1
|
Sloane SE, Sancheti SP, Hendy MS, Smith KM, Thorat RA, Senkum H, Clark JR. Regioselective Cu-Catalyzed Hydrosilylation of Internal Aryl Alkynes. Org Lett 2025. [PMID: 39883535 DOI: 10.1021/acs.orglett.4c04722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Construction of vinylsilane building blocks is important for advancing the synthesis of complex small molecules and natural products. Herein, we report a highly regio- and stereoselective copper-catalyzed hydrosilylation of unsymmetrical internal aryl alkynes. The reaction is performed across a broad scope of internal aryl alkynes, providing exclusive access to α-vinylsilane alkenyl arene products, including several silylated small molecule drug analogs.
Collapse
Affiliation(s)
- Samantha E Sloane
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Shashank P Sancheti
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Moataz S Hendy
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Kathryn M Smith
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Raviraj Ananda Thorat
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Hathaithep Senkum
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Joseph R Clark
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
2
|
Ye F, Huang Z, Li J, Wang Q, Wu L, Li X. Molybdenum-Catalyzed ( E)-Selective Anti-Markovnikov Hydrosilylation of Alkynes. Molecules 2024; 29:5952. [PMID: 39770041 PMCID: PMC11677069 DOI: 10.3390/molecules29245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Herein, we report the first example of molybdenum-catalyzed (E)-Selective anti-Markovnikov hydrosilylation of alkynes. The reaction operates effectively with the utilization of minute amounts of the inexpensive, bench-stable pre-catalyst and ligand under mild conditions. Moreover, this molybdenum-catalyzed hydrosilylation process features the advantages of simple operation, excellent selectivity, and broad functional groups tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Lihuan Wu
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (F.Y.); (Z.H.); (J.L.); (Q.W.)
| | - Xiang Li
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (F.Y.); (Z.H.); (J.L.); (Q.W.)
| |
Collapse
|
3
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024; 30:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
4
|
Latha AT, Swamy PCA. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones. Chemistry 2024; 30:e202401841. [PMID: 38853149 DOI: 10.1002/chem.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| | - P Chinna Ayya Swamy
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| |
Collapse
|
5
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Lin XT, Ishizaka Y, Maegawa Y, Takeuchi K, Inagaki S, Matsumoto K, Choi JC. 1,10-Phenanthroline-based periodic mesoporous organosilica: from its synthesis to its application in the cobalt-catalyzed alkyne hydrosilylation. RSC Adv 2023; 13:7828-7833. [PMID: 36909752 PMCID: PMC9996227 DOI: 10.1039/d2ra08272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
1,10-Phenanthroline (Phen) is a typical ligand for metal complexation and various metal/Phen complexes have been applied as a catalyst in several organic transformations. This study reports the synthesis of a Phen-based periodic mesoporous organosilica (Phen-PMO) with the Phen moieties being directly incorporated into the organosilica framework. The Phen-PMO precursor, 3,8-bis[(triisopropoxysilyl)methyl]-1,10-phenanthroline (1a), was prepared via the Kumada-Tamao-Corriu cross-coupling of 3,8-dibromo-1,10-phenanthroline and [(triisopropoxysilyl)methyl]magnesium chloride. The co-condensation of 1a and 1,2-bis(triethoxysilyl)ethane in the presence of P123 as the template surfactant afforded Phen-PMO 3 with an ordered 2-D hexagonal mesoporous structure as confirmed by nitrogen adsorption/desorption measurements, X-ray diffraction, and transition electron microscopy. Co(OAc)2 was immobilized on Phen-PMO 3, and the obtained complex showed good catalytic activity for the hydrosilylation reaction of phenylacetylene with phenylsilane.
