1
|
Courrégelongue C, Baigl D. Functionalization of Emulsion Interfaces: Surface Chemistry Made Liquid. Chemistry 2025; 31:e202403501. [PMID: 39540269 PMCID: PMC11739829 DOI: 10.1002/chem.202403501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Disperse systems, and emulsions in particular, are currently massively used in fields as varied as food industry, cosmetics, health care and environmentally-friendly materials. To meet increasingly precise needs or targeted applications, these systems need to be endowed with new functionalities at their interfaces, in addition to their composition and structural properties. However, due to the fragility of drops and the low reactivity of their surface, conventional solid surface chemistry cannot be used for such a purpose. Several specific emulsion interface functionalization techniques have thus been developed for targeted systems and applications, but a general framework has yet to be drawn. In this review, we attempt to present these methods in a unified way through the prism of what we may call "liquid surface chemistry". We propose to categorize existing methods into drop-coating strategies, including layer-by-layer techniques and polymer coating, with a particular focus on polydopamine, and emulsifier-carrier approaches involving particles and/or amphiphilic molecules. They are discussed in a transversal way, highlighting the underlying physico-chemical principles and providing a comparative analysis of their advantages, current limitations and potential for improvement. We also propose future directions and opportunities, involving for instance DNA-based programmability or artificial intelligence, which could make liquid surface chemistry more versatile and controlled.
Collapse
Affiliation(s)
- Clémence Courrégelongue
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
2
|
Bailey MR, Gmür TA, Grillo F, Isa L. Modular Attachment of Nanoparticles on Microparticle Supports via Multifunctional Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:3731-3741. [PMID: 37181676 PMCID: PMC10173378 DOI: 10.1021/acs.chemmater.3c00555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Nanoparticles are key to a range of applications, due to the properties that emerge as a result of their small size. However, their size also presents challenges to their processing and use, especially in relation to their immobilization on solid supports without losing their favorable functionalities. Here, we present a multifunctional polymer-bridge-based approach to attach a range of presynthesized nanoparticles onto microparticle supports. We demonstrate the attachment of mixtures of different types of metal-oxide nanoparticles, as well as metal-oxide nanoparticles modified with standard wet chemistry approaches. We then show that our method can also create composite films of metal and metal-oxide nanoparticles by exploiting different chemistries simultaneously. We finally apply our approach to the synthesis of designer microswimmers with decoupled mechanisms of steering (magnetic) and propulsion (light) via asymmetric nanoparticle binding, aka Toposelective Nanoparticle Attachment. We envision that this ability to freely mix available nanoparticles to produce composite films will help bridge the fields of catalysis, nanochemistry, and active matter toward new materials and applications.
Collapse
|
3
|
Synthesis of functionalized janus hybrid nanosheets for one-step construction of pickering emulsion and selective photodegradation of water-soluble dyes. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
4
|
Yang K, Wu F, Yan X, Pan J. Self-Locomotive Composites Based on Asymmetric Micromotors and Covalently Attached Nanosorbents for Selective Uranium Recovery. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
6
|
Gui H, Li Y, Du D, Bo Meng Q, Song XM, Liang F. Preparation of asymmetric particles by controlling the phase separation of seeded emulsion polymerization with ethanol/water mixture. J Colloid Interface Sci 2022; 618:496-506. [PMID: 35366477 DOI: 10.1016/j.jcis.2022.03.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Alcohols are discovered for the first time to tune the morphology of poly(vinyl benzyl chloride)-poly(3-methacryloxypropyltrimethoxysilane) (PVBC-PMPS) composite particles through seeded emulsion polymerization within the alcohol/water mixture. Here, monodispersed linear PVBC particles was synthesized through the dispersion polymerization and employed as the seeds. The as-obtained PVBC-PMPS composite particles could be dramatically tuned from core-shell structures to snowman-like particles, to dumbbell-shaped particles, to inverse snowman-like particles when the ethanol content in reaction mixtures is only adjusted within a narrow range. The morphology of fresh PMPS bulges was observed after removing the linear PVBC seeds with N,N'-dimethyl formamide, and their formation mechanism was studied by monitoring the free radical polymerization and sol-gel process of 3-methacryloxypropyltrimethoxysilane. It has been confirmed that the sol-gel kinetics were the main factor on the particles' morphology. In addition, morphologies of PVBC-PMPS particles were also varied by the MPS feeding amount, types of the co-solvent and pH values of alcohol/water mixtures.
