1
|
Dominguez-Alfaro A, Casado N, Fernandez M, Garcia-Esnaola A, Calvo J, Mantione D, Calvo MR, Cortajarena AL. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307536. [PMID: 38126666 DOI: 10.1002/smll.202307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maxence Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Andrea Garcia-Esnaola
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Javier Calvo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maria Reyes Calvo
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, 03690, Spain
- Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Alicante, 03690, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
2
|
Ledesma‐Fernandez A, Velasco‐Lozano S, Campos‐Muelas P, Madrid R, López‐Gallego F, Cortajarena AL. Engineering bio-brick protein scaffolds for organizing enzyme assemblies. Protein Sci 2024; 33:e4984. [PMID: 38607190 PMCID: PMC11010954 DOI: 10.1002/pro.4984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces. Enzymes are directly fused to SCAB modules, triggering assembly in a non-reducing environment or by metal presence. A proof-of-concept with formate dehydrogenase (FDH) and L-alanine dehydrogenase (AlaDH) shows enhanced specific productivity by 3.6-fold compared to free enzymes, with the covalent stapling outperforming the metal-driven assembly. This enhancement likely stems from higher-order supramolecular assembly and improved NADH cofactor regeneration, resulting in more efficient cascades. This study underscores the potential of protein engineering to tailor scaffolds, leveraging supramolecular spatial-organizing tools, for more efficient enzymatic cascade reactions.
Collapse
Affiliation(s)
- Alba Ledesma‐Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- University of the Basque Country (UPV/EHU)LeioaSpain
| | - Susana Velasco‐Lozano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- Institute of Chemical Synthesis and Homogeneous Catalysis (ISQCH‐CSIC)University of ZaragozaZaragozaSpain
- Aragonese Foundation for Research and Development (ARAID)ZaragozaSpain
| | | | - Ricardo Madrid
- BioAssays S.L.MadridSpain
- Complutense University of MadridMadridSpain
| | - Fernando López‐Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Donostia‐San SebastiánSpain
- IkerbasqueBasque Foundation for ScienceBilbaoSpain
| |
Collapse
|
3
|
Silvestri A, Vázquez-Díaz S, Misia G, Poletti F, López-Domene R, Pavlov V, Zanardi C, Cortajarena AL, Prato M. An Electroactive and Self-Assembling Bio-Ink, based on Protein-Stabilized Nanoclusters and Graphene, for the Manufacture of Fully Inkjet-Printed Paper-Based Analytical Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300163. [PMID: 37144410 DOI: 10.1002/smll.202300163] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2 O2 ) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2 O2 , outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Silvia Vázquez-Díaz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
| | - Fabrizio Poletti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Rocío López-Domene
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Chiara Zanardi
- Department of molecular sciences and nanosystems, Ca' Foscari University of Venice, Venezia, 30170, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, 40129, Italy
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
4
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
5
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
6
|
Uribe KB, Guisasola E, Aires A, López-Martínez E, Guedes G, Sasselli IR, Cortajarena AL. Engineered Repeat Protein Hybrids: The New Horizon for Biologic Medicines and Diagnostic Tools. Acc Chem Res 2021; 54:4166-4177. [PMID: 34730945 PMCID: PMC8600599 DOI: 10.1021/acs.accounts.1c00440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 02/07/2023]
Abstract
ConspectusThe last decades have witnessed unprecedented scientific breakthroughs in all the fields of knowledge, from basic sciences to translational research, resulting in the drastic improvement of the lifespan and overall quality of life. However, despite these great advances, the treatment and diagnosis of some diseases remain a challenge. Inspired by nature, scientists have been exploring biomolecules and their derivatives as novel therapeutic/diagnostic agents. Among biomolecules, proteins raise much interest due to their high versatility, biocompatibility, and biodegradability.Protein binders (binders) are proteins that bind other proteins, in certain cases, inhibiting or modulating their action. Given their therapeutic potential, binders are emerging as the next generation of biopharmaceuticals. The most well-known example of binders are antibodies, and inspired by them researchers have developed alternative binders using protein design approaches. Protein design can be based on naturally occurring proteins in which, by means of rational design or combinatorial approaches, new binding interfaces can be engineered to obtain specific functions or based on de novo proteins emerging from state-of-the-art computational methodologies.Among the novel