1
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
2
|
Schoetz MD, Deckers K, Singh G, Ahrweiler E, Hoeppner A, Schoenebeck F. Electrochemistry-Enabled C-Heteroatom Bond Formation of Alkyl Germanes. J Am Chem Soc 2024; 146:21257-21263. [PMID: 39058901 DOI: 10.1021/jacs.4c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Because of their robustness and orthogonal reactivity features, alkyl germanes bear significant potential as functional handles for the construction of C(sp3)-rich scaffolds, especially in the context of modular synthetic approaches. However, to date, only radical-based reactivity has been accessible from these functional handles, which limits the types of possible decorations. Here, we describe the first general C(sp3)-heteroatom bond formation of alkyl germanes (-GeEt3) by leveraging electrochemistry to unlock polar reactivity. This approach allowed us to couple C(sp3)-GeEt3 with a variety of nucleophiles to construct ethers, esters, amines, amides, sulfonamides, sulfides, as well as C-P, C-F, and C-C bonds. The compatibility of the electrochemical approach with a modular synthetic strategy of a C1 motif was also showcased, involving the sequential functionalization of Cl, Bpin, and ultimately GeEt3 via electrochemistry.
Collapse
Affiliation(s)
- Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | - Annika Hoeppner
- Institute of Organic Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
3
|
Ahrweiler E, Schoetz MD, Singh G, Bindschaedler QP, Sorroche A, Schoenebeck F. Triply Selective & Sequential Diversification at C sp 3: Expansion of Alkyl Germane Reactivity for C-C & C-Heteroatom Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202401545. [PMID: 38386517 DOI: 10.1002/anie.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
We report the triply selective and sequential diversification of a single Csp 3 carbon carrying Cl, Bpin and GeEt3 for the modular and programmable construction of sp3-rich molecules. Various functionalizations of Csp 3-Cl and Csp 3-BPin (e.g. alkylation, arylation, homologation, amination, hydroxylation) were tolerated by the Csp 3-GeEt3 group. Moreover, the methodological repertoire of alkyl germane functionalization was significantly expanded beyond the hitherto known Giese addition and arylation to alkynylation, alkenylation, cyanation, halogenation, azidation, C-S bond formation as well as the first demonstration of stereo-selective functionalization of a Csp 3-[Ge] bond.
Collapse
Affiliation(s)
- Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Gurdeep Singh
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Quentin P Bindschaedler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Alba Sorroche
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany)
| |
Collapse
|
4
|
Davies AM, Londhe SS, Smith ER, Tunge JA. Single-Step Synthesis of γ-Ketoacids through a Photoredox-Catalyzed Dual Decarboxylative Coupling of α-Oxo Acids and Maleic Anhydrides. Org Lett 2023. [PMID: 37991504 DOI: 10.1021/acs.orglett.3c03258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A photocatalytic methodology for the single step synthesis of γ-ketoacids from α-ketoacids has been developed. This method employs maleic anhydrides as traceless synthetic equivalents of acrylic acids, achieving a selective cross-coupling via a dual decarboxylative strategy, where molecular CO2 is released as the only waste byproduct. The method has also been expanded to incorporate a highly regioselective, 3-component coupling with various alcohols to access functionalized γ-ketoesters.
Collapse
Affiliation(s)
- Alex M Davies
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Shrikant S Londhe
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Emma R Smith
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Rd., Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Cheng SY, Liao JB, Lin YM, Gong L. Photochemical Synthesis of S,N,O-Containing Polyheterocycles via an α-C(sp 3)-H Functionalization/Radical Cyclization Cascade. Org Lett 2023; 25:6566-6570. [PMID: 37646425 DOI: 10.1021/acs.orglett.3c02423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A highly effective approach based on an organophotocatalytic α-C(sp3)-H functionalization/radical cyclization cascade has been developed. This method enables the synthesis of various tricyclic heterocycles containing S, O, and N atoms with excellent site selectivity and diastereoselectivity. Mechanistic investigations have confirmed that the reaction involves photoredox-triggered C(sp3)-H cleavage followed by a radical cyclization and aromatization process. These findings are expected to pave the way for developing cost-effective tandem radical reactions and synthesizing heterocyclic drugs.