Collapse
Affiliation(s)
- Xiao-Tao Lin
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Yusuke Ishizaka
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | | | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Shinji Inagaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Toyota Central R&D Labs., Inc. Nagakute Aichi 480-1192 Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan .,Graduate School of Pure and Applied Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| |
Collapse
|
7
|
Xu X, Gao A, Chen W, Xu X, Li J, Cui C. Lanthanum Ate Amide-Catalyzed Regio- and Stereoselective Hydrosilylation of Internal Alkynes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Ailin Gao
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wufeng Chen
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiufang Xu
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
8
|
Bulky NHC–Cobalt Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Catalysts 2023. [DOI: 10.3390/catal13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The hydrosilylation of alkynes is one of the most attractive and, at the same time, most challenging catalytic transformations, usually demanding the use of noble transition metals. We describe a catalytic system, based on cobalt(0) complex and bulky N-heterocyclic carbene (NHC) ligands, permitting the highly effective hydrosilylation of a broad scope of alkynes and silanes. The application of bulky NHC ligands allowed a decrease in the amount of cobalt necessary for an effective reaction run to 2.5 mol% and provided excellent selectivity towards challenging α-vinylsilanes. The developed method tolerates a number of substituted aryl, alkyl, and silyl acetylenes. Moreover, it is suitable for both tertiary and secondary silanes. Our findings confirm that steric hindrance around the metal center can effectively increase the activity of a catalyst and ensure better selectivity than those of analogous complexes bearing smaller ligands.
Collapse
|
9
|
Li H, Yang C, Wang D, Deng L. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of Alk-2-ynes with Tertiary Silanes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongfang Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Cheng Z, Li M, Zhang XY, Sun Y, Yu QL, Zhang XH, Lu Z. Cobalt-Catalyzed Regiodivergent Double Hydrosilylation of Arylacetylenes. Angew Chem Int Ed Engl 2023; 62:e202215029. [PMID: 36330602 DOI: 10.1002/anie.202215029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Double hydrosilylation of alkynes represents a straightforward method to synthesize bis(silane)s, yet it is challenging if α-substituted vinylsilanes act as the intermediates. Here, a cobalt-catalyzed regiodivergent double hydrosilylation of arylacetylenes is reported for the first time involving this challenge, accessing both vicinal and geminal bis(silane)s with exclusive regioselectivity. Various novel bis(silane)s containing Si-H bonds can be easily obtained. The gram-scale reactions could be performed smoothly. Preliminarily mechanistic studies demonstrated that the reactions were initiated by cobalt-catalyzed α-hydrosilylation of alkynes, followed by cobalt-catalyzed β-hydrosilylation of the α-vinylsilanes to deliver vicinal bis(silane)s, or hydride-catalyzed α-hydrosilylation to give geminal ones. Notably, these bis(silane)s can be used for the synthesis of high-refractive-index polymers (nd up to 1.83), demonstrating great potential utility in optical materials.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minghua Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yang Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Lei Yu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing-Hong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
12
|
Skrodzki M, Ortega Garrido V, Csáky AG, Pawluć P. Searching for Highly Active Cobalt Catalysts Bearing Schiff Base Ligands for Markovnikov-Selective Hydrosilylation of Alkynes with Tertiary Silanes. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Bai W, Sun J, Wang D, Bai S, Deng L. Low‐coordinate cobalt(0) N‐heterocyclic carbene complexes as catalysts for hydrosilylation of alkynes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenli Bai
- Institute of Applied Chemistry Shanxi University Taiyuan P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Jian Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| | - Sheng‐Di Bai
- Institute of Applied Chemistry Shanxi University Taiyuan P. R. China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai P. R. China
| |
Collapse
|
14
|
Panyam PKR, Atwi B, Ziegler F, Frey W, Nowakowski M, Bauer M, Buchmeiser MR. Rh(I)/(III)-N-Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio- and Stereoselectivity in the Hydrosilylation of Alkynes. Chemistry 2021; 27:17220-17229. [PMID: 34672398 PMCID: PMC9299010 DOI: 10.1002/chem.202103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the β(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable β-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent β-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the β(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high β(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.
