding and that the rate-limiting step is the second protonation in this low-overpotential regime. When more negative potentials are applied, an additional electron-transfer event occurs through either a stepwise or proton-coupled electron-transfer (PCET) pathway, enabling catalytic turnover from the monocationic iron complex ([Fe]+) via an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism. Comparison of experimental kinetic data obtained from variable controlled potential electrolysis (CPE) experiments with direct product detection with calculated rates obtained from the energetic span model supports the PCET pathway as the most likely mechanism. Moreover, we build upon this mechanistic understanding to propose the design of an improved ligand framework that is predicted to stabilize the key transition states identified in our study and explore their electronic structures using an energy decomposition analysis. Taken together, this work highlights the value of synergistic computational/experimental approaches to decipher mechanisms of new electrocatalysts and direct the rational design of improved platforms.
Collapse
Affiliation(s)
- Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Abdinejad M, Tang K, Dao C, Saedy S, Burdyny T. Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO 2. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:7626-7636. [PMID: 35444810 PMCID: PMC8981215 DOI: 10.1039/d2ta00876a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The ever-growing level of carbon dioxide (CO2) in our atmosphere, is at once a threat and an opportunity. The development of sustainable and cost-effective pathways to convert CO2 to value-added chemicals is central to reducing its atmospheric presence. Electrochemical CO2 reduction reactions (CO2RRs) driven by renewable electricity are among the most promising techniques to utilize this abundant resource; however, in order to reach a system viable for industrial implementation, continued improvements to the design of electrocatalysts is essential to improve the economic prospects of the technology. This review summarizes recent developments in heterogeneous porphyrin-based electrocatalysts for CO2 capture and conversion. We specifically discuss the various chemical modifications necessary for different immobilization strategies, and how these choices influence catalytic properties. Although a variety of molecular catalysts have been proposed for CO2RRs, the stability and tunability of porphyrin-based catalysts make their use particularly promising in this field. We discuss the current challenges facing CO2RRs using these catalysts and our own solutions that have been pursued to address these hurdles.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Caitlin Dao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Saeed Saedy
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Tom Burdyny
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
27
|
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) to generate fixed forms of carbons that have commercial value is a lucrative avenue to ameliorate the growing concerns about the detrimental effect of CO2 emissions as well as to generate carbon-based feed chemicals, which are generally obtained from the petrochemical industry. The area of electrochemical CO2RR has seen substantial activity in the past decade, and several good catalysts have been reported. While the focus was initially on the rate and overpotential of electrocatalysis, it is gradually shifting toward the more chemically challenging issue of selectivity. CO2 can be partially reduced to produce several C1 products like CO, HCOOH, CH3OH, etc. before its complete 8e-/8H+ reduction to CH4. In addition to that, the low-valent electron-rich metal centers deployed to activate CO2, a Lewis acid, are prone to reduce protons, which are a substrate for CO2RR, leading to competing hydrogen evolution reaction (HER). Similarly, the low-valent metal is prone to oxidation by atmospheric O2 (i.e., it can catalyze the oxygen reduction reaction, ORR), necessitating strictly anaerobic conditions for CO2RR. Not only is the requirement of O2-free reaction conditions impractical, but it also leads to the release of partially reduced O2 species such as O2-, H2O2, etc., which are reactive and result in oxidative degradation of the catalyst.In this Account, mechanistic investigations of CO2RR by detecting and, often, chemically trapping and characterizing reaction intermediates are used to understand the factors that determine the selectivity in CO2RR. The spectroscopic data obtained from different intermediates have been identified in different CO2RR catalysts to develop an electronic structure selectivity relationship that is deemed to be important for deciding the selectivity of 2e-/2H+ CO2RR. The roles played by the spin state, hydrogen bonding, and heterogenization in determining the rate and selectivity of CO2RR (producing only CO, only HCOOH, or only CH4) are discussed using examples of both iron porphyrin and non-heme bioinspired artificial mimics. In addition, strategies are demonstrated where the competition between CO2RR and HER as well as CO2RR and ORR could be skewed overwhelmingly in favor of CO2RR in both cases.
Collapse
Affiliation(s)
- Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
28
|
Tarrago M, Ye S, Neese F. Electronic structure analysis of electrochemical CO2 reduction by iron-porphyrins reveals basic requirements to design catalysts bearing non-innocent ligands. Chem Sci 2022; 13:10029-10047. [PMID: 36128248 PMCID: PMC9430493 DOI: 10.1039/d2sc01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Electrocatalytic CO2 reduction is a possible solution to the increasing CO2 concentration in the earth atmosphere, because it enables storage of energy while using the harmful CO2 feedstock as starting...
