1
|
Shaghaleh H, Alhaj Hamoud Y, Sun Q. Effective and green in-situ remediation strategies based on TEMPO-nanocellulose/lignin/MIL-100(Fe) hydrogel nanocomposite adsorbent for lead and copper in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124623. [PMID: 39069244 DOI: 10.1016/j.envpol.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Hydrogel adsorbents are promising tools for reducing heavy metals' bioavailability in contaminated soil. However, their practical feasibility remains limited by the low stability, inefficient removal efficiency, and potential secondary pollution. Optimizing the adsorption operation and the functional properties of hydrogel adsorbents could eliminate this method's drawbacks. Herein, three innovative in-situ remediation strategies for Pb/Cu-contaminated soil were adopted based on the concept of novel TEMPO-cellulose (TO-NFCs)/lignin/acrylamide@MIL-100(Fe) nanocomposite hydrogel adsorbent (NCLMH). Characteristic analyses revealed ideal Pb/Cu adsorption mechanisms by swelling, complexation, electrical attraction, and ion exchange via carboxyl/hydroxyl/carbonyl groups and unsaturated Fe(III) sites on ANCMH besides FeOOH formation. The highest maximum theoretical adsorption capacities of Pb(II) and Cu(II) on ANCMH were 416.39 and 133.98 mg/g, under pH 6.5, governed by pseudo-second-order/Freundlich models. Greenhouse pot experiments with contaminated soils amended with two-depth layers of 0.5% NCLMHs (SA@NCLMH) displayed a decline in Pb and Cu bioavailability up to 85.9% and 74.5% within 45 d. Soil column studies simulating continuous water soil flushing coupled with NCLMH layers, instead of conventional extractant fluids, and connected to NCLMH-sand column as purification unit (CF@NCLMH) achieved higher removal rates for Pb, and Cu of 89.5% and 77.2% within 24 h. Alternatively, conducting multiple-pulse soil flushing mode (MF@NCLMH) gained the highest Pb and Cu removal of 96.5% and 85.4%, as the water flushing-stop flux events allowed adequate water movement/residence period, promoting Pb/Cu desorption-adsorption from soil to NCLMH. Also, the NCLMH-sand column conducting and easy separation of the stable/reusable NCLMHs prevented the potential secondary pollution. Interestingly, the three remediated soils reached the corresponding regulation of the permissible limits for Pb and Cu residential scenarios in medium-to-heavily agricultural polluted soils, alleviating the Pb/Cu bioaccumulation and phytotoxicity symptoms in cultivated wheat, especially after MF@NCLMH treatment. This study introduces promising alternative remediation strategies with high sustainability and feasibility in acidic-to-neutral heavy metal-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hiba Shaghaleh
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qin Sun
- Key Lab of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
2
|
You C, Lin H, Ning L, Ma N, Wei W, Ji X, Wei S, Xu P, Zhang D, Wang F. Advances in the Design of Functional Cellulose Based Nanopesticide Delivery Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11295-11307. [PMID: 38717296 DOI: 10.1021/acs.jafc.4c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The advancement of science and technology, coupled with the growing environmental consciousness among individuals, has led to a shift in pesticide development from traditional methods characterized by inefficiency and misuse toward a more sustainable and eco-friendly approach. Cellulose, as the most abundant natural renewable resource, has opened up a new avenue in the field of biobased drug carriers by developing cellulose-based drug delivery systems. These systems offer unique advantages in terms of deposition rate enhancement, modification facilitation, and environmental impact reduction when designing nanopesticides. Consequently, their application in the field of nanoscale pesticides has gained widespread recognition. The present study provides a comprehensive review of cellulose modification methods, carrier types for cellulose-based nanopesticides delivery systems (CPDS), and various stimulus-response factors influencing pesticide release. Additionally, the main challenges in the design and application of CPDS are summarized, highlighting the immense potential of cellulose-based materials in the field of nanopesticides.
