1
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
2
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
3
|
He X, Chen J, Kandawa-Shultz M, Shao G, Wang Y. In vitro and in vivo antitumor activity of novel half-sandwich ruthenium complexes containing quinoline derivative ligands. Dalton Trans 2023; 52:4728-4736. [PMID: 36942609 DOI: 10.1039/d2dt03317h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A series of half-sandwich ruthenium complexes containing quinoline derivative ligands was synthesized, which had excellent antitumor toxicity toward a variety of cell lines and could localize lysosomes. The damage of lysosomes promotes the release of cathepsin B and initiates downstream apoptotic cascade signals. The increase in reactive oxygen species (ROS) caused by the decrease in mitochondrial membrane potential (ΔΨm) synergistically amplified the damage degree of lysosomes. In addition, the complex could inhibit cell transfer and clone formation. In vivo results showed that the complex had excellent biological effects in tested mouse samples as the body weight of mice did not change much during the treatment, and the mean tumor volume was significantly lower than the control group.
Collapse
Affiliation(s)
- Xiangdong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Jun Chen
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Martha Kandawa-Shultz
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek 13301, Namibia
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Infante-Tadeo S, Rodríguez-Fanjul V, Vequi-Suplicy CC, Pizarro AM. Fast Hydrolysis and Strongly Basic Water Adducts Lead to Potent Os(II) Half-Sandwich Anticancer Complexes. Inorg Chem 2022; 61:18970-18978. [DOI: 10.1021/acs.inorgchem.2c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sonia Infante-Tadeo
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Faraday 9, Madrid 28049, Spain
| | | | | | - Ana M. Pizarro
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Faraday 9, Madrid 28049, Spain
- Unidad Asociada de Nanobiotecnología CNB-CSIC-IMDEA, 28049 Madrid, Spain
| |
Collapse
|
5
|
Synthesis and Characterization of New Ruthenium (II) Complexes of Stoichiometry [Ru(p-Cymene)Cl2L] and Their Cytotoxicity against HeLa-Type Cancer Cells. Molecules 2022; 27:molecules27217264. [DOI: 10.3390/molecules27217264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
When the [Ru(p-cymene)(μ-Cl)Cl]2 complex is made to react, in dichloromethane, with the following ligands: 2-aminobenzonitrile (2abn), 4-aminobenzonitrile (4abn), 2-aminopyridine (2ampy) and 4-aminopyridine (4ampy), after addition of hexane, the following compounds are obtained: [Ru(p-cymene)Cl2(2abn)] (I), [Ru(p-cymene)Cl2(4abn)] (II), [Ru(p-cymene)Cl2(2ampy] (III) and [Ru(p-cymene)Cl2(μ-(4ampy)] (IV). All the compounds are characterized by elemental analysis of carbon, hydrogen and nitrogen, proton nuclear magnetic resonance, COSY 1H-1H, high-resolution mass spectrometry (ESI), thermogravimetry and single-crystal X-ray diffraction (the crystal structure of III is reported and compared with the closely related literature of II). The cytotoxicity effects of complexes were described for cervical cancer HeLa cells via 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) assay. The results demonstrate a low in vitro anticancer potential of the complexes.
Collapse
|
6
|
Lavrova MA, Lunev AM, Goncharenko VE, Taidakov IV, Dolzhenko VD, Belousov YA. Cyclometallated Ruthenium Complex with 3,3',5,5'-Tetramethyl-1,1'-biphenyl-4,4'-bipyrazole and 2,2'-Dicarboxybipyridine: Synthesis, Optical Properties, and Quantum Chemical Modeling. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422060033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
New complex [RuL(Dmdcbp)2]PF6 (I) is synthesized by the consecutive reactions of [Ru-p-cymene]2Cl4 with 3,3',5,5'-tetramethyl-1,1'-biphenyl-4,4'-bipyrazole (L) and 4,4'-dicarboxy-2,2'-bipyridine in a methanol–chloroform medium. The composition of complex I is confirmed by NMR and elemental analysis, and the optical and luminescence properties of the complex are studied. Ligand L is characterized for the first time by X-ray diffraction (CIF file CCDC no. 2118676). Quantum chemical calculations in terms of the density functional theory are performed for the interpretation of the absorption and emission spectra. Complex I is promising for using as a photosensitizer.
Collapse
|
7
|
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O, S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues. Int J Mol Sci 2022; 23:ijms23126669. [PMID: 35743112 PMCID: PMC9224311 DOI: 10.3390/ijms23126669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure−activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors.