Collapse
Affiliation(s)
- Maxime Tarrago
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
29
|
Miró R, Fernández-Llamazares E, Godard C, Díaz de los Bernardos M, Gual A. Synergism between iron porphyrin and dicationic ionic liquids: tandem CO 2 electroreduction–carbonylation reactions. Chem Commun (Camb) 2022; 58:10552-10555. [DOI: 10.1039/d2cc03641j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple procedure that drastically reduces the E(Fei/Fe0) and E0cat of the FeIIITPP·Cl catalyst via a synergetic effect with the imidazolium dications of the IL electrolyte, and its application in tandem carbonylations.
Collapse
Affiliation(s)
- Roger Miró
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| | | | - Cyril Godard
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marceli Domingo 1, 43007 Tarragona, Spain
| | | | - Aitor Gual
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| |
Collapse
|
30
|
Trapali A, Gotico P, Herrero C, Ha-Thi MH, Pino T, Leibl W, Charalambidis G, Coutsolelos A, Halime Z, Aukauloo A. Imbroglio at a photoredox-iron-porphyrin catalyst dyad for the photocatalytic CO 2 reduction. CR CHIM 2021. [DOI: 10.5802/crchim.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO 2 to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021; 60:20627-20648. [PMID: 33861487 DOI: 10.1002/anie.202101818] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/10/2022]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) provides an attractive approach to convert renewable electricity into fuels and feedstocks in the form of chemical bonds. Among the different CO2 RR pathways, the conversion of CO2 into CO is considered one of the most promising candidate reactions because of its high technological and economic feasibility. Integrating catalyst and electrolyte design with an understanding of the catalytic mechanism will yield scientific insights and promote this technology towards industrial implementation. Herein, we give an overview of recent advances and challenges for the selective conversion of CO2 into CO. Multidimensional catalyst and electrolyte engineering for the CO2 RR are also summarized. Furthermore, recent studies on the large-scale production of CO are highlighted to facilitate industrialization of the electrochemical reduction of CO2 . To conclude, the remaining technological challenges and future directions for the industrial application of the CO2 RR to generate CO are highlighted.
Collapse
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Gotico P, Leibl W, Halime Z, Aukauloo A. Shaping the Electrocatalytic Performance of Metal Complexes for CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Current Affiliation: Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Winfried Leibl
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| |
Collapse
|
33
|
Amanullah S, Saha P, Dey A. Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO 2 to HCOOH via Fe(III/II)-COOH Intermediate(s). J Am Chem Soc 2021; 143:13579-13592. [PMID: 34410125 DOI: 10.1021/jacs.1c04392] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to tune the selectivity of CO2 reduction by first-row transition metal-based complexes via the inclusion of second-sphere effects heralds exciting and sought-after possibilities. On the basis of the mechanistic understanding of CO2 reduction by iron porphyrins developed by trapping and characterizing the intermediates involved ( J. Am. Chem. Soc. 2015, 137, 11214), a porphyrinoid ligand is envisaged to switch the selectivity of the iron porphyrins by reducing CO2 from CO to HCOOH as well as lower the overpotential to the process. The results show that the iron porphyrinoid designed can catalyze the reduction of CO2 to HCOOH using water as the proton source with 97% yield with no detectable H2 or CO. The iron porphyrinoid can activate CO2 in its Fe(I) state resulting in very low overpotential for CO2 reduction in contrast to all reported iron porphyrins, which can reduce CO2 in their Fe(0) state. Intermediates involved in CO2 reduction, Fe(III)-COOH and a Fe(II)-COOH, are identified with in situ FTIR-SEC and subsequently chemically generated and characterized using FTIR, resonance Raman, and Mössbauer spectroscopy. The mechanism of the reaction helps elucidate a key role played by a closely placed proton transfer residue in aiding CO2 binding to Fe(I), stabilizing the intermediates, and determining the fate of a rate-determining Fe(II)-COOH intermediate.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
34
|
Dedić D, Dorniak A, Rinner U, Schöfberger W. Recent Progress in (Photo-)-Electrochemical Conversion of CO 2 With Metal Porphyrinoid-Systems. Front Chem 2021; 9:685619. [PMID: 34336786 PMCID: PMC8323756 DOI: 10.3389/fchem.2021.685619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Since decades, the global community has been facing an environmental crisis, resulting in the need to switch from outdated to new, more efficient energy sources and a more effective way of tackling the rising carbon dioxide emissions. The activation of small molecules such as O2, H+, and CO2 in a cost—and energy-efficient way has become one of the key topics of catalysis research. The main issue concerning the activation of these molecules is the kinetic barrier that has to be overcome in order for the catalyzed reaction to take place. Nature has already provided