1
|
Ahmadian M, Jaymand M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
2
|
Wang GL, Kumar Ghosh M, Wang J, Guo J, Kumar Ghorai T, Sakiyama H, Afzal M, Alarifi A. Syntheses, structures and photocatalytic properties of three Mn2, Mn10 and Mn4 coordination polymers. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
3
|
Shang ZT, Li TM, Han JH, Yu F, Li B. Zirconium Metal-Organic Framework bearing V-shape letrozole dicarboxylic acid for versatile fluorescence detection. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Two new isotypic Co(II)/Ni(II)-coordination polymers based on 5-(6-Carboxypyridin-2-yl)isophthalic acid: Synthesis, structure analysis and magnetism properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Wu R, Zhang X, Wang J, Wang L, Zhu B, Xu C, Cui G, Zhang D, Fan Y. Two novel Zn (II)-based metal–organic frameworks for rapidly selective adsorption and efficient photocatalytic degradation of hazardous aromatic dyes in aqueous phase. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Wang X, Fang X, Yuan X, Zhang F, Yang J, Ling N, Yang H. Synthesis, structure and photocatalytic properties of two novel Cd (II) coordination polymers based on 1-[(2-methyl-1H-benzoimidazol-1-yl) methyl]-1H-benzotriazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Novel lanthanide coordination polymers based on mixed N,O-donor ligands and their visible-light-driven photocatalytic performance. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Mn(II)/Co(II)-based metal-organic frameworks assembled by 5,5'-(1,4-xylylenediamino) diisophthalic acid and various nitrogen-containing ligands for photocatalytic and magnetic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
A new 3D high connection Cu-based MOF introducing a flexible tetracarboxylic acid linker: Photocatalytic dye degradation. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Wu YB, Yu Q, Cui GH, Fu L. Synthesis, crystal structures, and luminescence sensing properties of two cobalt(II) complexes containing bis(thiabendazole) moieties. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Jin CL, Fang SJ, Yu L, Guo ZS. A new thermostable Cu(II) coordination polymer: photocatalytic activity and application values on diabetes. Des Monomers Polym 2021; 24:136-144. [PMID: 34104071 PMCID: PMC8118421 DOI: 10.1080/15685551.2021.1921341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
A Cu(II) coordination polymer with the composition of [Cu2(L)2(4,4'-bipy)2]n·2 n(ClO4) (1, HL = 4-methyl-L-phenylalanine and 4,4'-bipy is 4,4'-bipyridine), was successfully obtained by the reaction of the mixed ligand of HL and 4,4'-bipy with Cu(ClO4)2 · 6H2O under solvothermal condition. The as-synthesized compound not only has high thermal stability until 275°C but also excellent photocatalytic activity for the methyl blue solution degradation under the irradiation of ultraviolet light. Furthermore, the compound's treatment activity on the diabetes was determined and its relevant mechanism was also studied. The cytotoxicity or hemolysis toxicity (HC50) of the synthesized compound was also evaluated in this research.
Collapse
Affiliation(s)
- Chen-Lu Jin
- Department of Endocrinology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Shao-Jun Fang
- Department of Endocrinology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Li Yu
- Department of Endocrinology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| | - Zhen-Shan Guo
- Department of Hepatobiliary Surgery, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
12
|
Parmar B, Bisht KK, Rajput G, Suresh E. Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Trans 2021; 50:3083-3108. [PMID: 33565532 DOI: 10.1039/d0dt03824e] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water is vital for the sustenance of all forms of life. Hence, water pollution is a universal crisis for the survival for all forms of life and a hurdle in sustainable development. Textile industry is one of the anthropogenic activities that severely pollutes water bodies. Inefficient dyeing processes result in thousands of tons of synthetic dyes being dumped in water bodies every year. Therefore, the efficient removal of synthetic dyes from wastewater has become a challenging research field. Owing to their tuneable structure-property aspects, metal-organic frameworks (MOFs) have emerged as promising adsorbents for the adsorptive removal of dyes from wastewater and textile effluents. In this perspective, we highlight recent studies involving the application of MOFs for the adsorptive removal of hazardous dye molecules. We also classify the developed MOFs into cationic, anionic, and neutral framework categories to comprehend their suitability for the removal of a given class of dyes.
