1
|
Gorji ZE, Khodadadi AA, Riahi S, Repo T, Mortazavi Y, Kemell M. Functionalization of nitrogen-doped graphene quantum dot: A sustainable carbon-based catalyst for the production of cyclic carbonate from epoxide and CO 2. J Environ Sci (China) 2023; 126:408-422. [PMID: 36503768 DOI: 10.1016/j.jes.2022.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/17/2023]
Abstract
A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.
Collapse
Affiliation(s)
- Zahra Eshaghi Gorji
- Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran; Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
| | - Abbas Ali Khodadadi
- Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran
| | - Siavash Riahi
- Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1439953754, Iran
| | - Timo Repo
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland.
| | - Yadollah Mortazavi
- Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417614411, Iran.
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
2
|
Exploring the Potential of Nanosized Oxides of Zinc and Tin as Recyclable Catalytic Components for the Synthesis of Cyclic Organic Carbonates under Atmospheric CO2 Pressure. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
3
|
Kinetics of Heterogeneous Single‐Site Catalysis. ChemCatChem 2022. [DOI: 10.1002/cctc.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Yun R, Li T, He L, Shi C, Xu R. Atomically Dispersed Iron Sites on the Hollow Nitrogen-Doped Carbon Framework with a Highly Efficient Performance on Carbon Dioxide Cycloaddition. Inorg Chem 2022; 61:15817-15821. [PMID: 36178332 DOI: 10.1021/acs.inorgchem.2c02695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exploration of efficient and low-consumption catalysts for carbon dioxide (CO2) conversion is desirable yet remains a great challenge. Herein, a novel catalyst composed of a hollow nitrogen-doped carbon framework (HNF) enriched with high-loading (9.8 wt %) atomically dispersed iron sites (defined as FeSAs/HNF) has been fabricated by a polymer-assisted strategy. As a result, FeSAs/HNF has an excellent performance on the cycloaddition reactions of CO2 with epoxides (the conversion >96%) under milder conditions because of its ultrahigh loading of atomically dispersed iron sites. This study not only provides an advanced catalyst for driving CO2 cycloaddition but also furnishes a novel perspective on the rational design of superior catalysts with high-loading active sites for diverse heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Ruirui Yun
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Tuanhui Li
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Lei He
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Changsong Shi
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| | - Ruiming Xu
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China
| |
Collapse
|
5
|
Boushehri PH, Hafizi A, Rahimpour MR, Khalifeh R. Synthesis and Application of Double-Shelled CuCo2O4 Hollow Sphere Catalyst for Chemical Fixation of CO2. Top Catal 2021. [DOI: 10.1007/s11244-021-01456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Rezaei F, Khalifeh R, Amrollahi MA. Tetra-Shelled Cr1.3Fe0.7O3 Hollow Sphere as an Efficient Catalyst for the CO2 Fixation Reaction Under Mild and Solvent-Free Conditions. Top Catal 2021. [DOI: 10.1007/s11244-021-01464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Gou F, Liu J, Ye N, Jiang X, Qi C. Cobalt-porphyrin modified graphene oxide as a heterogeneous catalyst for solvent-free CO2 fixation to cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Kumar R, Sahoo SC, Nanda PK. A
μ
4
‐Oxo Bridged Tetranuclear Zinc Complex as an Efficient Multitask Catalyst for CO
2
Conversion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raman Kumar
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Subash C. Sahoo
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Prasant K. Nanda
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
| |