Collapse
Affiliation(s)
- Pradeep K. R. Panyam
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Boshra Atwi
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Felix Ziegler
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Michal Nowakowski
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Matthias Bauer
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Michael R. Buchmeiser
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- German Institutes of Textile and Fiber ResearchKörschtalstr. 2673770DenkendorfGermany
| |
Collapse
|
15
|
Regio‐controllable Cobalt‐Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Zhu SF, He P, Hu MY, Zhang XY. Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1605-9572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAlkyne hydrosilylation is one of the most efficient methods for the synthesis of alkenyl silicon derivatives and has been a hot topic of research for decades. This short review summarizes the progress in transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Topics are discussed based on different types of alkynes and the selectivities.1 Introduction2 Terminal Alkyne Hydrosilylation2.1 β-E Selectivity2.2 β-Z Selectivity2.3 α-selectivity3 Internal Alkyne Hydrosilylation3.1 Aryl–Alkyl Acetylenes3.2 Alkyl–Alkyl Acetylenes3.3 Internal Alkynes with Polarized Substituents4 Summary and Outlook
Collapse
|
17
|
Wang D, Lai Y, Wang P, Leng X, Xiao J, Deng L. Markovnikov Hydrosilylation of Alkynes with Tertiary Silanes Catalyzed by Dinuclear Cobalt Carbonyl Complexes with NHC Ligation. J Am Chem Soc 2021; 143:12847-12856. [PMID: 34347477 DOI: 10.1021/jacs.1c06583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal-catalyzed hydrosilylation of alkynes is an ideal atom-economic method to prepare vinylsilanes that are useful reagents in the organic synthesis and silicone industry. Although great success has been made in the preparation of β-vinylsilanes by metal-catalyzed hydrosilylation reactions of alkynes, reported metal-catalyzed reactions for the synthesis of α-vinylsilanes suffer from narrow substrate scope and/or poor selectivity. Herein, we present selective Markovnikov hydrosilylation reactions of terminal alkynes with tertiary silanes using a dicobalt carbonyl N-heterocyclic carbene (NHC) complex [(IPr)2Co2(CO)6] (IPr = 1,3-di(2,6-diisopropylphenyl)imidazol-2-ylidene) as catalyst. This cobalt catalyst effects the hydrosilylation of both alkyl- and aryl-substituted terminal alkynes with a variety of tertiary silanes with good functional group compatibility, furnishing α-vinylsilanes with high yields and high α/β selectivity. Mechanistic study revealed that the stoichiometric reactions of [(IPr)2Co2(CO)6] with PhC≡CH and HSiEt3 can furnish the dinuclear cobalt alkyne and mononuclear cobalt silyl complexes [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)2(IPr)], and [(IPr)Co(CO)3(SiEt3)], respectively. Both dicobalt bridging alkyne complexes can react with HSiEt3 to yield α-triethylsilyl styrene and effect the catalytic Markovnikov hydrosilylation reaction. However, the mono(NHC) dicobalt complex [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3] exhibits higher catalytic activity over the di(NHC)-dicobalt complexes. The cobalt silyl complex [(IPr)Co(CO)3(SiEt3)] is ineffective in catalyzing the hydrosilylation reaction. Deuterium labeling experiments with PhC≡CD and DSiEt3 indicates the syn-addition nature of the hydrosilylation reaction. The absence of deuterium scrambling in the hydrosilylation products formed from the catalytic reaction of PhC≡CH with a mixture of DSiEt3 and HSi(OEt)3 hints that mononuclear cobalt species are less likely the in-cycle species. These observations, in addition to the evident of nonsymmetric Co2C2-butterfly core in the structure of [(IPr)(CO)2Co(μ-η2:η2-HCCPh)Co(CO)3], point out that mono(IPr)-dicobalt species are the genuine catalysts for the cobalt-catalyzed hydrosilylation reaction and that the high α selectivity of the catalytic system originates from the joint play of the dicobalt carbonyl species to coordinate alkynes in the Co(μ-η2:η2-HCCR')Co mode and the steric demanding nature of IPr ligand.