Collapse
Affiliation(s)
- Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Like Ning
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu P. R. China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wei Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xinyue Ji
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shuangyu Wei
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Peng Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, P. R. China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
3
|
Huang J, Gotoh T, Nakai S, Ueda A. Dual Benefits of Hydrogel Remediation of Cadmium-Contaminated Water or Soil and Promotion of Vegetable Growth under Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:4115. [PMID: 38140442 PMCID: PMC10747576 DOI: 10.3390/plants12244115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
This study aims to solve the problem of cadmium heavy metal ion pollution caused by the abuse of chemical fertilizers and activities such as mining, which pose a serious threat to the plant growth environment. We successfully synthesized DMAPAA (N-(3-(Dimethyl amino) propyl) acrylamide)/DMAPAAQ (N, N-Dimethyl amino propyl acrylamide, methyl chloride quaternary) hydrogels via free radical polymerization. Subsequently, we conducted experiments on this hydrogel for growing vegetables under cadmium stress conditions in aqueous solutions and soil. The cadmium capture capacity of DMAPAA/DMAPAAQ hydrogels under different cadmium ion concentrations and pH values was evaluated by using inductively coupled plasma optical emission spectrometry (ICP). The research results show that under the condition of pH = 7.3, the cadmium capture capacity of DMAPAA/DMAPAAQ hydrogels is the greatest. We used the Langmuir model to fit the adsorption data, and the correlation coefficient was as high as 0.96, indicating that the model fits well. The application of the hydrogels promoted the growth of vegetables in soil under cadmium stress conditions. The results showed that when the added amount of hydrogel was 4%, the dry weight of the vegetables was the largest. In addition, when the added amount of cadmium was 500 mg/kg and the added amount of hydrogel was 4%, the absorption of cadmium by the vegetables decreased to an undetectable level. In summary, the hydrogel successfully synthesized in this study can be effectively used to immobilize cadmium ions in soil while positively promoting the growth and yield of vegetables. This achievement has practical significance for solving the problem of heavy metal ion pollution.
Collapse
Affiliation(s)
- Jin Huang
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Takehiko Gotoh
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Satoshi Nakai
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan; (J.H.); (S.N.)
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Hiroshima, Japan
| |
Collapse
|
4
|
Wang L, Chen L, Qin Z, Ni K, Li X, Yu Z, Kuang Z, Qin X, Duan H, An J. Application of Iodine as a Catalyst in Aerobic Oxidations: A Sustainable Approach for Thiol Oxidations. Molecules 2023; 28:6789. [PMID: 37836632 PMCID: PMC10574728 DOI: 10.3390/molecules28196789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Iodine is a well-known oxidant that is widely used in organic syntheses. Thiol oxidation by stoichiometric iodine is one of the most commonly employed strategies for the synthesis of valuable disulfides. While recent advancements in catalytic aerobic oxidation conditions have eliminated the need for stoichiometric oxidants, concerns persist regarding the use of toxic or expensive catalysts. In this study, we discovered that iodine can be used as a cheap, low-toxicity catalyst in the aerobic oxidation of thiols. In the catalytic cycle, iodine can be regenerated via HI oxidation by O2 at 70 °C in EtOAc. This protocol harnesses sustainable oxygen as the terminal oxidant, enabling the conversion of primary and secondary thiols with remarkable efficiency. Notably, all 26 tested thiols, encompassing various sensitive functional groups, were successfully converted into their corresponding disulfides with yields ranging from >66% to 98% at a catalyst loading of 5 mol%.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Chemistry and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.W.); (X.L.); (Z.Y.); (Z.K.)
| | - Lingxia Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (Z.Q.); (K.N.); (X.Q.)
| | - Zixuan Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (Z.Q.); (K.N.); (X.Q.)
| | - Ke Ni
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (Z.Q.); (K.N.); (X.Q.)
| | - Xiao Li
- Department of Chemistry and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.W.); (X.L.); (Z.Y.); (Z.K.)
| | - Zhiyuan Yu
- Department of Chemistry and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.W.); (X.L.); (Z.Y.); (Z.K.)
| | - Zichen Kuang
- Department of Chemistry and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.W.); (X.L.); (Z.Y.); (Z.K.)
| | - Xinshu Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (Z.Q.); (K.N.); (X.Q.)
| | - Hongxia Duan
- Department of Chemistry and Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing 100193, China; (L.W.); (X.L.); (Z.Y.); (Z.K.)
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (L.C.); (Z.Q.); (K.N.); (X.Q.)
| |
Collapse
|
5
|
Fadeev M, Davidson-Rozenfeld G, Li Z, Willner I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37011-37025. [PMID: 37477942 PMCID: PMC10401574 DOI: 10.1021/acsami.3c06230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness. Loading of the hydrogel matrices with insulin results in the potential-triggered, glucose concentration-controlled, switchable release of insulin from the hydrogel-modified electrodes. The switchable bioelectrocatalyzed release of insulin is demonstrated in the presence of ferrocenemethanol as a diffusional electron mediator or by applying an electrically wired integrated matrix that includes ferrocenyl-modified GOx embedded in the hydrogel. The second GOx-loaded, stimuli-responsive, DNA-based hydrogel matrix associated with the electrode includes a polyacrylamide hydrogel cooperatively cross-linked by duplex nucleic acids and "caged" G-quadruplex-responsive duplexes. The hydrogel matrix undergoes K+-ions/crown ether-triggered stiffness changes by the cyclic K+-ion-stimulated formation of G-quadruplexes (lower stiffness) and the crown ether-induced separation of the G-quadruplexes (higher stiffness). The hydrogel matrices demonstrate switchable bioelectrocatalytic functions guided by the stiffness properties of the hydrogels.