many pathways in which small molecules are being activated and changed into compounds with higher energy levels. One of the most famous examples would be photosynthesis in which CO2 is transformed into glucose and O2 through sunlight, thus turning solar energy into chemical energy. For these transformations nature mostly uses enzymes that function as catalysts among which porphyrin and porphyrin-like structures can be found. Therefore, the research focus lies on the design of novel porphyrinoid systems (e.g. corroles, porphyrins and phthalocyanines) whose metal complexes can be used for the direct electrocatalytic reduction of CO2 to valuable chemicals like carbon monoxide, formate, methanol, ethanol, methane, ethylene, or acetate. For example the cobalt(III)triphenylphosphine corrole complex has been used as a catalyst for the electroreduction of CO2 to ethanol and methanol. The overall goal and emphasis of this research area is to develop a method for industrial use, raising the question of whether and how to incorporate the catalyst onto supportive materials. Graphene oxide, multi-walled carbon nanotubes, carbon black, and activated carbon, to name a few examples, have become researched options. These materials also have a beneficial effect on the catalysis through for instance preventing rival reactions such as the Hydrogen Evolution Reaction (HER) during CO2 reduction. It is very apparent that the topic of small molecule activation offers many solutions for our current energy as well as environmental crises and is becoming a thoroughly investigated research objective. This review article aims to give an overview over recently gained knowledge and should provide a glimpse into upcoming challenges relating to this subject matter.
Collapse
Affiliation(s)
- Dženeta Dedić
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria.,IMC Fachhochschule Krems, Krems an der Donau, Austria
| | - Adrian Dorniak
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Uwe Rinner
- IMC Fachhochschule Krems, Krems an der Donau, Austria
| | | |
Collapse
|
35
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
36
|
Jin S, Hao Z, Zhang K, Yan Z, Chen J. Advances and Challenges for the Electrochemical Reduction of CO
2
to CO: From Fundamentals to Industrialization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101818] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Song Jin
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Kai Zhang
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
37
|
Wang Y, Liu T, Chen L, Chao D. Water-Assisted Highly Efficient Photocatalytic Reduction of CO 2 to CO with Noble Metal-Free Bis(terpyridine)iron(II) Complexes and an Organic Photosensitizer. Inorg Chem 2021; 60:5590-5597. [PMID: 33615787 DOI: 10.1021/acs.inorgchem.0c03503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photocatalytic CO2 reduction reaction is believed to be a promising approach for CO2 utilization. In this work, a noble metal-free photocatalytic system, composed of bis(terpyridine)iron(II) complexes and an organic thermally activated delayed fluorescence compound, has been developed for selective reduction of CO2 to CO with a maximum turnover number up to 6320, 99.4% selectivity, and turnover frequency of 127 min-1 under visible-light irradiation in dimethylformamide/H2O solution. More than 0.3 mmol CO was generated using 0.05 μmol catalyst after 2 h of light irradiation. The apparent quantum yield was found to be 9.5% at 440 nm (180 mW cm-2). Control experiments and UV-vis-NIR spectroscopy studies further demonstrated that water strongly promoted the photocatalytic cycle and terpyridine ligands rather than Fe(II) were initially reduced during the photocatalytic process.
Collapse
Affiliation(s)
- Yanan Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ting Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Longxin Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Duobin Chao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
38
|
Loewen ND, Pattanayak S, Herber R, Fettinger JC, Berben LA. Quantification of the Electrostatic Effect on Redox Potential by Positive Charges in a Catalyst Microenvironment. J Phys Chem Lett 2021; 12:3066-3073. [PMID: 33750139 DOI: 10.1021/acs.jpclett.1c00406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Charged functional groups in the secondary coordination sphere (SCS) of a heterogeneous nanoparticle or homogeneous electrocatalyst are of growing interest due to enhancements in reactivity that derive from specific interactions that stabilize substrate binding or charged intermediates. At the same time, accurate benchmarking of electrocatalyst systems most often depends on the development of linear free-energy scaling relationships. However, the thermodynamic axis in those kinetic-thermodynamic correlations is most often obtained by a direct electrochemical measurement of the catalyst redox potential and might be influenced by electrostatic effects of a charged SCS. In this report, we systematically probe positive charges in a SCS and their electrostatic contributions to the electrocatalyst redox potential. A series of 11 iron carbonyl clusters modified with charged and uncharged ligands was probed, and a linear correlation between the νCO absorption band energy and electrochemical redox potentials is observed except where the SCS is positively charged.
