1
|
Hatakeyama-Sato K, Oyaizu K. Redox: Organic Robust Radicals and Their Polymers for Energy Conversion/Storage Devices. Chem Rev 2023; 123:11336-11391. [PMID: 37695670 DOI: 10.1021/acs.chemrev.3c00172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.
Collapse
Affiliation(s)
- Kan Hatakeyama-Sato
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenichi Oyaizu
- Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
2
|
Cannon CG, Klusener PAA, Brandon NP, Kucernak ARJ. Aqueous Redox Flow Batteries: Small Organic Molecules for the Positive Electrolyte Species. CHEMSUSCHEM 2023; 16:e202300303. [PMID: 37205628 DOI: 10.1002/cssc.202300303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
There are a number of critical requirements for electrolytes in aqueous redox flow batteries. This paper reviews organic molecules that have been used as the redox-active electrolyte for the positive cell reaction in aqueous redox flow batteries. These organic compounds are centred around different organic redox-active moieties such as the aminoxyl radical (TEMPO and N-hydroxyphthalimide), carbonyl (quinones and biphenols), amine (e. g., indigo carmine), ether and thioether (e. g., thianthrene) groups. We consider the key metrics that can be used to assess their performance: redox potential, operating pH, solubility, redox kinetics, diffusivity, stability, and cost. We develop a new figure of merit - the theoretical intrinsic power density - which combines the first four of the aforementioned metrics to allow ranking of different redox couples on just one side of the battery. The organic electrolytes show theoretical intrinsic power densities which are 2-100 times larger than that of the VO2+ /VO2 + couple, with TEMPO-derivatives showing the highest performance. Finally, we survey organic positive electrolytes in the literature on the basis of their redox-active moieties and the aforementioned figure of merit.
Collapse
Affiliation(s)
- Christopher G Cannon
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Nigel P Brandon
- Department of Earth Science and Engineering, Imperial College London South Kensington, London, SW7 2AZ, United Kingdom
| | - Anthony R J Kucernak
- Department of Chemistry, Imperial College London MSRH, White City, London, W12 0BZ, United Kingdom
| |
Collapse
|
3
|
Yang C, Arora S, Maldonado S, Pratt DA, Stephenson CRJ. The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 2023; 7:653-666. [PMID: 37464019 DOI: 10.1038/s41570-023-00511-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/20/2023]
Abstract
Phthalimide-N-oxyl (PINO) is a valuable hydrogen-atom-transfer (HAT) catalyst for selective C-H functionalization. To advance and optimize PINO-catalysed HAT reactions, researchers have been focused on modifying the phthalimide core structure. Despite much effort and some notable advances, the modifications to date have centred on optimization of a single parameter of the catalyst, such as reactivity, solubility or stability. Unfortunately, the optimization with respect to one parameter is often associated with a worsening of the others. The derivation of a single catalyst structure with optimal performance across multiple parameters has therefore remained elusive. Here we present an analysis of the structure-activity relationships of PINO and its derivatives as HAT catalysts, which we hope will stimulate further development of PINO-catalysed HAT reactions and, ultimately, lead to much improved catalysts for real-world applications.
Collapse
Affiliation(s)
- Cheng Yang
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Sahil Arora
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Stephen Maldonado
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
- Program in Applied Physics, University of Michigan, Ann Arbor, MI, USA.