Collapse
Affiliation(s)
- Michael Fadeev
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gilad Davidson-Rozenfeld
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhenzhen Li
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Dhiman A, Bhardwaj D, Goswami K, Agrawal G. Biodegradable redox sensitive chitosan based microgels for potential agriculture application. Carbohydr Polym 2023; 313:120893. [PMID: 37182935 DOI: 10.1016/j.carbpol.2023.120893] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
In this work, we report redox sensitive, 2,3-dihydroxybenzoic acid (DH) functionalized chitosan/stearic acid microgels (DH-ChSt MGs) for controlled delivery of insecticide and capturing of heavy metal ions. DH-ChSt MGs (≈146 nm) are prepared by disulfide crosslinking of SH functionalized chitosan and stearic acid rendering them biodegradable. DH-ChSt MGs exhibit high loading (≈8 %) and encapsulation (≈85 %) efficiency for imidacloprid insecticide, and offer its prolonged release (≈75 % after 133 h) under reducing conditions. Functionalization with DH provides enhanced foliar adhesion on pea leaves. DH-ChSt MGs also bind Fe3+ very efficiently due to the strong chelation of Fe3+ by DH, offering the opportunity of supplying Fe3+ nutrient for plant care. MTT assay results using different cells confirm that DH-ChSt MGs are nontoxic up to the experimental concentration of 120 μg/mL. Additionally, reduced DH-ChSt MGs having free thiol groups are also capable of binding heavy metal ions, thus presenting the reported formulation as a promising platform for agriculture application.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Kajal Goswami
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
7
|
Dhiman A, Sharma AK, Bhardwaj D, Agrawal G. Biodegradable dual stimuli responsive alginate based microgels for controlled agrochemicals release and soil remediation. Int J Biol Macromol 2023; 228:323-332. [PMID: 36572087 DOI: 10.1016/j.ijbiomac.2022.12.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
To meet the growing food demand of increasing world population while reducing the harmful environmental effects of agrochemicals, development of smart nanoformulation is of prime importance. Herein, dual stimuli responsive alginate based microgels (OAlgDP MGs) (≈160 nm) are developed for controlled release of agrochemicals and soil remediation. These microgels are prepared using octyl amine functionalized alginate which is crosslinked by 3, 3'-dithiopropionohydrazide crosslinker providing both hydrazone and disulfide bonds in microgels network. OAlgDP MGs are further loaded with hydrophobic diuron herbicide displaying ≈85 % encapsulation efficiency. Sustained release of diuron is obtained in 2 mM GSH (≈100 % after 380 h) and at pH 5 (≈72 % after 240 h). Furthermore, OAlgDP MGs are nontoxic up to 150 μg/mL against HEK293T cells while their reduced form is capable of capturing the heavy metal ions (Cu2+ and Hg2+) showing the potential of the developed system for moving toward sustainable agriculture.
Collapse
Affiliation(s)
- Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Amit Kumar Sharma
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India.
| |
Collapse
|
8
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
9
|
Micro-/Nano-Carboxymethyl Cellulose as a Promising Biopolymer with Prospects in the Agriculture Sector: A Review. Polymers (Basel) 2023; 15:polym15020440. [PMID: 36679320 PMCID: PMC9860740 DOI: 10.3390/polym15020440] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The increase in the population rate has increased the demand for safe and quality food products. However, the current agricultural system faces many challenges in producing vegetables and fruits. Indiscriminate use of pesticides and fertilizers, deficiency of water resources, short shelf life of products postharvest, and nontargeted delivery of agrochemicals are the main challenges. In this regard, carboxymethyl cellulose (CMC) is one of the most promising materials in the agriculture sector for minimizing these challenges due to its mechanical strength, viscosity, wide availability, and edibility properties. CMC also has high water absorbency; therefore, it can be used for water deficiency (as superabsorbent hydrogels). Due to the many hydroxyl groups on its surface, this substance has high efficacy in removing pollutants, such as pesticides and heavy metals. Enriching CMC coatings with additional substances, such as antimicrobial, antibrowning, antioxidant, and antisoftening materials, can provide further novel formulations with unique advantages. In addition, the encapsulation of bioactive materials or pesticides provides a targeted delivery system. This review presents a comprehensive overview of the use of CMC in agriculture and its applications for preserving fruit and vegetable quality, remediating agricultural pollution, preserving water sources, and encapsulating bioactive molecules for targeted delivery.