Collapse
Affiliation(s)
- Natalia D Loewen
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Santanu Pattanayak
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Rolfe Herber
- Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - James C Fettinger
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, 1 Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
39
|
Khadhraoui A, Gotico P, Leibl W, Halime Z, Aukauloo A. Through-Space Electrostatic Interactions Surpass Classical Through-Bond Electronic Effects in Enhancing CO 2 Reduction Performance of Iron Porphyrins. CHEMSUSCHEM 2021; 14:1308-1315. [PMID: 33387402 DOI: 10.1002/cssc.202002718] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In his pioneering work to unravel the catalytic power of enzymes, Warshel has pertinently validated that electrostatic interactions play a major role in the activation of substrates. Implementing such chemical artifice in molecular catalysts may help improve their catalytic properties. In this study, a series of tetra-, di-, and mono-substituted iron porphyrins with cationic imidazolium groups were designed. Their presence in the second coordination sphere helped stabilize the [Fe-CO2 ] intermediate through electrostatic interactions. It was found herein that the electrocatalytic overpotential is a function of the number of embarked imidazolium. Importantly, a gain of six orders of magnitude in turnover frequencies was observed going from a tetra- to a mono-substituted catalyst. Furthermore, the comparative study showed that catalytic performances trend of through-space electrostatic interaction, a first topological effect reported for iron porphyrins, outperforms the classical through-structure electronic effect.
Collapse
Affiliation(s)
- Asma Khadhraoui
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
| | - Ally Aukauloo
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), 91405, Orsay, France
- Université Paris-Saclay, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
40
|
Li F, Mocci F, Zhang X, Ji X, Laaksonen A. Ionic liquids for CO2 electrochemical reduction. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
42
|
Zhang R, Warren JJ. Recent Developments in Metalloporphyrin Electrocatalysts for Reduction of Small Molecules: Strategies for Managing Electron and Proton Transfer Reactions. CHEMSUSCHEM 2021; 14:293-302. [PMID: 33064354 DOI: 10.1002/cssc.202001914] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Porphyrins are archetypal ligands in inorganic chemistry. The last 10 years have seen important new advances in the use of metalloporphyrins as catalysts in the activation and reduction of small molecules, in particular O2 and CO2 . Recent developments of new molecular designs, scaling relationships, and theoretical modeling of mechanisms have rapidly advanced the utility of porphyrins as electrocatalysts. This Minireview focuses on the summary and evaluation of recent developments of metalloporphyrin O2 and CO2 reduction electrocatalysts, with an emphasis on contrasting homogeneous and heterogeneous electrocatalysis. Comparisons for proposed reaction mechanisms are provided for both CO2 and O2 reduction, and ideas are proposed about how lessons from the last decade of research can lead to the development of practical, applied porphyrin-derived catalysts.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A1S6, Canada
| |
Collapse
|
43
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
44
|
Mao Y, Loipersberger M, Kron KJ, Derrick JS, Chang CJ, Sharada SM, Head-Gordon M. Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO 2 reduction catalysts. Chem Sci 2020; 12:1398-1414. [PMID: 34163903 PMCID: PMC8179122 DOI: 10.1039/d0sc05327a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
To facilitate computational investigation of intermolecular interactions in the solution phase, we report the development of ALMO-EDA(solv), a scheme that allows the application of continuum solvent models within the framework of energy decomposition analysis (EDA) based on absolutely localized molecular orbitals (ALMOs). In this scheme, all the quantum mechanical states involved in the variational EDA procedure are computed with the presence of solvent environment so that solvation effects are incorporated in the evaluation of all its energy components. After validation on several model complexes, we employ ALMO-EDA(solv) to investigate substituent effects on two classes of complexes that are related to molecular CO2 reduction catalysis. For [FeTPP(CO2-κC)]2- (TPP = tetraphenylporphyrin), we reveal that two ortho substituents which yield most favorable CO2 binding, -N(CH3)3 + (TMA) and -OH, stabilize the complex via through-structure and through-space mechanisms, respectively. The coulombic interaction between the positively charged TMA group and activated CO2 is found to be largely attenuated by the polar solvent. Furthermore, we also provide computational support for the design strategy of utilizing bulky, flexible ligands to stabilize activated CO2 via long-range Coulomb interactions, which creates biomimetic solvent-inaccessible "pockets" in that electrostatics is unscreened. For the reactant and product complexes associated with the electron transfer from the p-terphenyl radical anion to CO2, we demonstrate that the double terminal substitution of p-terphenyl by electron-withdrawing groups considerably strengthens the binding in the product state while moderately weakens that in the reactant state, which are both dominated by the substituent tuning of the electrostatics component. These applications illustrate that this new extension of ALMO-EDA provides a valuable means to unravel the nature of intermolecular interactions and quantify their impacts on chemical reactivity in solution.