Collapse
|
9
|
Zhao Q, Wang C, Wang H, Wang J. A mass-producible integrative structure Pt alloy oxygen reduction catalyst synthesized with atomically dispersive metal-organic framework precursors. J Colloid Interface Sci 2021; 583:351-361. [PMID: 33011405 DOI: 10.1016/j.jcis.2020.09.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022]
Abstract
Oxygen reduction reaction (ORR) catalyst is one of the most significant influential factors for the application of proton exchange membrane fuel cells. This work introduces a mass-producible high-performance PtZn alloy integrative structure ORR catalyst, synthesized with the atomically dispersive metal-organic framework precursors. This PtZn catalyst displays excellent catalytic activity with the onset reduction potential of 1.0 VRHE@ 0.16 mA cm-2 (Reversible hydrogen electrode; RHE) and the half-wave potential of 0.934 VRHE for the ORR catalysis. The calculated specific activity and mass activity at 0.9 V are 9.44 A m-2 and 544 A gPt-1, respectively, which are 5.62 times and 5.77 times as high as the commercial Pt/C. The mass activity is remarkably higher than the target put forward by the Department of Energy (DOE; 440 A gPt-1). Furthermore, this PtZn catalyst also exhibits outstanding stability after the 10,000 potential cyclic degeneration test. The ORR current is much higher than Pt/C in the whole potential range not only before but also after the 10,000 potential cycles with identical Pt loading. This catalyst has a multifarious active-site catalytic structure with PtZn alloyed particles and atomically dispersive metal-N active sites on the N-doped graphited carbon matrix, exhibiting appealing ORR catalytic activity and sound stability for the application and scalable production of fuel cell catalysts.
Collapse
Affiliation(s)
- Qing Zhao
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China
| | - Cheng Wang
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China.
| | | | - Jianlong Wang
- Zhang Jiagang Joint Institute for Hydrogen Energy and Lithium-Ion Battery Technology, INET, Tsinghua University, Beijing, PR China
| |
Collapse
|
10
|
Zhang Q, Zhang X, Wang J, Wang C. Graphene-supported single-atom catalysts and applications in electrocatalysis. NANOTECHNOLOGY 2021; 32:032001. [PMID: 33002887 DOI: 10.1088/1361-6528/abbd70] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supported metal nanostructures are the most extensively studied heterogeneous catalysts, benefiting from easy separation, regeneration and affordable cost. The size of the supported metal species is one of the decisive factors in determining the activity of heterogeneous catalysts. Particularly, the unsaturated coordination environment of metal atoms preferably act as the active centers, minimizing these metal species can significantly boost the specific activity of every single metal atom. Single-atom catalysts/catalysis (SACs), containing isolated metals atomically dispersed on or coordinated with the surface of a support material, represent the ultimate utilization of supported metals and maximize metal usage efficiency. Graphene, a two-dimensional star material, exhibiting extraordinary physical and chemical properties, has been approved as an excellent platform for constructing SACs. When atomically dispersed metal atoms are strongly anchored on the graphene surface, featuring ultra-high surface area and excellent electronic properties, SACs offer a great potential to significantly innovate the conventional heterogeneous catalysis, especially in the field of electrocatalysis. In this review, a detailed discussion of graphene-supported SACs, including preparation approaches, characterization techniques and applications on typical electrocatalytic reactions is provided. The advantages and unique features of graphene-supported SACs as efficient electrocatalysts and the upcoming challenges for improving their performance and further practical applications are also highlighted.