Collapse
|
10
|
Adjuik TA, Nokes SE, Montross MD, Wendroth O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers (Basel) 2022; 14:polym14214721. [PMID: 36365717 PMCID: PMC9656743 DOI: 10.3390/polym14214721] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.
Collapse
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Ole Wendroth
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40503, USA
| |
Collapse
|
11
|
Zhao M, Chen Z, Hao L, Chen H, Zhou X, Zhou H. CMC based microcapsules for smart delivery of pesticides with reduced risks to the environment. Carbohydr Polym 2022; 300:120260. [DOI: 10.1016/j.carbpol.2022.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
12
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
13
|
Deng Y, Xi J, Meng L, Lou Y, Seidi F, Wu W, Xiao H. Stimuli-Responsive Nanocellulose Hydrogels: An Overview. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Amenorfe LP, Agorku ES, Sarpong F, Voegborlo RB. Innovative exploration of additive incorporated biopolymer-based composites. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Zheng L, Seidi F, Liu Y, Wu W, Xiao H. Polymer-based and stimulus-responsive carriers for controlled release of agrochemicals. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
18
|
Mao F, Hao P, Zhu Y, Kong X, Duan X. Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Hou X, Pan Y, Miraftab R, Huang Z, Xiao H. Redox- and Enzyme-Responsive Macrospheres Gatekept by Polysaccharides for Controlled Release of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11163-11170. [PMID: 34546756 DOI: 10.1021/acs.jafc.1c01304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive materials afford researchers an opportunity to synthesize controlled-release carriers with various potential applications, especially for reducing the abuse of chemical reagents in farmland soil. To enhance the efficiency of agrochemical utilization, redox- and enzyme-responsive macrospheres were prepared by self-assembling β-cyclodextrin-modified zeolite and ferrocenecarboxylic acid (FcA)-grafted carboxymethyl cellulose (CMC). Scanning electron microscopy and Brunauer-Emmett-Teller analysis revealed that pores of zeolite were sealed by the surface coupling of FcA-modified CMC via the formation of an inclusion complex. Salicylic acid (SA) was loaded as a model agrochemical. The release of SA from macrospheres could be triggered in the presence of hydrogen peroxide (oxidant) and cellulase (enzyme); and the corresponding release percentages, 85.2 and 80.4%, were much higher than those of the control sample without responsive groups in water (12.6%) after 12 h. A release kinetic study showed that cellulase could promote carrier dissolution more effectively than the oxidant. The results demonstrate that the dual-responsive macrospheres are promising as a smart and effective carrier for the controlled release of agrochemicals.
Collapse
Affiliation(s)
- Xiaobang Hou
- Power Technology Center, State Grid Shandong Electric Power Research Institute, 2000 Wangyue Road, Jinan 250000, Shandong, China
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochem. Resource Proc. & Process Intensification Tech., School of Chemistry and Chemical Engineering Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Roshanak Miraftab
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Zhihong Huang
- Sheng Qing Environmental Protection Technology Co., Ltd, Kunming, Yunnan 650093, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| |
Collapse
|
20
|
Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Seidi F, Reza Saeb M, Huang Y, Akbari A, Xiao H. Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. CHEM REC 2021; 21:1876-1896. [PMID: 34101343 DOI: 10.1002/tcr.202100068] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Removal of toxic metal ions using adsorbents is a well-known strategy for water treatment. While chitosan and cellulose can adsorb weakly some types of metals, incorporating thiols as metal chelating agents can improve their sorption behaviors significantly. Presented in this review are the various chemical modification strategies applicable for thiolation of chitosan and cellulose in the forms of mercaptans, xanthates and dithiocarbamates. Moreover, much attention has been paid to the specific strategies for controlling the thiolation degree and characterization approaches for establishing the structure-property relationship. Also, the kinetics and isotherm models that elucidate the adsorption processes and mechanisms induced by the thiomers have been explained. These thiomers have found great potentials in the applications associated with metal removal, metal recovery and metal detection.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | | | - Yang Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037, Nanjing, China
| | - Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, E3B 5A3, Fredericton, New Brunswick, Canada
| |
Collapse
|
22
|
Novel multi-responsive and sugarcane bagasse cellulose-based nanogels for controllable release of doxorubicin hydrochloride. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111357. [DOI: 10.1016/j.msec.2020.111357] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/21/2020] [Accepted: 07/20/2020] [Indexed: 01/24/2023]
|
23
|