Collapse
Affiliation(s)
- Bhavesh Parmar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, Gujarat, India.
| | | | | | | |
Collapse
|
13
|
Lu L, Wang J, Shi C, Sun Y, Wu W, Pan Y, Muddassir M. Four structural diversity MOF-photocatalysts readily prepared for the degradation of the methyl violet dye under UV-visible light. NEW J CHEM 2021. [DOI: 10.1039/d0nj04478d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The photocatalytic results demonstrated that all of them displayed efficient photocatalytic performances towards the degradation of methyl violet. The mechanism has been proposed.
Collapse
Affiliation(s)
- Lu Lu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
| | - Jun Wang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
| | - Chuncheng Shi
- Department of Pharmacy
- School of Medicine
- Xi'an International University
- Xi'an
- China
| | - Yanchun Sun
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
| | - Weiping Wu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- China
| | - Ying Pan
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Mohd. Muddassir
- Department of Chemistry
- College of Sciences
- King Saud University
- Riyadh 11451
- Saudi Arabia
| |
Collapse
|
14
|
Gong Q, Wang J, Shi C, Liu QQ, Lu L, Singh A, Kumar A. 1,3-Bis(4′-carboxylatophenoxy)benzene and 3,5-bis(1-imidazoly)pyridine derived Zn( ii)/Cd( ii) coordination polymers: synthesis, structure and photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00498k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zn(ii) and Cd(ii)-based CPs derived from a 1,3-bis(4′-carboxylatophenoxy)benzene and 3,5-bis(1-imidazoly)pyridine synthesized and their photocatalytic properties for decomposition of methylene blue investigated.
Collapse
Affiliation(s)
- Qin Gong
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Jun Wang
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Chuncheng Shi
- Department of Pharmacy
- School of Medicine
- Xi'an International University
- China
| | - Qiang-Qiang Liu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Lu Lu
- School of Chemistry and Environmental Engineering
- Sichuan University of Science & Engineering
- Zigong
- PR China
| | - Amita Singh
- Department of Chemistry
- Ram Manohar Lohiya University
- India
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|
15
|
Singh A, Singh AK, Liu J, Kumar A. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02275f] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presented review focuses on design strategies to develop tailor-made MOFs/CPs of main group, transition and inner-transition elements and their photocatalytic properties to decompose dyes in wastewater discharge and their photocatalytic mechanism.
Collapse
Affiliation(s)
- Ayushi Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Ashish Kumar Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur-495009
- India
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|
16
|
Assembly of co coordination polymers tuned by the N-donor ligands with different spacer: Syntheses, structures and photocatalytic properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Mohanty A, Singh UP, Ghorai A, Banerjee S, Butcher RJ. Metal–organic frameworks derived from a semi-rigid anthracene-based ligand and sulfonates: proton conductivity and dye degradation studies. CrystEngComm 2021. [DOI: 10.1039/d0ce01275k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The MOFs were constructed by ligand AHP and sulfonate analogues. MOF4 exhibits a high proton conductivity of 1.95 × 10−3 S cm−1 at 95 °C and 98% relative humidity. MOFs 1–5 also serve as photocatalysts for methylene blue degradation.
Collapse
Affiliation(s)
- Aurobinda Mohanty
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Udai P. Singh
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Arijit Ghorai
- Materials Science Centre
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Susanta Banerjee
- Materials Science Centre
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - R. J. Butcher
- Department of Chemistry
- Howard University
- Washington
- USA
| |
Collapse
|
18
|
Xue YS, Zhang C, Lv JQ, Chen NN, Wang J, Chen XR, Fan L. Luminescence sensing and photocatalytic activities of four Zn(ii)/Co(ii) coordination polymers based on a pyridinephenyl bifunctional ligand. CrystEngComm 2021. [DOI: 10.1039/d0ce01812k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Four Zn(ii)/Co(ii) CPs act as bifunctional materials in the detection of Fe(iii) cation, Cr(vi) anion, and nitrofuran antibiotics and removal of methylene blue in aqueous media.