Collapse
Affiliation(s)
- Shi-Yan Cheng
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Kuhlmann JH, Dickoff JH, Mancheño OG. Visible Light Thiyl Radical-Mediated Desilylation of Arylsilanes. Chemistry 2023; 29:e202203347. [PMID: 36453609 DOI: 10.1002/chem.202203347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
A straightforward, visible-light triggered desilylation of arylsilanes by thiyl radicals is presented. Silyl groups are often used to block a reactive position in multi-step organic synthesis, for which a mild cleavage at a late-stage will provide new possibilities and disconnection routes by CAr -Si cleavage/deprotection. In this work, commercially available and cheap disulfides are employed for the first time in this type of C(sp2 )-Si bond cleavage reactions. Thus, upon irradiation with visible-light, homolytic cleavage of the disulfide give rise to the corresponding thiyl radical that allows for a radical chain mechanism. This methodology represents a mild, fast and simple approach suitable for a broad variety of simply substituted arylsilanes. Moreover, the procedure could be easily extended to natural products and therapeutic derivatives, showing its robustness and synthetic application potential.
Collapse
Affiliation(s)
- Jan H Kuhlmann
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jan H Dickoff
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
7
|
A Visible-Light-Triggered & Rhodamine-B Catalyzed Eco-friendly Synthesis of Benzopyrano[2,3-c]pyrazoles. Catal Letters 2023. [DOI: 10.1007/s10562-023-04279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Selmani A, Schoetz MD, Queen AE, Schoenebeck F. Modularity in the C sp3 Space─Alkyl Germanes as Orthogonal Molecular Handles for Chemoselective Diversification. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aymane Selmani
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Markus D. Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Adele E. Queen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
9
|
Kuhlmann JH, Uygur M, García Mancheño O. Protodesilylation of Arylsilanes by Visible-Light Photocatalysis. Org Lett 2022; 24:1689-1694. [PMID: 35196013 DOI: 10.1021/acs.orglett.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first visible-light-mediated photocatalytic, metal- and base-free protodesilylation of arylsilanes is presented. The C(sp2)-Si bond cleavage process is catalyzed by a 5 mol % loading of a commercially available acridinium salt upon blue-light irradiation. Two simple approaches have been identified employing either aerobic or hydrogen atom transfer cocatalytic conditions, which enable the efficient and selective desilylation of a broad variety of simple and complex arylsilanes under mild conditions.
Collapse
Affiliation(s)
- Jan H Kuhlmann
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Mustafa Uygur
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
10
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
11
|
Xu QH, Wei LP, Xiao B. Alkyl-GeMe3: Neutral Metalloid Radical Precursors upon Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115592. [PMID: 34967484 DOI: 10.1002/anie.202115592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/07/2022]
Abstract
Single-electron transfer (SET) oxidation of ionic hypervalent complexes, representatively alkyltrifluoroborates (Alkyl-BF3-) and alkylbis(catecholato)silicates (Alkyl-Si(cat)2-), have contributed substantially to alkyl radical generation compared to alkali or alkaline earth organometallics because of their excellent activity-stability balance. Herein, we report another proposal using neutral metalloid compounds, Alkyl-GeMe3, as radical precursors. Compared to Alkyl-BF3- and Alkyl-Si(cat)2-, Alkyl-GeMe3 show comparable activity in radical addition reactions. Moreover, Alkyl-GeMe3 gives the first success of group 14 tetraalkyl nucleophiles in nickel catalyzed cross-coupling. Meanwhile, the neutral nature of these organogermanes supplemented the limination of ionic precursors in purification and derivatization. A preliminary mechanism study corresponds to the procedure that alkyl radical generates from tetraalkylgermane radical cation with the assistance of a nucleophile, which may also enlighten the development of more non-ionic alkyl radical precursors with metalloid center.