Shahriari-Khalaji M, Hong S, Hu G, Ji Y, Hong FF. Bacterial Nanocellulose-Enhanced Alginate Double-Network Hydrogels Cross-Linked with Six Metal Cations for Antibacterial Wound Dressing. Polymers (Basel) 2020; 12:polym12112683. [PMID: 33202968 PMCID: PMC7696020 DOI: 10.3390/polym12112683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 01/17/2023] Open
Abstract
Alginate (Alg) and bacterial nanocellulose (BNC) have exhibited great potential in biomedical applications, especially wound dressing. Non-toxicity and a moisture-maintaining nature are common features making them favorable for functional dressing fabrication. BNC is a natural biopolymer that promotes major advances to the current and future biomedical materials, especially in a flat or tubular membrane form with excellent mechanical strength at hydrated state. The main drawback limiting wide applications of both BNC and Alg is the lack of antibacterial activity, furthermore, the inherent poor mechanical property of Alg leads to the requirement of a secondary dressing in clinical treatment. To fabricate composite dressings with antibacterial activity and better mechanical properties, sodium alginate was efficiently incorporated into the BNC matrix using a time-saving vacuum suction method followed by cross-linking through immersion in separate solutions of six cations (manganese, cobalt, copper, zinc, silver, and cerium). The results showed the fabricated composites had not only pH-responsive antibacterial activities but also improved mechanical properties, which are capable of acting as smart dressings. All composites showed non-toxicity toward fibroblast cells. Rat model evaluation showed the skin wounds covered by the dressings healed faster than by BNC.
Collapse
Affiliation(s)
- Mina Shahriari-Khalaji
- Microbiological Engineering and Industrial Biotechnology Group, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.S.-K.); (G.H.)
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai 201620, China
| | - Siyi Hong
- Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Gaoquan Hu
- Microbiological Engineering and Industrial Biotechnology Group, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.S.-K.); (G.H.)
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai 201620, China
| | - Ying Ji
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong;
| | - Feng F. Hong
- Microbiological Engineering and Industrial Biotechnology Group, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.S.-K.); (G.H.)
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, Shanghai 201620, China
- Correspondence: ; Tel.: +86-2167-792-649
| |
Collapse
|
24
|
Chemoresponsive polymer systems for selective molecular recognition of organic molecules in biological systems. Acta Biomater 2020; 116:32-66. [PMID: 32877717 DOI: 10.1016/j.actbio.2020.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Smart polymer materials that respond to a chemical stimulus are applied for the construction of biomedical devices and purification/separation systems. Small organic molecules are a particular type of stimulus. Their abnormal concentration indisputably indicates certain diseases. They are also hazardous environment contaminants. Polymer materials, which structure is selectively changed in the presence of a defined organic compound are promising in view of regulation of certain biomedical functions, as well as in view of chemical detectors construction. This review summarizes the state of the art in the self-assemblies of amphiphilic copolymers and polymer networks sensitive toward organic species, with an emphasis on the reports from the last decade. We focus on the relationship between the selectivity of introduced receptor moieties responsible for the change of material structure, the overall structure of material and its functionality.
Collapse
|
25
|
Dual-responsive carboxymethyl cellulose/dopamine/cystamine hydrogels driven by dynamic metal-ligand and redox linkages for controllable release of agrochemical. Carbohydr Polym 2020; 253:117188. [PMID: 33278966 DOI: 10.1016/j.carbpol.2020.117188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 01/01/2023]
Abstract
The utilization of agrochemicals in crop production is often inefficient due to lack of appropriate carriers, raising in the significant concerns of ecological environment and public health. To enhance the efficiency of agrochemical delivery, a novel cellulose-based hydrogel was constructed in this work by cross-linking dopamine (DA)-modified carboxymethyl cellulose (CMC) with cystamine (CYS) in the presence of Fe3+ ions. The hydrogels displayed reversible sol-gel transitions upon exposure to stimulation of changes in pH and redox, leading to the controllable release of model agrochemical (6-benzyladenine). Compared with single-triggered condition, the hydrogel doubled the cumulative release when co-triggered by pH and redox. The dynamic metal/catechol complexation and disulfide bonding coexist in the hydrogel networks, enabling occurrence of dynamic reaction under a variety of environmental conditions. The finite element method (FEM) was employed to simulate the hydrogel to provide a theoretical insight into the tested drug delivery. Benefitting from the reversibly cross-linked networks and the excellent biodegradability of the hydrogels, we anticipate that this dual-responsive, polysaccharide-based hydrogel will offer diverse applications to reach the full potential in sustainable advancement of crop production.