Collapse
Affiliation(s)
- Dongyang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuhang Lai
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Cheng Z, Guo J, Sun Y, Zheng Y, Zhou Z, Lu Z. Regio-controllable Cobalt-Catalyzed Sequential Hydrosilylation/Hydroboration of Arylacetylenes. Angew Chem Int Ed Engl 2021; 60:22454-22460. [PMID: 34347353 DOI: 10.1002/anie.202109089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Regiodivergent addition reactions provide straightforward and atom-economic approaches to access different regioisomers. However, the regio-chemistry control to access all the possible results is still challenging especially for the reaction involving multiple addition steps. Herein, we reported regio-controllable cobalt-catalyzed sequential hydrosilylation/hydroboration of arylacetylenes, delivering all the possible regio-outcomes with high regioselectivities (up to >20/1 rr for all the cases). Each regioisomer of value-added silylboronates could be efficiently and regioselectively obtained from the same materials. The adjustment of the ligands of cobalt catalysts combined with dual catalysis relay strategy is the key to achieve regio-chemistry control. This regio-controllable research might inspire the exploration of the diversity-oriented synthesis that involves multiple additions and provide full sets of regioisomers of other synthetic useful molecules.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yushan Zheng
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhehong Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
19
|
Gao W, Ding H, Yu T, Wang Z, Ding S. Iridium-catalyzed regioselective hydrosilylation of internal alkynes facilitated by directing and steric effects. Org Biomol Chem 2021; 19:6216-6220. [PMID: 34195740 DOI: 10.1039/d1ob00910a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we reported the iridium-catalyzed hydrosilylation of internal alkynes under simple and mild conditions. The intrinsic functional groups of alkyne substrates were disclosed to be crucial in facilitating both the hydrosilylation process and related regioselectivity owing to their coordination capability towards the iridium catalyst. Utilization of the steric trimethylsilyl-protected trihydroxysilane proved to be another critical factor in ensuring the efficient proceeding of this process.
Collapse
Affiliation(s)
- Weiwei Gao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Huan Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tian Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhen Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Kong D, Hu B, Yang M, Xia H, Chen D. Cobalt-Catalyzed (E)-Selective Hydrosilylation of 1,3-Enynes for the Synthesis of 1,3-Dienylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Degong Kong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
21
|
Rad'kova NY, Kovylina TA, Cherkasov AV, Lyssenko KA, Ob'edkov AM, Trifonov AA. Coordination Features of the 1,3,5‐Triazapentadienyl Ligand in Alkyl Complexes of Rare‐Earth Metals. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Natalia Yu. Rad'kova
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Tatyana A. Kovylina
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Konstantin A. Lyssenko
- Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova Street 28 119334 Moscow Russia
- M.V. Lomonosov Moscow State University Chemistry Department Leninskie Gory 119991 Moscow Russia
| | - Anatoly M. Ob'edkov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences Tropinina Street 49, GSP-445 603950 Nizhny Novgorod Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova Street 28 119334 Moscow Russia
| |
Collapse
|
22
|
Jia JS, Cao Y, Wu TX, Tao Y, Pan YM, Huang FP, Tang HT. Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co 14} Clusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun-Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Yan Cao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Tai-Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ye Tao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Fu-Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|
23
|
Mutoh Y, Yamamoto K, Mohara Y, Saito S. (Z)-Selective Hydrosilylation and Hydroboration of Terminal Alkynes Enabled by Ruthenium Complexes with an N-Heterocyclic Carbene Ligand. CHEM REC 2021; 21:3429-3441. [PMID: 34028185 DOI: 10.1002/tcr.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/08/2022]
Abstract
Metal-catalyzed trans-1,2-hydrosilylations and hydroborations of terminal alkynes that generate synthetically valuable (Z)-alkenylsilanes and (Z)-alkenylboranes remain challenging due to the (E)-selective nature of the reactions and the formation of the thermodynamically unfavorable (Z)-isomer. The development of new, efficient catalytic systems for the (Z)-selective hydrosilylation and hydroboration of terminal alkynes is thus highly desirable from a fundamental perspective as it would deepen our understanding of the metal-catalyzed (Z)-selective hydrosilylation and hydroboration of terminal alkynes. This personal account describes our research for developing a ruthenium complex that can efficiently catalyze the hydrosilylation and hydroboration of terminal alkynes, and for exploring the factors controlling (Z)-selectivity of the reactions. Our effort into the activation of B-protected boronic acids, R-B(dan) (dan=naphthalene-1,8-diaminato), that was believed not to participate in Suzuki-Miyaura cross-coupling, is also discussed.