Collapse
|
8
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
9
|
Navale G, Singh S, Agrawal S, Ghosh C, Roy Choudhury A, Roy P, Sarkar D, Ghosh K. DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium( ii) complexes. Dalton Trans 2022; 51:16371-16382. [DOI: 10.1039/d2dt02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemotherapeutic potential of ruthenium(ii) complexes as DNA binding, antitubercular, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Govinda Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|
10
|
Mukherjee A, Koley TS, Chakraborty A, Purkait K, Mukherjee A. Synthesis, Structure and Cytotoxicity of N,N and N,O-Coordinated Ru II Complexes of 3-Aminobenzoate Schiff Bases against Triple-negative Breast Cancer. Chem Asian J 2021; 16:3729-3742. [PMID: 34549886 DOI: 10.1002/asia.202100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
Half-sandwich RuII complexes, [(YZ)RuII (η6 -arene)(X)]+, (YZ=chelating bidentate ligand, X=halide), with N,N and N,O coordination (1-9) show significant antiproliferative activity against the metastatic triple-negative breast carcinoma (MDA-MB-231). 3-aminobenzoic acid or its methyl ester is used in all the ligands while varying the aldehyde for N,N and N,O coordination. In the N,N coordinated complex the coordinated halide(X) is varied for enhancing stability in solution (X=Cl, I). Rapid aquation and halide exchange of the pyridine analogues, 2 and 3, in solution are a major bane towards their antiproliferative activity. Presence of free -COOH group (1 and 4) make complexes hydrophilic and reduces toxicity. The imidazolyl 3-aminobenzoate based N,N coordinated 5 and 6 display better solution stability and efficient antiproliferative activity (IC50 ca. 2.3-2.5 μM) compared to the pyridine based 2 and 3 (IC50 >100 μM) or the N,O coordinated complexes (7-9) (IC50 ca. 7-10 μM). The iodido coordinated, 6, is resistant towards aquation and halide exchange. The N,O coordinated 7-9 underwent instantaneous aquation at pH 7.4 generating monoaquated complexes stable for at least 6 h. Complexes 5 and 6, bind to 9-ethylguanine (9-EtG) showing propensity to interact with DNA bases. The complexes may kill via apoptosis as displayed from the study of 8. The change in coordination mode and the aldehyde affected the solution stability, antiproliferative activity and mechanistic pathways. The N,N coordinated (5 and 6) exhibit arrest in the G2/M phase while the N,O coordinated 8 showed arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Tuhin Subhra Koley
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ayan Chakraborty
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Kallol Purkait
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Arindam Mukherjee
- Centre for Advanced Functional Materials (CAFM) Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
11
|
|
12
|
Andrezálová L, Országhová Z. Covalent and noncovalent interactions of coordination compounds with DNA: An overview. J Inorg Biochem 2021; 225:111624. [PMID: 34653826 DOI: 10.1016/j.jinorgbio.2021.111624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
Deoxyribonucleic acid plays a central role in crucial cellular processes, and many drugs exert their effects through binding to DNA. Since the discovery of cisplatin and its derivatives considerable attention of researchers has been focused on the development of novel anticancer metal-based drugs. Transition metal complexes, due to their great diversity in size and structure, have a big potential to modify DNA through diverse types of interactions, making them the prominent class of compounds for DNA targeted therapy. In this review we describe various binding modes of metal complexes to duplex DNA based on covalent and noncovalent interactions or combination of both. Specific examples of each binding mode as well as possible cytotoxic effects of metal complexes in tumor cells are presented.