Collapse
|
26
|
Vázquez-González M, Willner I. Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications. Angew Chem Int Ed Engl 2020; 59:15342-15377. [PMID: 31730715 DOI: 10.1002/anie.201907670] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/10/2019] [Indexed: 12/16/2022]
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Collapse
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
27
|
Vázquez‐González M, Willner I. Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201907670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Itamar Willner
- Institute of Chemistry Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
28
|
Poly(hydroxybutyrate)‐based systems behavior on the controlled release of
NPK
fertilizers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Zhou Q, Dong X, Xiong Y, Zhang B, Lu S, Wang Q, Liao Y, Yang Y, Wang H. Multi-Responsive Lanthanide-Based Hydrogel with Encryption, Naked Eye Sensing, Shape Memory, Self-Healing, and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28539-28549. [PMID: 32492327 DOI: 10.1021/acsami.0c06674] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we reported a multi-responsive luminescent hydrogel with properties of encryption, naked eye sensing of glucose, shape memory, self-healing, and antibacterial activity. The hydrogel (GA/CCS/DNSA/Eu3+) was obtained by mixing phenylboronic acid-modified gelatin (GA-DBA), catechol-modified carboxymethyl chitosan (CCS-PCA), 3,5-dinitrosalicylic acid (DNSA), and Eu3+ ions through a facile heating-cooling process. The resultant hydrogel exhibits reversible luminescence and color and phase changes in response to temperature, acid/base, salt, and redox stimuli. Based on the multiple responsiveness, information encryption and decryption, naked eye sensing of glucose, remarkable shape memory, and enhanced mechanical properties of the as-prepared hydrogel were realized. In addition, the self-healing capacity was also achieved due to the dynamic bonds in GA/CCS/DNSA/Eu3+ hydrogels. Specifically, the GA/CCS/DNSA/Eu3+ hydrogels possess antibacterial activity owing to the bacteriostasis of the CCS-PCA and DNSA/Eu3+ complex. Thus, GA/CCS/DNSA/Eu3+ hydrogels have potential applications in the fields of anticounterfeiting, wearable devices, biomedicine, sensing, etc.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuelin Dong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Yuxiang Xiong
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources, Geological Experimental Testing Center of Hubei Province, Wuhan 430034, China
| | - Binbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shan Lu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
30
|
Li Y, Pan Y, Li B, Wang L, Xiao H. Dual-Functional Redox-Responsive Nanocarriers for Loading Phytohormone and Complexation with Heavy Metal Ions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5076-5085. [PMID: 32310658 DOI: 10.1021/acs.jafc.0c01651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work focused on designing a novel redox-responsive nanocarrier synthesized from carboxymethyl-β-cyclodextrin-modified nanosilica, which could load and release plant hormones, such as salicylic acid (SA), in plant cells. When the SA-loaded nanoparticles cross the plant cell wall, the disulfide bond can be broken to form sulfhydryl groups under the action of reduced glutathione (GSH), thus releasing SA. Meanwhile, the resulting thiol groups exhibited strong affinity toward several heavy metal ions, mercury ions in particular, thus playing a role similar to phytochelatins for detoxification. The results of SA release in vitro proved that the release proceeded much faster in GSH-rich than in GSH-free environments. The adsorption behaviors of the redox-responsive nanoparticles toward heavy metal ions, after phytohormones release, were systematically investigated. Moreover, the synergetic effects on sustained release and metal ion capture enable the redox-responsive cyclodextrin-modified silica to be an effective and dual-functional nanocarrier that has great potential for agricultural applications.