Collapse
Affiliation(s)
- Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Bo Meng
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Ma R, Huang Y, Huang J, Zheng K, Jiang S, Jin Q, Sun W. Fabrication of a nanocomposite film decorated with highly dispersive nanoparticles by following an interface-induced strategy. Chem Commun (Camb) 2022; 58:6753-6756. [PMID: 35609267 DOI: 10.1039/d2cc01871c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer nanocomposite film decorated with highly dispersive nanoparticles was prepared by a liquid-liquid interface induced self-assembly method based on a breath figure process. The distribution as well as the orientation preference of the Janus particles within the polymer matrix could be dynamically controlled by adjusting the environmental conditions. Antibacterial and photocatalytic functionality was obtained for the nanocomposite films decorated with silver and titanium dioxide nanoparticles, respectively.
Collapse
Affiliation(s)
- Rui Ma
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Yue Huang
- Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaqi Huang
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Kaixuan Zheng
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Shujuan Jiang
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Qiao Jin
- Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei Sun
- Department of Materials Science and Engineering, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China. .,Huayuan Advanced Materials Co., Ltd., Ningbo, 315100, China
| |
Collapse
|
8
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
9
|
Vafaeezadeh M, Weber K, Demchenko A, Lösch P, Breuninger P, Lösch A, Kopnarski M, Antonyuk S, Kleist W, Thiel WR. Janus bifunctional periodic mesoporous organosilica. Chem Commun (Camb) 2021; 58:112-115. [PMID: 34877940 DOI: 10.1039/d1cc06086d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis of a Janus periodic mesoporous organosilica material (JPMO) is presented here. In this strategy, the surface of the hollow silica material was selectively functionalized with two different bridged organic-inorganic hybrid groups. It was found that the resulting bifunctional material is able to form a stable Pickering emulsion. This new type of PMO material may be suitable for widespread applications in various fields related to material science and catalysis.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, Kaiserslautern 67663, Germany.
| | - Kristin Weber
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, Kaiserslautern 67663, Germany.
| | - Anna Demchenko
- Institut für Oberflächen und Schichtanalytik (IFOS), Technische Universität Kaiserslautern, Trippstadter-Str. 120, Kaiserslautern 67663, Germany
| | - Philipp Lösch
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische Verfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Str. 44, Kaiserslautern 67663, Germany
| | - Paul Breuninger
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische Verfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Str. 44, Kaiserslautern 67663, Germany
| | - Andrea Lösch
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, Kaiserslautern 67663, Germany.
| | - Michael Kopnarski
- Institut für Oberflächen und Schichtanalytik (IFOS), Technische Universität Kaiserslautern, Trippstadter-Str. 120, Kaiserslautern 67663, Germany
| | - Sergiy Antonyuk
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische Verfahrenstechnik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Str. 44, Kaiserslautern 67663, Germany
| | - Wolfgang Kleist
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, Kaiserslautern 67663, Germany.
| | - Werner R Thiel
- Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 54, Kaiserslautern 67663, Germany.
| |
Collapse
|
10
|
Xu M, Gao H, Ji Q, Chi B, He L, Song Q, Xu Z, Li L, Wang J. Construction multifunctional nanozyme for synergistic catalytic therapy and phototherapy based on controllable performance. J Colloid Interface Sci 2021; 609:364-374. [PMID: 34902673 DOI: 10.1016/j.jcis.2021.11.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 01/19/2023]
Abstract
Advances in nanozyme involve an efficient catalytic process, which has demonstrated great potential in tumor therapy. The key to improving catalytic therapy is to solve the limitation of the tumor microenvironment on Fenton reaction. In this work, Prussian blue nanoparticles doped with different rare earth ions (Yb3+, Gd3+, Tm3+) were screened to perform synergistic of photothermalandcatalytictumortherapy. The optimized catalytic performance can be further enhanced through photothermal effect to maximize the Fenton reaction to solve the limitation of the tumor microenvironment. Yb-PB, with the optimal photothermal and catalytic performance, was screened out. In order to avoid the scavenging effect of glutathione (GSH) on ·OH in tumor cells and the reaction with a bit H2O2 in normal cells, GSH targeted polydopamine (PDA) was wrapped on the surface of Yb-PB to obtain Yb-PB@PDA. It was found that enough hydroxyl radicals (·OH) can be generated even if at high GSH concentration and the NIR irradiation can help produce more ·OH. Cell fluorescence imaging (FOI) and in vivo magnetic resonance imaging (MRI) experiments showed the potential application in FOI/MRI dual-mode imaging guided therapy. In vivo anti-tumor experiments showed that Yb-PB@PDA has a satisfactory anti-cancer effect through the combined effect of catalytic/photothermal therapy. Thus, a multifunctional nanozyme for tumor therapy is constructed.