Collapse
Affiliation(s)
- Qin Zhang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Xiaoxiang Zhang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Junzhong Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People's Republic of China
| |
Collapse
|
11
|
|
12
|
Khalifeh R, Karimi M, Rajabzadeh M, Hafizi A, Nogorani FS. Synthesis and morphology control of nano CuAl2O4 hollow spheres and their application as an efficient and sustainable catalyst for CO2 fixation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Efficient and selective CO2 and CS2 conversion to cyclic carbonates and trithiocarbonates by using multishell hollow CoAl2O4 microsphere as a unique catalyst under solventless condition. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Heydari P, Hafizi A, Rajabzadeh M, Karimi M, Khalifeh R, Rahimpour M. Synthesis and application of nanoporous triple-shelled CuAl2O4 hollow sphere catalyst for atmospheric chemical fixation of carbon dioxide. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Li J, Li C, Feng S, Zhao Z, Zhu H, Ding Y. Atomically Dispersed Zn‐N
x
Sites in N‐Doped Carbon for Reductive N‐formylation of Nitroarenes with Formic Acid. ChemCatChem 2020. [DOI: 10.1002/cctc.201902109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinlei Li
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Cunyao Li
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Siquan Feng
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
- State Key Laboratory of Catalysis Dalian Institute of Chemical PhysicsChinese Academy of Sciences 457 Zhongshan Road Dalian 116023 P. R. China
| |
Collapse
|
16
|
Li X, Zhang Y, Zhang J, Wang C. Isolated Fe atoms dispersed on cellulose-derived nanocarbons as an efficient electrocatalyst for the oxygen reduction reaction. NANOSCALE 2019; 11:23110-23115. [PMID: 31782475 DOI: 10.1039/c9nr07914a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cost-effective preparation of efficient electrocatalysts is vitally important for energy storage and conversion. Here, a facile chemical activation strategy using biomass cellulose as the carbon feedstock to fabricate isolated Fe atoms dispersed on a nitrogen doped graphene/nanocarbon hybrid is reported. This new single atom catalyst aFe-NGC worked as an excellent electrocatalyst towards the ORR compared to commercial Pt/C with 30 mV higher positive half-wave potential, larger current density, better stability and stronger methanol-tolerance. The key active sites for enhancing the ORR activity originated from the constructed high loading Fe-N/C configuration coupled with doped nitrogens, as explored by optimizing the activation temperatures and characterized by state-of-the-art techniques including aberration-corrected STEM and synchrotron XANES. This strategy could be developed into a general approach to prepare highly efficient atomic metal electrocatalysts using abundant biomass as a cost-effective carbon source.
Collapse
Affiliation(s)
- Xiaofeng Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Yuhao Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Jinfang Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China.
| |
Collapse
|
17
|
Norouzi F, Khavasi HR. Diversity-Oriented Metal Decoration on UiO-Type Metal-Organic Frameworks: an Efficient Approach to Increase CO 2 Uptake and Catalytic Conversion to Cyclic Carbonates. ACS OMEGA 2019; 4:19037-19045. [PMID: 31763526 PMCID: PMC6868879 DOI: 10.1021/acsomega.9b02035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A library of metallo-bipyridine UiO-type metal-organic frameworks (MOFs) has been successfully synthesized by postmetallation of a wide range of metal complexes into bidentate bipyridine moieties. Then, a systematic investigation is devoted to a catalytic evaluation of the resultant MOFs containing a binary Lewis acid function for the synthesis of cyclic carbonates from epoxides and carbon dioxide (CO2). The result indicated that the metal-grafted MOFs exhibit improvement in terms of CO2 uptake capacity and catalytic activity in comparison with their nonmetallated counterparts. The comprehensive investigation provides a valuable insight into the synergetic effects of MOF functionalities including metal node, grafted metal, and its counterion in the cycloaddition reaction. Furthermore, the metal coordination modulation due to its benefits such as being a solvent-free process, nearly full conversion to cyclic carbonates, high selectivity and high CO2 uptake, applying atmospheric CO2 pressure, and excellent stability and easy recyclability of the catalyst demonstrates them as promising candidates for practical utilization of CO2 conversion into value-added chemicals.