Collapse
Affiliation(s)
- Yucheng Li
- Department of Environmental Engineering, North China Electric Power University, 689 Huadian Road, Baoding, Hebei 071003, P. R. China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Bo Li
- Department of Environmental Engineering, North China Electric Power University, 689 Huadian Road, Baoding, Hebei 071003, P. R. China
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lidong Wang
- Department of Environmental Engineering, North China Electric Power University, 689 Huadian Road, Baoding, Hebei 071003, P. R. China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
31
|
Li Y, Hou X, Pan Y, Wang L, Xiao H. Redox-responsive carboxymethyl cellulose hydrogel for adsorption and controlled release of dye. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109447] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Zou H, Wu Q, Li Q, Wang C, Zhou L, Hou XH, Yuan W. Thermo- and redox-responsive dumbbell-shaped copolymers: from structure design to the LCST–UCST transition. Polym Chem 2020. [DOI: 10.1039/c9py01566c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Redox- and thermo-responsive dumbbell-shaped copolymers and their self-assembly and stimuli-responsive properties were investigated.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Qiliang Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Qianwei Li
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Chunyao Wang
- School of Materials Science and Engineering
- Tongji University
- People's Republic of China
| | - Li Zhou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Weizhong Yuan
- School of Materials Science and Engineering
- Tongji University
- People's Republic of China
| |
Collapse
|
33
|
Gao Y, Zong S, Huang Y, Yang N, Wen H, Jiang J, Duan J. Preparation and properties of a highly elastic galactomannan- poly(acrylamide- N, N-bis (acryloyl) cysteamine) hydrogel with reductive stimuli-responsive degradable properties. Carbohydr Polym 2019; 231:115690. [PMID: 31888814 DOI: 10.1016/j.carbpol.2019.115690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/19/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
An oxidation-reduction responsive degradable highly elastic galactomannan hydrogel was synthesized from galactomannan (GA), N,N-bis (acryloyl) cysteamine (BAC) and acrylamide by grafting polymerization in aqueous solution. The microstructure, degradability and mechanical properties of the hydrogels were emphatically investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), ultraviolet spectroscopy and differential scanning calorimetry (DSC). The mechanical properties of hydrogels can be improved by adjusting the content of GA. Continuous cyclic compression tests showed that the hydrogel did not rupture under 60 %,70 %,80 % strain and quickly recovered to its original shape. The degradation rate and drug release rate of hydrogel can be adjusted by the concentration of the reductant and the reduction time. These hydrogels broaden the scope of application of GA and can be tuned with a broad range of mechanical, degradation and release properties and therefore hold potential applications in drug carriers, tissue engineering scaffolds, extracellular matrix and other fields.
Collapse
Affiliation(s)
- Yuxue Gao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Shiyu Zong
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Yirong Huang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Na Yang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Hankang Wen
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
34
|
Zhou Q, Dong X, Yuan J, Zhang B, Lu S, Wang Q, Liao Y, Yang Y, Wang H. Reversible Redox Switching of Concurrent Luminescence and Visual Color Change Based on Lanthanide Metallogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15344-15351. [PMID: 31663753 DOI: 10.1021/acs.langmuir.9b02828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of reversible redox supramolecular gels capable of concurrent luminescence switch and visible color change with the facile redox process has always been an intriguing challenge. A redox-responsive supramolecular lanthanide metallogel with strong luminescence and yellow color is obtained via coordination interaction between 3,5-dinitrosalicylic acid (DNSA) and europium (Eu3+). Upon the addition of TiO2 to the prepared gel (DNSA/Eu3+ gel), the oxidation process of the gel (DNSA/Eu3+/TiO2 gel) can be easily achieved by UV irradiation. The DNSA/Eu3+/TiO2 gel exhibits a concurrent reversible "on-off" luminescence and color change in response to redox stimuli. The DNSA/Eu3+/TiO2 gel shows a concurrent quench of luminescence and a color change from yellow to red when the gel was stimulated by the reductant. Upon UV irradiation, the luminescence and color of the reduced DNSA/Eu3+/TiO2 gel restored to its initial state due to the strong oxidation ability of hydroxyl radicals derived from photocatalytic oxidation of TiO2. The results of UV-vis and mass spectroscopy indicated that the reversible redox responsiveness of DNSA/Eu3+/TiO2 gel depends on the reversible oxidation-reduction reactions of DNSA. Moreover, DNSA/Eu3+/TiO2 gel remains stable because the morphology of the gel had no change during the redox process. Exemplarily, the application of DNSA/Eu3+/TiO2 gels to achieve luminescent patterning was investigated. The results demonstrated that the prepared metallogel has potential applications in the fields of writable materials, anticounterfeiting, sensors, and others.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xuelin Dong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
- Key Laboratory of Rare Mineral Exploration and Utilization, Ministry of Land and Resources , Geological Experimental Testing Center of Hubei Province , Wuhan 430034 , China
| | - Jianhui Yuan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Binbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Shan Lu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Qin Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yonggui Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Yajiang Yang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Hong Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of the Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
35
|
Hou X, Pan Y, Xiao H, Liu J. Controlled Release of Agrochemicals Using pH and Redox Dual-Responsive Cellulose Nanogels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6700-6707. [PMID: 31135150 DOI: 10.1021/acs.jafc.9b00536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel pH and redox dual-responsive cellulose-based nanogel was prepared for the controlled release of agrochemicals. To synthesize the responsive nanogel, palmitoyl chloride and glyoxal were modified on carboxymethyl cellulose sequentially and 3,3'-dithiobis(propionohydrazide) was used as a cross-linker to assemble the nanogel. The morphology, structure, and physical properties of nanogels were characterized with transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), particle size analysis, and zeta-potential measurement. Facing pH and redox stimulation, the nanogel showed reversible sol-gel transitions, indicating good pH- and redox-responsiveness. The nanogel loaded with agrochemicals exhibited high loading capacity and various release behaviors. In addition, the experiment of nanogel on heavy metal ions complexation displayed the potential of improving soil condition while delivering agrochemicals.