Collapse
Affiliation(s)
- Mingyue Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Haiqing Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qin Ji
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qian Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Ling Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
11
|
Reproducible and fast preparation of superhydrophobic surfaces via an ultrasound-accelerated one-pot approach for oil collection. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Wang N, Yu X, Kong Q, Li Z, Li P, Ren X, Peng B, Deng Z. Nisin-loaded polydopamine/hydroxyapatite composites: Biomimetic synthesis, and in vitro bioactivity and antibacterial activity evaluations. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
14
|
Zhang Y, Kang L, Huang H, Deng J. Optically Active Janus Particles Constructed by Chiral Helical Polymers through Emulsion Polymerization Combined with Solvent Evaporation-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6319-6327. [PMID: 31939279 DOI: 10.1021/acsami.9b21222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Polymer Janus particles (PJPs) have been extensively investigated due to their intriguing features which cannot be achieved in traditional counterparts. Chiral polymer particles also have constituted a unique research area in polymer science. However, how to construct PJPs derived from chiral polymers, especially chiral helical polymers, still remains a significant academic challenge. This contribution reports the first success in preparing optically active PJPs constructed by chiral helical substituted polyacetylene via emulsion polymerization combined with solvent evaporation to induce phase separation. In emulsion polymerization systems, polymethyl methacrylate worked as a template and separated from polyacetylene domains in the course of acetylenic monomers' polymerization and evaporation of the solvent, by which optically active PJPs were formed. The major influencing factors were explored to elucidate their effects on the formation and morphology of PJPs. Mushroom- and bowl-like PJPs were obtained. Scanning electron microscopy (SEM) images ascertain nonspherical morphologies of the obtained PJPs. Circular dichroism and UV-vis absorption spectra demonstrate their optical activity, which originated in the predominantly one-handed helical polyacetylene chains constructing the PJPs. A formation mechanism was then proposed for understanding this unprecedented type of PJPs.
Collapse
Affiliation(s)
| | | | - Huajun Huang
- School of Materials Science and Engineering , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | | |
Collapse
|
15
|
Anitas EM. Structural characterization of Janus nanoparticles with tunable geometric and chemical asymmetries by small-angle scattering. Phys Chem Chem Phys 2020; 22:536-548. [PMID: 31834334 DOI: 10.1039/c9cp05521e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in polymer chemistry allow a facile, large-scale synthesis of nanoscale Janus particles (JP) with tunable structural and physical properties. Both the structures and distributions of regions with different chemical compositions within JP play an important role in chemical and optical sensing, or in bio-medical applications, such as drug delivery. The structural properties of symmetric JP can be accurately characterized by small-angle scattering (SAS), yet the structure of JP with tunable geometrical and chemical asymmetries (AJP) can be described only qualitatively (e.g., globular, elongated or planar), depending on the value of the scattering exponent in the Porod region of SAS intensity. Here it is shown that identification of AJP and a quantitative description of their morphology can be achieved by using the method of SAS together with contrast variation. This approach is illustrated by providing analytic expressions for SAS intensities and for contrast matching points for two kinds of common multiphase AJP: spheres with one cap and those with two caps. The influence of the model's parameters is presented and discussed, and the structural evolution of AJP upon solvent deuteration is characterized. The results suggest that the combination of the SAS technique with multiphase modeling provides unprecedented detailed information about the structural conformation of AJP, which allows their identification from experimental SAS data. Monte Carlo simulations are performed both to validate the obtained results and to illustrate the above findings for complex AJP for which analytic expressions are not available.
Collapse
|
16
|
Synthesis of sandwich-structured silver@polydopamine@silver shells with enhanced antibacterial activities. J Colloid Interface Sci 2019; 558:47-54. [PMID: 31580954 DOI: 10.1016/j.jcis.2019.09.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
The unique antibacterial characteristics of Ag nanomaterials offer a wide potential range of applications, but achieving rapid and durable antibacterial efficacy is challenging. This is because the speed and durability of the antibacterial function make conflicting demands on the structural design: the former requires the direct exposure of Ag to the surrounding environment, whereas the durability requires Ag to be protected from the environment. To overcome this incompatibility, we synthesize sandwich-structured polydopamine shells decorated both internally and externally with Ag nanoparticles, which exhibit prompt and lasting bioactivity in applications. These shells are biocompatible and can be used in vivo to counter bacterial infection caused by methicillin-resistant Staphylococcus aureus superbugs and to inhibit biofilm formation. This work represents a new paradigm for the design of composite materials with enhanced antibacterial properties.
Collapse
|
17
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|