designed proteins, a class of engineered repeat proteins, the consensus tetratricopeptide repeat (CTPR) proteins, stand out due to their stability and robustness. The CTPR unit is a helix-turn-helix motif constituted of 34 amino acids, of which only 8 are essential to ensure correct folding of the structure. The small number of conserved residues of CTPR proteins leaves plenty of freedom for functional mutations, making them a base scaffold that can be easily and reproducibly tailored to endow desired functions to the protein. For example, the introduction of metal-binding residues (e.g., histidines, cysteines) drives the coordination of metal ions and the subsequent formation of nanomaterials. Additionally, the CTPR unit can be conjugated with other peptides/proteins or repeated in tandem to encode larger CTPR proteins with superhelical structures. These properties allow for the design of both binder and nanomaterial-coordination modules as well as their combination within the same molecule, making the CTPR proteins, as we have demonstrated in several recent examples, the ideal platform to develop protein-nanomaterial hybrids. Generally, the fusion of two distinct materials exploits the best properties of each; however, in protein-nanomaterial hybrids, the fusion takes on a new dimension as new properties arise.These hybrids have ushered the use of protein-based nanomaterials as biopharmaceuticals beyond their original therapeutic scope and paved the way for their use as theranostic agents. Despite several reports of protein-stabilized nanomaterials found in the literature, these systems offer limited control in the synthesis and properties of the grown nanomaterials, as the protein acts just as a stabilizing agent with no significant functional contribution. Therefore, the rational design of protein-based nanomaterials as true theranostic agents is still incipient. In this context, CTPR proteins have emerged as promising scaffolds to hold simultaneously therapeutic and diagnostic functions through protein engineering, as it has been recently demonstrated in pioneering in vitro and in vivo examples.
Collapse
Affiliation(s)
- Kepa B. Uribe
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Eduardo Guisasola
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Antonio Aires
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Elena López-Martínez
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Gabriela Guedes
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Ivan R. Sasselli
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Aitziber L. Cortajarena
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Jung SM, Lee J, Song WJ. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. J Inorg Biochem 2021; 223:111552. [PMID: 34332336 DOI: 10.1016/j.jinorgbio.2021.111552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
A large fraction of metalloenzymes harbors multiple metal-centers that are electronically and/or functionally arranged within their proteinaceous environments. To explore the orchestration of inorganic and biochemical components and to develop bioinorganic catalysts and materials, we have described selected examples of artificial metalloproteins having multiple metallocofactors that were grouped depending on their initial protein scaffolds, the nature of introduced inorganic moieties, and the method used to propagate the number of metal ions within a protein. They demonstrated that diverse inorganic moieties can be selectively grafted and modulated in protein environments, providing a retrosynthetic bottom-up approach in the design of versatile and proficient biocatalysts and biomimetic model systems to explore fundamental questions in bioinorganic chemistry.
Collapse
Affiliation(s)
- Se-Min Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehee Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Gidley F, Parmeggiani F. Repeat proteins: designing new shapes and functions for solenoid folds. Curr Opin Struct Biol 2021; 68:208-214. [PMID: 33721772 DOI: 10.1016/j.sbi.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
The modular nature of repeat proteins has inspired the design of regular and completely novel sequences and structures. Research in the past years has provided a broad set of design approaches and new repeat proteins that have found applications in molecular recognition, taking advantage of the natural ability of some of these families to bind proteins, peptides and nucleic acids. Here, we provide an overview on the recent trends in design of repeat proteins, particularly solenoid folds, and their applications. By exploiting the intrinsic modularity of repeats, new architectures have been designed that combine different types of repeat, are easily scalable by changing the number of repeats and can be quickly generated by using existing modular building blocks.
Collapse
Affiliation(s)
- Frances Gidley
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom
| | - Fabio Parmeggiani
- School of Chemistry, School of Biochemistry, Bristol Biodesign Institute, University of Bristol, United Kingdom.