Collapse
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China, Department of Chemistry, CHINA
| | - Bin Xiao
- University of Science and Technology of China, Department of Chemistry, Jinzhai Road 96#, 230026, Hefei, CHINA
| |
Collapse
|
12
|
Xu QH, Wei LP, Xiao B. Alkyl‒GeMe3: Neutral Metalloid Radical Precursors upon Visible‐Light Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing-Hao Xu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Li-Pu Wei
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Bin Xiao
- University of Science and Technology of China Department of Chemistry Jinzhai Road 96# 230026 Hefei CHINA
| |
Collapse
|
13
|
Sengoku T, Ogawa D, Iwama H, Inuzuka T, Yoda H. A heavy-metal-free desulfonylative Giese-type reaction of benzothiazole sulfones under visible-light conditions. Chem Commun (Camb) 2021; 57:9858-9861. [PMID: 34490858 DOI: 10.1039/d1cc03833h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A visible-light-induced desulfonylative Giese-type reaction has been developed. Essential to the success is the employment of Hantzsch ester to activate benzothiazole sulfones without any heavy-metal additives. Not only benzylic benzothiazole sulfones but also alkyl ones were viable substrates and reacted with electron-deficient alkenes and a propiol amide.
Collapse
Affiliation(s)
- Tetsuya Sengoku
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Daichi Ogawa
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Haruka Iwama
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hidemi Yoda
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan.
| |
Collapse
|
14
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
15
|
Morofuji T, Matsui Y, Ohno M, Ikarashi G, Kano N. Photocatalytic Giese-Type Reaction with Alkylsilicates Bearing C,O-Bidentate Ligands. Chemistry 2021; 27:6713-6718. [PMID: 33382504 DOI: 10.1002/chem.202005300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Herein, a photocatalytic Giese-type reaction with alkylsilicates bearing C,O-bidentate ligands as stable alkyl radical precursors has been reported. The alkylsilicates were prepared in one step from organometallic reagents. Not only primary, secondary, and tertiary alkyl radicals, but also elusive methyl radicals, could be generated by using the present reaction system. The generated radicals were trapped by electron-deficient olefins bearing various functional groups to give the desired alkyl adducts. The silicon byproduct can be recovered after the photoreaction. The radical generation process was investigated by theoretical calculations, which provided an insight into the facile generation of methyl radicals from methylsilicate bearing C,O-bidentate ligands.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Yu Matsui
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Misa Ohno
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| | - Gun Ikarashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan.,Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 1718588, Japan
| |
Collapse
|
16
|
Yang N, Fang Y, Xu F, Zhou R, Jin X, Zhang L, Shi J, Fang J, Wu H, Zhang Z. Application of the stabilization effect of a silyl group in radical-polar crossover reactions enabled by photoredox-neutral catalysis. Org Chem Front 2021. [DOI: 10.1039/d1qo00738f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Taking advantage of the stabilization effect of a silyl group, with a bulky but positive nature, a range of less investigated organosilanes could be generally accessed via photoredox-catalysed radical-polar crossover reactions.
Collapse
Affiliation(s)
- Naiyuan Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan 030024, China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China
| | - Fenfen Xu
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| | - Rong Zhou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 West Street Yingze, Taiyuan 030024, China
| | - Xiaoping Jin
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, No. 888 Yinxian Avenue East, Ningbo 315100, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, No. 888 Yinxian Avenue East, Ningbo 315100, China
| | - Jianxun Shi
- Department of Pharmaceutical Engineering, Zhejiang Pharmaceutical College, No. 888 Yinxian Avenue East, Ningbo 315100, China
| | - Jianghua Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| | - Hao Wu
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| | - Zongyong Zhang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
| |
Collapse
|
17
|
Priebbenow DL. Silicon‐Derived Singlet Nucleophilic Carbene Reagents in Organic Synthesis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000279] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Daniel L. Priebbenow
- School of ChemistryThe University of Melbourne Parkville, Victoria Australia 3010
| |
Collapse
|
18
|
Mondal A, Mukhopadhyay C. Construction of Carbon-Carbon and Carbon-Heteroatom Bonds: Enabled by Visible Light. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present review provides an overview of visible light-mediated environment-
friendly approaches over the past decade for the formation of carbon-carbon and
carbon-heteroatom framework. This area has recently emerged as a versatile, environmentally
benign and green platform for the development of a highly sustainable synthetic
methodology. According to the recent advancements, visible light has come to the forefront
in synthetic organic chemistry as a powerful green strategy for the activation of small
molecules.