Collapse
Affiliation(s)
- Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kensuke Yamamoto
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusei Mohara
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
24
|
Guo Z, Wen H, Liu G, Huang Z. Iron-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Enynes To Access 1,3-Dienylsilanes. Org Lett 2021; 23:2375-2379. [PMID: 33689387 DOI: 10.1021/acs.orglett.1c00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A regio- and stereoselective hydrosilylation of 1,3-enynes with primary and secondary silanes to access 1,3-dienylsilanes is accomplished by employing an iron precatalyst bearing iminopyridine-oxazoline (IPO) ligand. The hydrosilylation proceeds via syn-addition of a Si-H bond to the alkyne group of 1,3-enynes, incorporating the silyl group at the site proximal to the alkene. The reaction features mild conditions, broad substrate scope, and good functional group tolerance. The synthetic utility was demonstrated by gram-scale reactions and further transformations.
Collapse
Affiliation(s)
- Zhihao Guo
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Huanan Wen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
25
|
Skrodzki M, Patroniak V, Pawluć P. Schiff Base Cobalt(II) Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Org Lett 2021; 23:663-667. [PMID: 33439031 PMCID: PMC7875507 DOI: 10.1021/acs.orglett.0c03721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A bench-stable cobalt(II)
complex, with 3N-donor socket-type benzimidazole-imine-2H-imidazole ligand is reported as a precatalyst for regioselective
hydrosilylation of terminal alkynes. Both aromatic and aliphatic alkynes
could be effectively hydrosilylated with primary, secondary, and tertiary
silane to give α-vinylsilanes in high yields with excellent
Markovnikov selectivity and extensive functional-group tolerance.
Catalyst loading varies within 0.5–0.05 mol %, which is one
of the most efficient reported so far in the literature on cobalt-catalyzed
alkyne hydrosilylation.
Collapse
Affiliation(s)
- Maciej Skrodzki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.,Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
26
|
de Almeida LD, Wang H, Junge K, Cui X, Beller M. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew Chem Int Ed Engl 2021; 60:550-565. [PMID: 32668079 PMCID: PMC7839722 DOI: 10.1002/anie.202008729] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 12/26/2022]
Abstract
Hydrosilylation reactions, which allow the addition of Si-H to C=C/C≡C bonds, are typically catalyzed by homogeneous noble metal catalysts (Pt, Rh, Ir, and Ru). Although excellent activity and selectivity can be obtained, the price, purification, and metal residues of these precious catalysts are problems in the silicone industry. Thus, a strong interest in more sustainable catalysts and for more economic processes exists. In this respect, recently disclosed hydrosilylations using catalysts based on earth-abundant transition metals, for example, Fe, Co, Ni, and Mn, and heterogeneous catalysts (supported nanoparticles and single-atom sites) are noteworthy. This minireview describes the recent advances in this field.
Collapse
Affiliation(s)
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesNo. 18, Tianshui Middle RoadLanzhou730000China
| | - Kathrin Junge
- Leibniz-Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective OxidationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesNo. 18, Tianshui Middle RoadLanzhou730000China
| | - Matthias Beller
- Leibniz-Institute for CatalysisAlbert-Einstein-Str. 29a18059RostockGermany
| |
Collapse
|
27
|
Kong D, Hu B, Yang M, Gong D, Xia H, Chen D. Bis(phosphine)cobalt-Catalyzed Highly Regio- and Stereoselective Hydrosilylation of 1,3-Diynes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Degong Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Bowen Hu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Dawei Gong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
28
|
Almeida LD, Wang H, Junge K, Cui X, Beller M. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences No. 18, Tianshui Middle Road Lanzhou 730000 China
| | - Kathrin Junge
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences No. 18, Tianshui Middle Road Lanzhou 730000 China
| | - Matthias Beller
- Leibniz-Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
29
|
Sánchez-Page B, Munarriz J, Jiménez MV, Pérez-Torrente JJ, Blasco J, Subias G, Passarelli V, Álvarez P. β-(Z) Selectivity Control by Cyclometalated Rhodium(III)–Triazolylidene Homogeneous and Heterogeneous Terminal Alkyne Hydrosilylation Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz Sánchez-Page
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Julen Munarriz
- Department of Chemistry & Biochemistry, University of California—Los Angeles, Los Angeles, California 90095, United States
- Departamento de Quı́mica Fı́sica and Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Javier Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Gloria Subias
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Vincenzo Passarelli
- Centro Universitario de la Defensa, Ctra. Huesca s/n, ES-50090 Zaragoza, Spain
| | - Patricia Álvarez
- Instituto de Ciencia y Tecnologı́a del Carbono, INCAR, CSIC, P.O. Box, 73, 33080 Oviedo, Spain
| |
Collapse
|
30
|
Wang H, Huang Y, Wang X, Cui X, Shi F. Supported Ni nanoparticles with a phosphine ligand as an efficient heterogeneous non-noble metal catalytic system for regioselective hydrosilylation of alkynes. Org Biomol Chem 2020; 18:7554-7558. [PMID: 32966510 DOI: 10.1039/d0ob01693d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A convenient and effective heterogeneous non-noble metal catalytic system for regioselective hydrosilylation of alkynes was successfully developed by the combination of Ni/Al2O3 with a xantphos ligand. The resulting catalytic system displayed excellent catalytic performance in the heterogeneous hydrosilylation of PhSiH3 with a wide range of aromatic and aliphatic terminal alkynes, affording the corresponding (E)-vinylsilanes in good to excellent yields with high regioselectivity.