Collapse
Affiliation(s)
- Lucia Andrezálová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia; Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| | - Zuzana Országhová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia
| |
Collapse
|
13
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Ortega E, Pérez-Arnaiz C, Rodríguez V, Janiak C, Busto N, García B, Ruiz J. A 2-(benzothiazol-2-yl)-phenolato platinum(II) complex as potential photosensitizer for combating bacterial infections in lung cancer chemotherapy†. Eur J Med Chem 2021; 222:113600. [PMID: 34144355 DOI: 10.1016/j.ejmech.2021.113600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Cancer and antibiotic resistance are two global health threats that usually hamper clinical chemotherapeutic efficacy. Particularly for lung cancer, bacterial infections frequently arise thereby complicating the course of cancer treatment. In this sense, three new neutral luminescent cycloplatinated(II) photosensitizers of the type [Pt(dmba)(L)] (dmba = N,N-dimethylbenzylamine-κN,κC; L = 2-(benzo[d]oxazol-2-yl)-phenolato-κN,κO1, 2-(benzo[d]thiazol-2-yl)-phenolato-κN,κO2, and 2-(1-methyl-1H-benzo[d]imidazole-2-yl)phenolato-κN,κO3) have been characterized and developed to potentially eliminate both resistant bacteria and lung cancer cells. The phototherapeutic effects of complex 2 have been evaluated using low doses of blue light irradiation. Complex 2 exerted promising photoactivity against pathogenic Gram-positive bacteria strains of clinical interest, displaying a phototoxic index (PI) of 15 for methicillin-resistant Staphylococcus aureus, one of the major microorganisms predominating lung infections. Likewise, the anticancer activity of 2 was also increased upon light irradiation in human lung A549 cancer cells (PI = 36). Further in vitro experiments with this platinum(II) complex suggest that ROS-generating photodynamic reactions were involved upon light irradiation, thus providing a reasonable mechanism for its dual anticancer and antibacterial activities.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071, Murcia, Spain
| | - Cristina Pérez-Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos S/n, E-09001, Burgos, Spain
| | - Venancio Rodríguez
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071, Murcia, Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, 40225, Düsseldorf, Germany.
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos S/n, E-09001, Burgos, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos S/n, E-09001, Burgos, Spain.
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30071, Murcia, Spain.
| |
Collapse
|
15
|
Cercola R, Wong NGK, Rhodes C, Olijnyk L, Mistry NS, Hall LM, Berenbeim JA, Lynam JM, Dessent CEH. A "one pot" mass spectrometry technique for characterizing solution- and gas-phase photochemical reactions by electrospray mass spectrometry. RSC Adv 2021; 11:19500-19507. [PMID: 35479237 PMCID: PMC9033567 DOI: 10.1039/d1ra02581c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The characterization of new photochemical pathways is important to progress the understanding of emerging areas of light-triggered inorganic and organic chemistry. In this context, the development of platforms to perform routine characterization of photochemical reactions remains an important goal for photochemists. Here, we demonstrate a new instrument that can be used to characterise both solution-phase and gas-phase photochemical reactions through electrospray ionisation mass spectrometry (ESI-MS). The gas-phase photochemistry is studied by novel laser-interfaced mass spectrometry (LIMS), where the molecular species of interest is introduced to the gas-phase by ESI, mass-selected and then subjected to laser photodissociation in the ion-trap. On-line solution-phase photochemistry is initiated by LEDs prior to ESI-MS in the same instrument with ESI-MS again being used to monitor photoproducts. Two ruthenium metal carbonyls, [Ru(η5-C5H5)(PPh3)2CO][PF6] and [Ru(η5-C5H5)(dppe)CO][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane) are studied using this methodology. We show that the gas-phase photofragmentation pathways observed for the ruthenium complexes via LIMS (i.e. loss of CO + PPh3 ligands from [Ru(η5-C5H5)(PPh3)2CO]+ and loss of just CO from [Ru(η5-C5H5)(dppe)CO]+) mirror the solution-phase photochemistry at 3.4 eV. The advantages of performing the gas-phase and solution-phase photochemical characterisations in a single instrument are discussed.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Natalie G K Wong
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Chris Rhodes
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lorna Olijnyk
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Neetisha S Mistry
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Lewis M Hall
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jacob A Berenbeim
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | |
Collapse
|
16
|
Rafols L, Josa D, Aguilà D, Barrios LA, Roubeau O, Cirera J, Soto-Cerrato V, Pérez-Tomás R, Martínez M, Grabulosa A, Gamez P. Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorg Chem 2021; 60:7974-7990. [PMID: 33979132 PMCID: PMC8659375 DOI: 10.1021/acs.inorgchem.1c00507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We have recently reported a series
of piano-stool ruthenium(II)
complexes of the general formula [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] showing excellent
cytotoxic activities (particularly when R2 = R3 = methyl). In the present study, new members of this family of compounds
have been prepared with the objective to investigate the effect of
the steric hindrance of a bulky phosphane ligand, namely diisopropyl(1-pyrenyl)phosphane
(L), on exchange reactions involving the coordinated
halides (X = Cl, I). Two η6-arene rings were used,
i.e. η6-methyl benzoate (mba) and η6-p-cymene (p-cym), and four complexes
were synthesized, namely [RuCl2(mba)(L)] (1Cl2iPr), [RuI2(mba)(L)] (1I2iPr), [RuCl2(p-cym)(L)] (2Cl2iPr), and [RuI2(p-cym)(L)]
(2I2iPr). Unexpectedly, all of
the complexes exhibited poor cytotoxic activities after 24 h of incubation
with cells, in contrast to the related compounds previously reported.