| |
Collapse
|
9
|
Pirro F, Schmidt N, Lincoff J, Widel ZX, Polizzi NF, Liu L, Therien MJ, Grabe M, Chino M, Lombardi A, DeGrado WF. Allosteric cooperation in a de novo-designed two-domain protein. Proc Natl Acad Sci U S A 2020; 117:33246-33253. [PMID: 33318174 PMCID: PMC7776816 DOI: 10.1073/pnas.2017062117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the de novo design of an allosterically regulated protein, which comprises two tightly coupled domains. One domain is based on the DF (Due Ferri in Italian or two-iron in English) family of de novo proteins, which have a diiron cofactor that catalyzes a phenol oxidase reaction, while the second domain is based on PS1 (Porphyrin-binding Sequence), which binds a synthetic Zn-porphyrin (ZnP). The binding of ZnP to the original PS1 protein induces changes in structure and dynamics, which we expected to influence the catalytic rate of a fused DF domain when appropriately coupled. Both DF and PS1 are four-helix bundles, but they have distinct bundle architectures. To achieve tight coupling between the domains, they were connected by four helical linkers using a computational method to discover the most designable connections capable of spanning the two architectures. The resulting protein, DFP1 (Due Ferri Porphyrin), bound the two cofactors in the expected manner. The crystal structure of fully reconstituted DFP1 was also in excellent agreement with the design, and it showed the ZnP cofactor bound over 12 Å from the dimetal center. Next, a substrate-binding cleft leading to the diiron center was introduced into DFP1. The resulting protein acts as an allosterically modulated phenol oxidase. Its Michaelis-Menten parameters were strongly affected by the binding of ZnP, resulting in a fourfold tighter Km and a 7-fold decrease in kcat These studies establish the feasibility of designing allosterically regulated catalytic proteins, entirely from scratch.
Collapse
Affiliation(s)
- Fabio Pirro
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Nathan Schmidt
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - James Lincoff
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Zachary X Widel
- Department of Chemistry, Duke University, Durham, NC 27708-0346
| | - Nicholas F Polizzi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Lijun Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 518055 Shenzhen, China
- DLX Scientific, Lawrence, KS 66049
| | | | - Michael Grabe
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001
| | - Marco Chino
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy;
| | - William F DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, CA 94158-9001;
| |
Collapse
|
10
|
Aires A, Maestro D, Ruiz Del Rio J, Palanca AR, Lopez-Martinez E, Llarena I, Geraki K, Sanchez-Cano C, Villar AV, Cortajarena AL. Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection. Chem Sci 2020; 12:2480-2487. [PMID: 34164014 PMCID: PMC8179251 DOI: 10.1039/d0sc05215a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protein-based hybrid nanomaterials have recently emerged as promising platforms to fabricate tailored multifunctional biologics for biotechnological and biomedical applications. This work shows a simple, modular, and versatile strategy to design custom protein hybrid nanomaterials. This approach combines for the first time the engineering of a therapeutic protein module with the engineering of a nanomaterial-stabilizing module within the same molecule, resulting in a multifunctional hybrid nanocomposite unachievable through conventional material synthesis methodologies. As the first proof of concept, a multifunctional system was designed ad hoc for the therapeutic intervention and monitoring of myocardial fibrosis. This hybrid nanomaterial combines a designed Hsp90 inhibitory domain and a metal nanocluster stabilizing module resulting in a biologic drug labelled with a metal nanocluster. The engineered nanomaterial actively reduced myocardial fibrosis and heart hypertrophy in an animal model of cardiac remodeling. In addition to the therapeutic effect, the metal nanocluster allowed for in vitro, ex vivo, and in vivo detection and imaging of the fibrotic disease under study. This study evidences the potential of combining protein engineering and protein-directed nanomaterial engineering approaches to design custom nanomaterials as theranostic tools, opening up unexplored routes to date for the next generation of advanced nanomaterials in medicine. Engineering protein-based hybrids by combining protein engineering and nanotechnology: a protein-nanocluster hybrid for theranostic use in myocardial fibrosis shows the potential to create tailored multifunctional biologics for biomedicine.![]()
Collapse
Affiliation(s)
- Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - David Maestro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain
| | - Jorge Ruiz Del Rio
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain
| | - Ana R Palanca
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain .,Departamento de Anatomía y Biología Celular, Universidad de Cantabria Avd. Herrera Oria s/n 39011 Santander Spain
| | - Elena Lopez-Martinez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Irantzu Llarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus RG20 6RE, UK England
| | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Ana V Villar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain .,Departamento de Fisiología y Farmacología, Universidad de Cantabria Avd. Herrera Oria s/n 39011 Santander Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain .,Ikerbasque, Basque Foundation for Science Mª Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
11
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
12
|
Beloqui A, Cortajarena AL. Protein-based functional hybrid bionanomaterials by bottom-up approaches. Curr Opin Struct Biol 2020; 63:74-81. [PMID: 32485564 DOI: 10.1016/j.sbi.2020.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
This review aims to summarize the last advances on the field of protein engineering towards functional bionanomaterials. Albeit being this an emerging research field, multidisciplinary perspectives in the design of synthetic protein-based hybrid bionanomaterials have resulted in significant progresses. The review covers the definition of bionanomaterials as such and the description of the main methodological approaches currently employed for their assembly. In this context, special emphasis is placed on the fundamental role of protein design. Then, a general overview of the most recent advances related to the fabrication and application of protein-based bionanomaterials in several applications is provided, with special focus on catalysis. Finally, key aspects to be considered by the research community to establish the path for significant future developments in this promising field are discussed.