Collapse
Affiliation(s)
- Yun-Shan Xue
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen Zhang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Jun Qing Lv
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Ning-Ning Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Jun Wang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Xuan-Rong Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
19
|
Liu W, Fan C, Zong Z, Li N, Ma K, Zhu B, Zhang X, Fan Y. Two Co(Ⅱ)-based metal organic frameworks for highly efficient removal of azo dyes from aqueous environment: Synthesis, selective adsorption and adsorption mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Synthesis, structure diversity, and dye adsorption and luminescent sensing properties of Zinc (II) coordination polymers based on 1,3,5-tris(1-imidazolyl)benzene and 1,3-bis(1-imidazolyl)toluene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Three Different Co(II) Metal–Organic Frameworks Based on 4,4′-Bis(imidazolyl)diphenyl Ether: Syntheses, Crystal Structure and Photocatalytic Properties. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01657-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Deng XJ, Gu W, Liu X, Ju HD, He HX, Wang BL, Weng ZH. Syntheses, crystal structures, properties of zinc(II) and cadmium(II) coordination polymers based on a novel asymmetric semi-rigid multicarboxylate ligand. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Wang J, Chen NN, Zhang C, Jia LY, Fan L. Functional group induced structural diversities and photocatalytic, magnetic and luminescence sensing properties of four cobalt(ii) coordination polymers based on 1,3,5-tris(2-methylimidazol-1-yl)benzene. CrystEngComm 2020. [DOI: 10.1039/c9ce01474h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Based on the designed tripodal linker timb, four cobalt(ii) coordination polymers, {[Co4(timb)2(Br–IPA)4]·5H2O}n (1), {[Co(timb)0.5(NH2–IPA)]·4H2O}n (2), {[Co5(timb)4(OH–IPA)4]·2NO3·2DMA·2H2O}n (3), and {[Co3(timb)2(SO3–IPA)2(H2O)2]·8H2O}n (4), have been obtained.
Collapse
Affiliation(s)
- Jun Wang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Ning-Ning Chen
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen Zhang
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Li-Yong Jia
- School of Chemistry & Environmental Engineering
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Liming Fan
- Department of Chemistry
- College of Science
- North University of China
- Taiyuan 030051
- China
| |
Collapse
|
24
|
Wu Y, Xi J, Yang J, Song W, Luo S, Wang Z, Liu X. Coligand effects on the architectures and magnetic properties of octahedral cobalt( ii) complexes with easy-axis magnetic anisotropy. CrystEngComm 2020. [DOI: 10.1039/c9ce01871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coligand effects lead to two mononuclear octahedral Co(ii) complexes exhibiting easy-axis magnetic anisotropies and distinct magnetic properties.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuchang Luo
- School of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
25
|
A water-stable luminescent Co(II) coordination polymer as probe for efficient detection of Cr(VI)-anions (Cr2O72– and CrO42–) in aqueous solution. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Zhang S, Lu L, Wang J, Tan X, An B, Singh A, Kumar A, Sakiyama H, Wang J. Photocatalytic and magnetic properties of two new Co(II) cluster-based metal-organic frameworks. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Zhang C, Li H, Li C, Li Z. Fe-Loaded MOF-545(Fe): Peroxidase-Like Activity for Dye Degradation Dyes and High Adsorption for the Removal of Dyes from Wastewater. Molecules 2019; 25:molecules25010168. [PMID: 31906165 PMCID: PMC6983047 DOI: 10.3390/molecules25010168] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methods to remove dye pollutants with natural enzyme, like horseradish peroxidase (HRP), are still limited due to high costs and low stability levels. The development of such a method with similar enzymatic activity is important and could be helpful in wastewater disposal. A metal organic framework material, Fe-loaded MOF-545 (Fe), was synthesized in our study as a new way to remove dyes due to its peroxidase-like activity. The structural characterizations of Fe-loaded MOF-545(Fe) was investigated using scanning electron microscopy (SEM), UV-Vis absorption spectra, and X-ray diffraction (XRD). The peroxidase-like (POD-like) activity of Fe-loaded MOF-545(Fe) was investigated under different pH and temperature conditions. Because of the Fe added into the MOF-545 structure, the absorption of Fe-loaded MOF-545(Fe) for acid (anionic) dyes (methyl orange (MO)) was better than for basic (cationic) dyes (methylene blue (MB)). The Fe-loaded MOF-545(Fe) could give a significant color fading for MO and MB over a short time (about two hours) with peroxidase-like activity. The remarkable capacity of Fe-loaded MOF-545(Fe) to remove the MO or MB is due to not only physical adsorption, but also degradation of the MO and MB with POD-like activity. Therefore, Fe-loaded MOF-545(Fe) has significant potential regarding dye removal from wastewater.