Collapse
Affiliation(s)
- Yuezhi Mao
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | | | - Kareesa J Kron
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
| | - Jeffrey S Derrick
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
| | - Christopher J Chang
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Molecular and Cell Biology, University of California Berkeley Berkeley CA 94720 USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Material Science, University of Southern California Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern California Los Angeles CA 90089 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California at Berkeley Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
45
|
Cui Y, He B, Liu X, Sun J. Ionic Liquids-Promoted Electrocatalytic Reduction of Carbon Dioxide. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuandong Cui
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
46
|
Abdinejad M, Hossain MN, Kraatz HB. Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Adv 2020; 10:38013-38023. [PMID: 35515175 PMCID: PMC9057206 DOI: 10.1039/d0ra07973a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
Carbon dioxide (CO2) is a greenhouse gas whose presence in the atmosphere significantly contributes to climate change. Developing sustainable, cost-effective pathways to convert CO2 into higher value chemicals is essential to curb its atmospheric presence. Electrochemical CO2 reduction to value-added chemicals using molecular catalysis currently attracts a lot of attention, since it provides an efficient and promising way to increase CO2 utilization. Introducing amino groups as substituents to molecular catalysts is a promising approach towards improving capture and reduction of CO2. This review explores recently developed state-of-the-art molecular catalysts with a focus on heterogeneous and homogeneous amine molecular catalysts for electroreduction of CO2. The relationship between the structural properties of the molecular catalysts and CO2 electroreduction will be highlighted in this review. We will also discuss recent advances in the heterogeneous field by examining different immobilization techniques and their relation with molecular structure and conductive effects.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| |
Collapse
|
47
|
Matsubara Y. Standard Electrode Potentials for Electrochemical Hydrogen Production, Carbon Dioxide Reduction, and Oxygen Reduction Reactions in N,N-Dimethylacetamide. CHEM LETT 2020. [DOI: 10.1246/cl.200220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yasuo Matsubara
- Department of Material and Life Chemistry, Kanagawa University, Rokkakubashi, Yokohama, Kanagawa 221-8686, Japan
| |
Collapse
|
48
|
Smith PT, Weng S, Chang CJ. An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO2 Reduction Catalyzed by Iron Porphyrin. Inorg Chem 2020; 59:9270-9278. [DOI: 10.1021/acs.inorgchem.0c01162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter T. Smith
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - Christopher J. Chang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Guo K, Li X, Lei H, Zhang W, Cao R. Unexpected Effect of Intramolecular Phenolic Group on Electrocatalytic CO
2
Reduction. ChemCatChem 2020. [DOI: 10.1002/cctc.201902034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710119 P. R. China
| |
Collapse
|
50
|
Gotico P, Halime Z, Aukauloo A. Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Trans 2020; 49:2381-2396. [PMID: 32040100 DOI: 10.1039/c9dt04709c] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research in the development of new molecular catalysts for the selective transformation of CO2 to reduced forms of carbon is attracting enormous interest from chemists. Molecular catalyst design hinges on the elaboration of ligand scaffolds to manipulate the electronic and structural properties for the fine tuning of the reactivity pattern. A cornucopia of ligand sets have been designed along this line and more and more are being reported. In this quest, the porphyrin molecular platform has been under intensive focus due to the unmatched catalytic properties of metalloporphyrins. There have been rapid advances in this particular field during the last few years wherein both electronic and structural aspects in the second coordination spheres have been addressed to shift the overpotential and improve the catalytic rates and product selectivity. Metalloporphyrins have also attracted much attention in terms of the elaboration of hybrid materials for heterogeneous catalysis. Here too, some promising activities have made metalloporphyrin derivatives serious candidates for technological implementation. This review collects the recent advances centred around the chemistry of metalloporphyrins for the reduction of CO2.
Collapse
Affiliation(s)
- Philipp Gotico
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut des Sciences du Vivant Frédéric-Joliot, CEA Saclay, Gif-sur-Yvette 91191, France.
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Orsay 91405, France
| | - Ally Aukauloo
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut des Sciences du Vivant Frédéric-Joliot, CEA Saclay, Gif-sur-Yvette 91191, France. and Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Sud, Orsay 91405, France
| |
Collapse
|