Collapse
Affiliation(s)
- Hongli Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | | | | | |
Collapse
|
31
|
Hu MY, He P, Qiao TZ, Sun W, Li WT, Lian J, Li JH, Zhu SF. Iron-Catalyzed Regiodivergent Alkyne Hydrosilylation. J Am Chem Soc 2020; 142:16894-16902. [PMID: 32945664 DOI: 10.1021/jacs.0c09083] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although tremendous effort has been devoted to the development of methods for iron catalysis, few of the catalysts reported to date exhibit clear superiority to other metal catalysts, and the mechanisms of most iron catalysis remain unclear. Herein, we report that iron complexes bearing 2,9-diaryl-1,10-phenanthroline ligands exhibit not only unprecedented catalytic activity but also unusual ligand-controlled divergent regioselectivity in hydrosilylation reactions of various alkynes. The hydrosilylation protocol described herein provides a highly efficient method for preparing useful di- and trisubstituted olefins on a relatively large scale under mild conditions, and its use markedly improved the synthetic efficiency of a number of bioactive compounds. Mechanistic studies based on control experiments and density functional theory calculations were performed to understand the catalytic pathway and the observed regioselectivity.
Collapse
Affiliation(s)
- Meng-Yang Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tian-Zhang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Lian
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Hong Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Wang ZL, Zhang FL, Xu JL, Shan CC, Zhao M, Xu YH. Copper-Catalyzed Anti-Markovnikov Hydrosilylation of Terminal Alkynes. Org Lett 2020; 22:7735-7742. [DOI: 10.1021/acs.orglett.0c02952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Feng-Lian Zhang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Lin Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cui-Cui Shan
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-He Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Kuai C, Ji D, Zhao C, Liu H, Hu Y, Chen Q. Ligand‐Regulated Regiodivergent Hydrosilylation of Isoprene under Iron Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chang‐Sheng Kuai
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
34
|
Kuai C, Ji D, Zhao C, Liu H, Hu Y, Chen Q. Ligand‐Regulated Regiodivergent Hydrosilylation of Isoprene under Iron Catalysis. Angew Chem Int Ed Engl 2020; 59:19115-19120. [DOI: 10.1002/anie.202007930] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Chang‐Sheng Kuai
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
35
|
NNN‐
Cobalt(II) Pincer Complexes: Paramagnetic NMR Spectroscopy in Solution and Application as Hydrosilylation Catalysts. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
|
37
|
Cheng Z, Guo J, Lu Z. Recent advances in metal-catalysed asymmetric sequential double hydrofunctionalization of alkynes. Chem Commun (Camb) 2020; 56:2229-2239. [DOI: 10.1039/d0cc00068j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in various metal-catalysed asymmetric sequential double hydrofunctionalizations of alkynes have been highlighted in this feature article.