Collapse
Affiliation(s)
- Chuang Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.)
| | - Haichao Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.)
| | - Chen Li
- Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130012, China
- Correspondence: (C.L.); (Z.L); Tel.: +86-431-85167419 (C.L.); +86-431-85155201 (Z.L.)
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.)
- Correspondence: (C.L.); (Z.L); Tel.: +86-431-85167419 (C.L.); +86-431-85155201 (Z.L.)
| |
Collapse
|
28
|
Syntheses, structural diversity and photo-degradation and dye adsorption properties of novel Ni(II)/Co(II) coordination polymers modulated by 4-(4-carboxylphenylmethylthio)benzoic acid ligand. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
29
|
Cheng Q, Qin L, Ke C, Zhou J, Lin J, Lin X, Zhang G, Cai Y. Four new Zn(ii) and Cd(ii) coordination polymers using two amide-like aromatic multi-carboxylate ligands: synthesis, structures and lithium–selenium batteries application. RSC Adv 2019; 9:14750-14757. [PMID: 35516295 PMCID: PMC9064135 DOI: 10.1039/c9ra02163a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 11/21/2022] Open
Abstract
Four new coordination polymers, {[Zn(3-PBI)(H2O)]·2DMF}n (1), [Cd(3-PBI)(DMF)]n (2), {[Zn4(μ4-O)(4-PBI)3]·3DMF}n (3), {[Cd4(4-PBI)4(H2O)6]·13H2O}n (4), have been constructed from two isomeric flexible multi-carboxylate ligands, 3-H2PBI = 5-(3-(pyridin-3-yl)benzamido)isophthalic acid and 4-H2PBI = 5-(3-(pyridin-4-yl)benzamido)isophthalic acid. Structural analysis reveals that compound 1 is a one-dimensional (1D) ladder-like chain assembled by Zn(ii) ions and 3-PBI2− ligands, which further extend into a 3D supramolecular structure through π⋯π stacking and interlayer (O–H⋯O) hydrogen bonding interactions. In compound 2, Cd2+ metal ions are connected by carboxylate groups to form [Cd2(COO)4] secondary building units (SBUs). The whole framework possesses a quadrilateral channel and constitutes a unique 3D (3,6)-connected rutile net with the Schläfli symbol of (42·610·83)(4·62)2. As for 3, Zn(ii) ions are bridged by one μ4-O and six carboxylate groups to form a tetranuclear [Zn4(μ4-O)(COO)6] cluster, resulting in a rare (3,9)-connected 3D network. Compound 4 has an appealing 2D layered architecture involving two distinct topologies in the crystal structure, stacking in an unusual ABBABB mode (where A represents (4·82) topology and B denotes kgd topology). Moreover, compound 2 is prepared as a support for active selenium through a melt-diffusion method. The obtained Cd-CP/Se electrode can be tested for lithium–selenium batteries and shows an initial capacity of 514 mA h g−1 and a reversible capacity of 200 mA h g−1 at 1C after 500 cycles. The good storage performance of Cd-CP/Se demonstrates it to be a prospective cathode material for lithium–selenium batteries. Four new coordination polymers were constructed and compound 2 was used as a host to active selenium for Li–Se batteries.![]()
Collapse
Affiliation(s)
- Qiuxia Cheng
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
| | - Luzhu Qin
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
| | - Chunxian Ke
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
| | - Jianen Zhou
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
| | - Jia Lin
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
- Key Laboratory of Theoretical Chemistry of Environment
| | - Xiaoming Lin
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
- School of Environment and Energy
| | - Gang Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yuepeng Cai
- School of Chemistry and Environment
- South China Normal University
- Guangzhou Key Laboratory of Materials for Energy Conversion and Storage
- P. R. China
| |
Collapse
|