However, it was observed that aged DMSO solutions of 2I2iPr (from 2 to 7 days) exhibited better activities
in comparison to freshly prepared solutions and that the activity
improved over “aging” time. Thorough studies were therefore
performed to uncover the origin of this lag time in the cytotoxicity
efficiency. The data achieved clearly demonstrated that compounds 2I2iPr and 2Cl2iPr were undergoing a series of transformation reactions in DMSO (with
higher rates for the iodido complex 2I2iPr), ultimately generating cyclometalated species through a mechanism
involving DMSO as a coordinated proton abstractor. The cyclometalated
complexes detected in solution were subsequently prepared; hence,
pure [RuCl(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)] (3CliPr), [RuI(p-cym)(κ2C-diisopropyl(1-pyrenyl)phosphane)]
(3IiPr), and [Ru(p-cym)(κS-dmso)(κ2C-diisopropyl(1-pyrenyl)phosphane)]PF6 (3dmsoiPr) were synthesized and fully
characterized. Remarkably, 3CliPr, 3IiPr, and 3dmsoiPr are all very efficient cytotoxic agents,
exhibiting slightly better activities in comparison to the chlorido
noncyclometalated complexes [RuCl2(η6-arene)(P(1-pyrenyl)R2R3)] described in an earlier report. For comparison
purposes, the iodido compounds [RuI2(mba)(dimethyl(1-pyrenyl)phosphane)]
(1I2Me) and [RuI2(p-cym)(dimethyl(1-pyrenyl)phosphane)] (2I2Me), bearing the less hindered dimethyl(1-pyrenyl)phosphane ligand,
have also been prepared. The cytotoxic and chemical behaviors of 1I2Me and 1I2Me were comparable to those of their chlorido counterparts reported
previously. DMSO gradually converts half-sandwich,
1-pyrenyl-containing
ruthenium(II) complexes into cyclometalated species showing notable
cytotoxic properties.
Collapse
Affiliation(s)
- Laia Rafols
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain
| | - Dana Josa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC and Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jordi Cirera
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institut de Recerca de Química Teórica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat (Barcelona), Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat (Barcelona), Spain.,Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Martínez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Arnald Grabulosa
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Patrick Gamez
- Departament de Química Inorgànica i Orgànica, Facultat de Química, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Ortega E, Ballester FJ, Hernández-García A, Hernández-García S, Guerrero-Rubio MA, Bautista D, Santana MD, Gandía-Herrero F, Ruiz J. Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth inCaenorhabditis elegans. Inorg Chem Front 2021. [DOI: 10.1039/c9qi01704f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Novel Os(ii) arene complexes with a deprotonated ppy or ppy-CHO C^N ligand have been synthesized to selectively act on cancer cells as proteosynthesis inhibitorsin vitroand exert antitumor activityin vivoinC. elegansmodels.
Collapse
Affiliation(s)
- Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Alba Hernández-García
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Samanta Hernández-García
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - M. Alejandra Guerrero-Rubio
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Fernando Gandía-Herrero
- Departamento de Bioquímica y Biología Molecular A
- Unidad Docente de Biología
- Facultad de Veterinaria
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
18
|
Pujante-Galián MA, Pérez SA, Montalbán MG, Carissimi G, Fuster MG, Víllora G, García G. p-Cymene Complexes of Ruthenium(II) as Antitumor Agents. Molecules 2020; 25:E5063. [PMID: 33142775 PMCID: PMC7662397 DOI: 10.3390/molecules25215063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 01/14/2023] Open
Abstract
In this work, the cytotoxic behavior of six ruthenium(II) complexes of stoichiometry [(η6-p-cymene)RuCl2L] (I-VI), L = 4-cyanopyridine (I), 2-aminophenol (II), 4-aminophenol (III), pyridazine (IV), and [(η6-p-cymene)RuClL2]PF6; L = cyanopyridine (V), L = 2-aminophenol(VI) towards three cell lines was studied. Two of them, HeLa and MCF-7, are human carcinogenic cells from cervical carcinoma and human breast cancer, respectively. A comparison with healthy cells was carried out with BGM cells which are monkey epithelial cells of renal origin. The behavior of complex II exhibits selectivity towards healthy cells, which is a promising feature for use in cancer treatment since it might reduce the side effects of most current therapies.