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Zhu F, Guo W, Fu Y. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries. Chem Asian J 2023; 18:e202201098. [PMID: 36454229 DOI: 10.1002/asia.202201098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Redox flow batteries (RFBs) are promising candidates for large-scale energy storage systems (ESSs) due to their unique architecture that can decouple energy and power. Aqueous RFBs based on organic molecules (AORFBs) work with a non-flammable and intrinsically safe aqueous electrolyte, and organic compounds are performed as redox couples. The application of redox-active organics tremendously expands the development space of RFBs owing to the highly tunable molecule structure. Molecular engineering enables the exceptional merits in solubility, stability, and redox potential of different organic molecules. Herein, this review summarizes the application of molecular engineering to several organic compounds, focusing on the fundamental overview of their physicochemical properties and design strategies. We discuss the electrochemical merits and performances along with the intrinsic properties of the designed organic components. Finally, we outline the requirements for rational design of innovative organics to motivate more valuable research and present the prospect of molecule engineering used in AORFBs.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
5
|
S. V. SS, Law JN, Tripp CE, Duplyakin D, Skordilis E, Biagioni D, Paton RS, St. John PC. Multi-objective goal-directed optimization of de novo stable organic radicals for aqueous redox flow batteries. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractAdvances in the field of goal-directed molecular optimization offer the promise of finding feasible candidates for even the most challenging molecular design applications. One example of a fundamental design challenge is the search for novel stable radical scaffolds for an aqueous redox flow battery that simultaneously satisfy redox requirements at the anode and cathode, as relatively few stable organic radicals are known to exist. To meet this challenge, we develop a new open-source molecular optimization framework based on AlphaZero coupled with a fast, machine-learning-derived surrogate objective trained with nearly 100,000 quantum chemistry simulations. The objective function comprises two graph neural networks: one that predicts adiabatic oxidation and reduction potentials and a second that predicts electron density and local three-dimensional environment, previously shown to be correlated with radical persistence and stability. With no hard-coded knowledge of organic chemistry, the reinforcement learning agent finds molecule candidates that satisfy a precise combination of redox, stability and synthesizability requirements defined at the quantum chemistry level, many of which have reasonable predicted retrosynthetic pathways. The optimized molecules show that alternative stable radical scaffolds may offer a unique profile of stability and redox potentials to enable low-cost symmetric aqueous redox flow batteries.
Collapse
|
6
|
Kishioka S. Electrode reaction of N-hydroxyphthalimide in sulfuric acid-acetonitrile mixed solution as a catalytic mediator for alcohol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Fischer P, Mazúr P, Krakowiak J. Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Molecules 2022; 27:560. [PMID: 35056875 PMCID: PMC8778144 DOI: 10.3390/molecules27020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Redox flow batteries (RFBs) are an increasingly attractive option for renewable energy storage, thus providing flexibility for the supply of electrical energy. In recent years, research in this type of battery storage has been shifted from metal-ion based electrolytes to soluble organic redox-active compounds. Aqueous-based organic electrolytes are considered as more promising electrolytes to achieve "green", safe, and low-cost energy storage. Many organic compounds and their derivatives have recently been intensively examined for application to redox flow batteries. This work presents an up-to-date overview of the redox organic compound groups tested for application in aqueous RFB. In the initial part, the most relevant requirements for technical electrolytes are described and discussed. The importance of supporting electrolytes selection, the limits for the aqueous system, and potential synthetic strategies for redox molecules are highlighted. The different organic redox couples described in the literature are grouped in a "family tree" for organic redox couples. This article is designed to be an introduction to the field of organic redox flow batteries and aims to provide an overview of current achievements as well as helping synthetic chemists to understand the basic concepts of the technical requirements for next-generation energy storage materials.
Collapse
Affiliation(s)
- Peter Fischer
- Fraunhofer Institute for Chemical Technology, Pfinztal, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany
| | - Petr Mazúr
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Praha 6, 166 28 Prague, Czech Republic;
| | - Joanna Krakowiak
- Physical Chemistry Department, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
8
|
Li Z, Lu YC. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002132. [PMID: 33094532 DOI: 10.1002/adma.202002132] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Redox flow batteries (RFBs) are critical enablers for next-generation grid-scale energy-storage systems, due to their scalability and flexibility in decoupling power and energy. Aqueous RFBs (ARFBs) using nonflammable electrolytes are intrinsically safe. However, their development has been limited by their low energy density and high cost. Developing ARFBs with higher energy density, lower cost, and longer lifespan than the current standard is of significant interest to academic and industrial research communities. Here, a critical review of the latest progress on advanced electrolyte material designs of ARFBs is presented, including a fundamental overview of their physicochemical properties, major challenges, and design strategies. Assessment methodologies and metrics for the evaluation of RFB stability are discussed. Finally, future directions for material design to realize practical applications and achieve the commercialization of ARFB energy-storage systems are highlighted.
Collapse
Affiliation(s)
- Zhejun Li
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, 999077, China
| | - Yi-Chun Lu
- Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|