Collapse
Affiliation(s)
- Animesh Mondal
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
19
|
Morofuji T, Ikarashi G, Kano N. Photocatalytic C-H Amination of Aromatics Overcoming Redox Potential Limitations. Org Lett 2020; 22:2822-2827. [PMID: 32207629 DOI: 10.1021/acs.orglett.0c00822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the photocatalytic C-H amination of aromatics overcoming redox potential limitations. Radical cations of aromatic compounds are generated photocatalytically using Ru(phen)3(PF6)2, which has a reduction potential at a high oxidation state (Ered(RuIII/RuII) = +1.37 V vs SCE) lower than the oxidation potentials of aromatic substrates (Eox = +1.65 to +2.27 V vs SCE). The radical cations are trapped with pyridine to give N-arylpyridinium ions, which were converted to aromatic amines.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Gun Ikarashi
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.,Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
20
|
|
21
|
Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. 1,2-Amino Alcohols via Cr/Photoredox Dual-Catalyzed Addition of α-Amino Carbanion Equivalents to Carbonyls. J Am Chem Soc 2020; 142:2168-2174. [PMID: 31923360 DOI: 10.1021/jacs.9b12053] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we report the synthesis of protected 1,2-amino alcohols starting from carbonyl compounds and α-silyl amines. The reaction is enabled by a Cr/photoredox dual catalytic system that allows the in situ generation of α-amino carbanion equivalents which act as nucleophiles. The unique nature of this reaction was demonstrated through the aminoalkylation of ketones and an acyl silane, classes of electrophiles that were previously unreactive toward addition of alkyl-Cr reagents. Overall, this reaction broadens the scope of Cr-mediated carbonyl alkylations and discloses an underexplored retrosynthetic strategy for the synthesis of 1,2-amino alcohols.
Collapse
Affiliation(s)
- J Luca Schwarz
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Roman Kleinmans
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Tiffany O Paulisch
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| | - Frank Glorius
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany
| |
Collapse
|
22
|
Sun W, Teng Q, Cheng D, Li X, Xu X. The hydrodebromination of 1,1-dibromoalkenes via visible light catalysis. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Levernier E, Lévêque C, Derat E, Fensterbank L, Ollivier C. Towards Visible‐Light Photocatalytic Reduction of Hypercoordinated Silicon Species. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Etienne Levernier
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire 4 Place Jussieu, CC 229 FR-75252 Paris Cedex 05 France
| | - Christophe Lévêque
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire 4 Place Jussieu, CC 229 FR-75252 Paris Cedex 05 France
| | - Etienne Derat
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire 4 Place Jussieu, CC 229 FR-75252 Paris Cedex 05 France
| | - Louis Fensterbank
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire 4 Place Jussieu, CC 229 FR-75252 Paris Cedex 05 France
| | - Cyril Ollivier
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire 4 Place Jussieu, CC 229 FR-75252 Paris Cedex 05 France
| |
Collapse
|
24
|
Fluoroalkylselenolation of Alkyl Silanes/Trifluoroborates under Metal-Free Visible-Light Photoredox Catalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Dong J, Wang X, Wang Z, Song H, Liu Y, Wang Q. Metal-, photocatalyst-, and light-free late-stage C–H alkylation of N-heteroarenes with organotrimethylsilanes using persulfate as a stoichiometric oxidant. Org Chem Front 2019. [DOI: 10.1039/c9qo00690g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Minisci C–H alkylation of N-heteroarenes with readily available benzylsilanes and heteroatom substituted silanes was developed.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Zhen Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Research Institute of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
| |
Collapse
|