Collapse
Affiliation(s)
- María Angeles Pujante-Galián
- Inorganic Chemistry Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (M.A.P.-G.); (G.G.)
| | - Sergio A. Pérez
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (S.A.P.); (G.C.); (M.G.F.); (G.V.)
| | - Mercedes G. Montalbán
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (S.A.P.); (G.C.); (M.G.F.); (G.V.)
| | - Guzmán Carissimi
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (S.A.P.); (G.C.); (M.G.F.); (G.V.)
| | - Marta G. Fuster
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (S.A.P.); (G.C.); (M.G.F.); (G.V.)
| | - Gloria Víllora
- Chemical Engineering Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (S.A.P.); (G.C.); (M.G.F.); (G.V.)
| | - Gabriel García
- Inorganic Chemistry Department, Faculty of Chemistry, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain; (M.A.P.-G.); (G.G.)
| |
Collapse
|
19
|
Mukherjee A, Acharya S, Purkait K, Chakraborty K, Bhattacharjee A, Mukherjee A. Effect of N, N Coordination and Ru II Halide Bond in Enhancing Selective Toxicity of a Tyramine-Based Ru II ( p-Cymene) Complex. Inorg Chem 2020; 59:6581-6594. [PMID: 32295347 DOI: 10.1021/acs.inorgchem.0c00694] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ruthenium compounds are promising anticancer candidates owing to their lower side-effects and encouraging activities against resistant tumors. Half-sandwich piano-stool type RuII compounds of general formula [(L)RuII(η6-arene)(X)]+ (L = chelating bidentate ligand, X = halide) have exhibited significant therapeutic potential against cisplatin-resistant tumor cell lines. In RuII (p-cymene) based complexes, the change of the halide leaving group has led to several interesting features, viz., hydrolytic stability, resistance toward thiols, and alteration in pathways of action. Tyramine is a naturally occurring monoamine which acts as a catecholamine precursor in humans. We synthesized a family of N,N and N,O coordinated RuII (p-cymene) complexes, [(L)RuII(η6-arene)(X)]+ (1-4), with tyramine and varied the halide (X = Cl, I) to investigate the difference in reactivity. Our studies showed that complex 2 bearing N,N coordination with an iodido leaving group shows selective in vitro cytotoxicity against the pancreatic cancer cell line MIA PaCa-2 (IC50 ca. 5 μM) but is less toxic to triple-negative breast cancer (MDA-MB-231), hepatocellular carcinoma (Hep G2), and the normal human foreskin fibroblasts (HFF-1). Complex 2 displays stability toward hydrolysis and does not bind with glutathione, as confirmed by 1H NMR and ESI-HRMS experiments. The inert nature of 2 leads to enhancement of cytotoxicity (IC50 = 5.3 ± 1 μM) upon increasing the cellular treatment time from 48 to 72 h.
Collapse
Affiliation(s)
- Arpan Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kallol Purkait
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| | - Kaustav Chakraborty
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Ashima Bhattacharjee
- Amity Institute of Biotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata-700135, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur-741246, India
| |
Collapse
|
20
|
Khan TA, Bhar K, Thirumoorthi R, Roy TK, Sharma AK. Design, synthesis, characterization and evaluation of the anticancer activity of water-soluble half-sandwich ruthenium(ii) arene halido complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj03663f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis, crystal structure determination, DFT studies, experimental and theoretical evaluation of DNA/BSA interactions and cytotoxicity studies of three piano-stool Ru(ii)(p-cymene)chloride complexes (1–3) are presented herein.
Collapse
Affiliation(s)
- Tanveer A. Khan
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Kishalay Bhar
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Ramalingam Thirumoorthi
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Tapta Kanchan Roy
- Department of Chemistry & Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Anuj K. Sharma
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| |
Collapse
|
21
|
Ballester FJ, Ortega E, Bautista D, Santana MD, Ruiz J. Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chem Commun (Camb) 2020; 56:10301-10304. [DOI: 10.1039/d0cc02417a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(ii) complexes exhibit phototherapeutic indexes higher than 750 in cancer HeLa cells with low nanomolar IC50 values under low doses of non-harmful green light and are active in normoxia and hypoxia conditions.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | | | - M. Dolores Santana
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| | - José Ruiz
- Departamento de Química Inorgánica
- Universidad de Murcia
- and Biomedical Research Institute of Murcia (IMIB-Arrixaca)
- E-30071 Murcia
- Spain
| |
Collapse
|
22
|
Kim J, Kim S, Kim D, Chang S. Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline N-Oxides. J Org Chem 2019; 84:13150-13158. [DOI: 10.1021/acs.joc.9b01548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|