Collapse
Affiliation(s)
- Fataneh Norouzi
- Department of Inorganic Chemistry
and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| | - Hamid Reza Khavasi
- Department of Inorganic Chemistry
and Catalysis, Shahid Beheshti University, General Campus, Evin, Tehran 1983963113, Iran
| |
Collapse
|
18
|
Samantaray MK, D'Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem Rev 2019; 120:734-813. [PMID: 31613601 DOI: 10.1021/acs.chemrev.9b00238] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Single atom catalysis (SAC) is a recent discipline of heterogeneous catalysis for which a single atom on a surface is able to carry out various catalytic reactions. A kind of revolution in heterogeneous catalysis by metals for which it was assumed that specific sites or defects of a nanoparticle were necessary to activate substrates in catalytic reactions. In another extreme of the spectrum, surface organometallic chemistry (SOMC), and, by extension, surface organometallic catalysis (SOMCat), have demonstrated that single atoms on a surface, but this time with specific ligands, could lead to a more predictive approach in heterogeneous catalysis. The predictive character of SOMCat was just the result of intuitive mechanisms derived from the elementary steps of molecular chemistry. This review article will compare the aspects of single atom catalysis and surface organometallic catalysis by considering several specific catalytic reactions, some of which exist for both fields, whereas others might see mutual overlap in the future. After a definition of both domains, a detailed approach of the methods, mostly modeling and spectroscopy, will be followed by a detailed analysis of catalytic reactions: hydrogenation, dehydrogenation, hydrogenolysis, oxidative dehydrogenation, alkane and cycloalkane metathesis, methane activation, metathetic oxidation, CO2 activation to cyclic carbonates, imine metathesis, and selective catalytic reduction (SCR) reactions. A prospective resulting from present knowledge is showing the emergence of a new discipline from the overlap between the two areas.
Collapse
Affiliation(s)
- Manoja K Samantaray
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Valerio D'Elia
- School of Molecular Science and Engineering (MSE) , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wang Chan, Payupnai , 21210 Rayong , Thailand
| | - Eva Pump
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Moussab Harb
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Samy Ould Chikh
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Jean-Marie Basset
- King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
19
|
Sirijaraensre J. Mechanistic insights into CO2 cycloaddition of styrene oxide on paddle-wheel metal clusters: a theoretical study. NEW J CHEM 2019. [DOI: 10.1039/c9nj02566a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanisms for the CO2 cycloaddition of styrene oxide catalyzed by M–BTC clusters have been systematically elucidated by means of the M06-L functional.
Collapse
Affiliation(s)
- Jakkapan Sirijaraensre
- Center for Advanced Studies in Nanotechnology for Chemical
- Food and Agricultural Industries
- Department of Chemistry
- Faculty of Science
- Kasetsart University
| |
Collapse
|
20
|
Jia M, Hong S, Wu TS, Li X, Soo YL, Sun Z. Single Sb sites for efficient electrochemical CO2 reduction. Chem Commun (Camb) 2019; 55:12024-12027. [DOI: 10.1039/c9cc06178a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the facile synthesis of Sb single atoms for efficient electrocatalytic CO2 reduction to CO.
Collapse
Affiliation(s)
- Mingwen Jia
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Song Hong
- Beijing Key Laboratory of Energy Environmental Catalysis
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Tai-Sing Wu
- Department of Physics
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Xin Li
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yun-Liang Soo
- Department of Physics
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Zhenyu Sun
- State Key Laboratory of Organic–Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
21
|
Sodpiban O, Del Gobbo S, Barman S, Aomchad V, Kidkhunthod P, Ould-Chikh S, Poater A, D'Elia V, Basset JM. Synthesis of well-defined yttrium-based Lewis acids by capturing a reaction intermediate and catalytic application for cycloaddition of CO2 to epoxides under atmospheric pressure. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01642b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Single-site yttrium complexes were prepared by immobilization of an intermediate of cycloaddition of CO2 to epoxides and applied in catalysis.
Collapse
Affiliation(s)
- Ounjit Sodpiban
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Silvano Del Gobbo
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Samir Barman
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science & Technology
- 23955-6900 Thuwal
- Saudi Arabia
| | - Vatcharaporn Aomchad
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization)
- Nakhon Ratchasima 30000
- Thailand
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science & Technology
- 23955-6900 Thuwal
- Saudi Arabia
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jean-Marie Basset
- KAUST Catalysis Center (KCC)
- King Abdullah University of Science & Technology
- 23955-6900 Thuwal
- Saudi Arabia
| |
Collapse
|