Collapse
Affiliation(s)
- Xiaobang Hou
- Department of Environmental Engineering , North China Electric Power University , 689 Huadian Road , Baoding , Hebei 071003 , P. R. China
- Department of Chemical Engineering , University of New Brunswick , 15 Dineen Drive , Fredericton E3B 5A3 , Canada
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering , Guangxi University , 100 Daxue Road , Nanning , Guangxi 530004 , P. R. China
| | - Huining Xiao
- Department of Chemical Engineering , University of New Brunswick , 15 Dineen Drive , Fredericton E3B 5A3 , Canada
| | - Jie Liu
- Department of Environmental Engineering , North China Electric Power University , 689 Huadian Road , Baoding , Hebei 071003 , P. R. China
| |
Collapse
|
36
|
Tang W, Wu X, Huang C, Huang C, Lai C, Yong Q. Enhancing enzymatic digestibility of waste wheat straw by presoaking to reduce the ash-influencing effect on autohydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:222. [PMID: 31534481 PMCID: PMC6747752 DOI: 10.1186/s13068-019-1568-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The acid buffering capacity of high free ash in waste wheat straw (WWS) has been revealed to be a significant hindrance on the efficiency of autohydrolysis pretreatment. Previous researches have mainly relied on washing to eliminate the influence of ash, and the underlying mechanism of the ash influencing was not extensively investigated. Presently, studies have found that cations can destroy the acid buffering capacity of ash through cation exchange. Herein, different cations were applied to presoak WWS with the aim to overcome the negative effects of ash on autohydrolysis efficiency, further improving its enzymatic digestibility. RESULTS Results showed that cations can be adsorbed on the surface of the material by electrostatic adsorption to change the acid buffering capacity of WWS. The acid buffering capacity of 120 mM Fe2+ presoaked WWS is reduced from 226.3 mmol/pH-kg of original WWS to 79.3 mmol/pH-kg. This reduced the autohydrolysis pretreatment medium pH from 5.7 to 3.8 and promoted the removal of xylan from 61.7 to 83.7%. In addition, the enzymatic digestibility of WWS was enhanced from 49.7 to 86.3% by presoaking with 120 mM Fe2+ solution. The relationship between enzymatic accessibility and hydrophobicity with enzymatic digestibility of the autohydrolyzed WWS was analyzed. CONCLUSIONS The results showed that the acid buffering capacity of the high free ash was detrimental for the autohydrolysis efficiency of WWS. After WWS was presoaked with different cations, the acid buffering capacity of ash was weakened by cation exchange and electrostatic adsorption, which improved the autohydrolysis efficiency. The results expound that the enzymatic digestibility of WWS can be enhanced through presoaking to reduce the ash-influencing effect on autohydrolysis.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Xinxing Wu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Chen Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
37
|
Qu J, Wang R, Peng S, Shi M, Yang ST, Luo JB, Lin J, Zhou QH. Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy. J Mater Chem B 2019; 7:7129-7140. [DOI: 10.1039/c9tb01773a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The systemic toxicity, reduced cellular internalization, and uncontrollable intracellular drug release of smart nanoparticles (NPs) still need to be overcome for effective cancer therapy.
Collapse
Affiliation(s)
- Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Rui Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Si Peng
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Mengyao Shi
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Sheng-Tao Yang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No. 783
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| |
Collapse
|