Collapse
Affiliation(s)
- Ana Beloqui
- POLYMAT and Department of Applied Chemistry, University of the Basque Country UPV/EHU, Avda. Manuel de Lardizabal 3, E-20018 Donostia - San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain.
| | - Aitziber L Cortajarena
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón, 194, E-20014 Donostia - San Sebastian, Spain.
| |
Collapse
|
13
|
Aires A, Fernández-Luna V, Fernández-Cestau J, Costa RD, Cortajarena AL. White-emitting Protein-Metal Nanocluster Phosphors for Highly Performing Biohybrid Light-Emitting Diodes. NANO LETTERS 2020; 20:2710-2716. [PMID: 32155079 DOI: 10.1021/acs.nanolett.0c00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work presents a simple in situ synthesis and stabilization of fluorescent gold nanoclusters (AuNCs) with different sizes using engineered protein scaffolds in water. The protein-AuNC hybrids show a dual emission (450 and 700 nm) with a record photoluminescence quantum yield of 20%. These features impelled us to apply them to biohybrid light-emitting diodes as color down-converting filters or biophosphors. Efficient white emission (x/y CIE color coordinates of 0.31/0.29) and stabilities of more than 800 h were achieved. This represents a 2 orders of magnitude enhancement compared to the prior art. Besides the outstanding performance, the protein scaffold also infers a unique anisotropic emission character that is considered as a proof-of-concept of high interest for single-point lighting and display.
Collapse
Affiliation(s)
- Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance, Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Verónica Fernández-Luna
- IMDEA Materials, Institute C/Eric Kandel, 2, Tecnogetafe, 28906 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Rubén D Costa
- IMDEA Materials, Institute C/Eric Kandel, 2, Tecnogetafe, 28906 Madrid, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance, Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
- Basque Foundation for Science, Ikerbasque, Ma Díaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Liutkus M, López-Andarias A, Mejías SH, López-Andarias J, Gil-Carton D, Feixas F, Osuna S, Matsuda W, Sakurai T, Seki S, Atienza C, Martín N, Cortajarena AL. Protein-directed crystalline 2D fullerene assemblies. NANOSCALE 2020; 12:3614-3622. [PMID: 31912074 DOI: 10.1039/c9nr07083d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Water soluble 2D crystalline monolayers of fullerenes grow on planar assemblies of engineered consensus tetratricopeptide repeat proteins. Designed fullerene-coordinating tyrosine clamps on the protein introduce specific fullerene binding sites, which facilitate fullerene nucleation. Through reciprocal interactions between the components, the hybrid material assembles into two-dimensional 2 nm thick structures with crystalline order, that conduct photo-generated charges. Thus, the protein-fullerene hybrid material is a demonstration of the developments toward functional materials with protein-based precision control of functional elements.
Collapse
Affiliation(s)
- Mantas Liutkus
- CIC biomaGUNE, Paseo de Miramón 182, E-20014 Donostia-San Sebastian, Spain.
| | - Alicia López-Andarias
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas. Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Sara H Mejías
- CIC biomaGUNE, Paseo de Miramón 182, E-20014 Donostia-San Sebastian, Spain.
| | - Javier López-Andarias
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas. Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - David Gil-Carton
- CIC bioGUNE; Bizkaia Science and Technology Park, building 800, E-48160, Derio, Spain
| | - Ferran Feixas
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, 17003 Girona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Wakana Matsuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Carmen Atienza
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas. Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas. Universidad Complutense de Madrid, E-28040 Madrid, Spain. and IMDEA-Nanoscience, Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Paseo de Miramón 182, E-20014 Donostia-San Sebastian, Spain. and Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|