Collapse
Affiliation(s)
- Zhaoyang Cheng
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Jun Guo
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhan Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
38
|
Kong D, Hu B, Yang M, Chen D, Xia H. Highly Regio- and Stereoselective Tridentate NCNN Cobalt-Catalyzed 1,3-Diyne Hydrosilylation. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Degong Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Min Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
39
|
Xie X, Zhang X, Gao W, Meng C, Wang X, Ding S. Iridium-catalyzed Markovnikov hydrosilylation of terminal alkynes achieved by using a trimethylsilyl-protected trihydroxysilane. Commun Chem 2019. [DOI: 10.1038/s42004-019-0206-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
40
|
Zong Z, Yu Q, Sun N, Hu B, Shen Z, Hu X, Jin L. Bidentate Geometry-Constrained Iminopyridyl Ligands in Cobalt Catalysis: Highly Markovnikov-Selective Hydrosilylation of Alkynes. Org Lett 2019; 21:5767-5772. [DOI: 10.1021/acs.orglett.9b02254] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhijian Zong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Qianwen Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Nan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Liqun Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, The Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
41
|
Kong D, Hu B, Chen D. Highly Regio‐ and Stereoselective Hydrosilylation of Alkynes Catalyzed by Tridentate Cobalt Complexes. Chem Asian J 2019; 14:2694-2703. [DOI: 10.1002/asia.201900577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Degong Kong
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and StorageInstitution School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 P.R. China
| | - Bowen Hu
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and StorageInstitution School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 P.R. China
| | - Dafa Chen
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and StorageInstitution School of Chemical Engineering & TechnologyHarbin Institute of Technology Harbin 150001 P.R. China
| |
Collapse
|
42
|
Sang HL, Hu Y, Ge S. Cobalt-Catalyzed Regio- and Stereoselective Hydrosilylation of 1,3-Diynes To Access Silyl-Functionalized 1,3-Enynes. Org Lett 2019; 21:5234-5237. [DOI: 10.1021/acs.orglett.9b01836] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hui Leng Sang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yongyi Hu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
43
|
Agahi R, Challinor AJ, Dunne J, Docherty JH, Carter NB, Thomas SP. Regiodivergent hydrosilylation, hydrogenation, [2π + 2π]-cycloaddition and C-H borylation using counterion activated earth-abundant metal catalysis. Chem Sci 2019; 10:5079-5084. [PMID: 31183059 PMCID: PMC6524663 DOI: 10.1039/c8sc05391j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/07/2019] [Indexed: 12/20/2022] Open
Abstract
The widespread adoption of earth-abundant metal catalysis lags behind that of the second- and third-row transition metals due to the often challenging practical requirements needed to generate the active low oxidation-state catalysts. Here we report the development of a single endogenous activation protocol across five reaction classes using both iron- and cobalt pre-catalysts. This simple catalytic manifold uses commercially available, bench-stable iron- or cobalt tetrafluoroborate salts to perform regiodivergent alkene and alkyne hydrosilylation, 1,3-diene hydrosilylation, hydrogenation, [2π + 2π]-cycloaddition and C-H borylation. The activation protocol proceeds by fluoride dissociation from the counterion, in situ formation of a hydridic activator and generation of a low oxidation-state catalyst.
Collapse
Affiliation(s)
- Riaz Agahi
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| | - Amy J Challinor
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| | - Joanne Dunne
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| | - Jamie H Docherty
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| | - Neil B Carter
- Syngenta , Jealott's Hill International Research Centre , Bracknell , Berkshire RG42 6EX , UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry , University of Edinburgh , David Brewster Road , Edinburgh , EH9 3FJ , UK .
| |
Collapse
|
44
|
Liang H, Ji YX, Wang RH, Zhang ZH, Zhang B. Visible-Light-Initiated Manganese-Catalyzed E-Selective Hydrosilylation and Hydrogermylation of Alkynes. Org Lett 2019; 21:2750-2754. [DOI: 10.1021/acs.orglett.9b00701] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hao Liang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Yun-Xing Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Rui-Han Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Zhi-Hao Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| |
Collapse
|
45
|
Cheng Z, Xing S, Guo J, Cheng B, Hu L, Zhang X, Lu Z. Highly Regioselective Sequential 1,1‐Dihydrosilylation of Terminal Aliphatic Alkynes with Primary Silanes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhaoyang Cheng
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310058 China
| | - Shipei Xing
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310058 China
| | - Jun Guo
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310058 China
| | - Biao Cheng
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310058 China
| | - Lan‐Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Xing‐Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and EngineeringZhejiang University Hangzhou Zhejiang 310027 China
| | - Zhan Lu
- Department of ChemistryZhejiang University Hangzhou Zhejiang 310058 China
| |
Collapse
|