1
|
McCullough K, King DS, Chheda SP, Ferrandon MS, Goetjen TA, Syed ZH, Graham TR, Washton NM, Farha OK, Gagliardi L, Delferro M. High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal-Organic-Framework-Supported Catalyst Design. ACS CENTRAL SCIENCE 2023; 9:266-276. [PMID: 36844483 PMCID: PMC9951283 DOI: 10.1021/acscentsci.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/18/2023]
Abstract
We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.
Collapse
Affiliation(s)
- Katherine
E. McCullough
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Daniel S. King
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Saumil P. Chheda
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Magali S. Ferrandon
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
| | - Timothy A. Goetjen
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Zoha H. Syed
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Trent R. Graham
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Nancy M. Washton
- Pacific
Northwest National Laboratory, Richland, Washington99354, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Laura Gagliardi
- Department
of Chemistry, University of Chicago, Chicago, Illinois60637, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
- James
Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois60637, United States
| | - Massimiliano Delferro
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois60439, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois60637, United
States
| |
Collapse
|
2
|
Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy AK. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications - A review. CHEMOSPHERE 2022; 298:134184. [PMID: 35271904 DOI: 10.1016/j.chemosphere.2022.134184] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Metal organic frameworks (MOFs) represent the organic and inorganic hybrid porous materials. MOFs are low dense and highly porous materials which in turn provide large surface area that can accumulate and store numerous molecules within the pores. The pore size may also act as a mesh to separate molecules. The porous nature of MOFs is beneficial for altering the intrinsic properties of the materials. Over the past decade, different types of hybrid MOFs have been reported in combination with polymers, carbon materials, metal nanoparticles, metal oxides, and biomolecules for various applications. MOFs have also been used in the fabrication of electronic devices, sensors, energy storage, gas separation, supercapacitors, drug delivery and environmental clean-up. In this review, the unique structural orientation, exceptional properties and recent applications of MOFs have been discussed in the first section along with their porosity, stability and other influencing factors. In addition, various methods and techniques involved in the synthesis and designing of MOFs such as solvothermal, electrochemical, mechanochemical, ultrasonication and microwave methods are highlighted. In order to understand the scientific feasibility of MOFs in developing new products, various strategies have been applied to obtain different dimensional MOFs (0D, 1D, 2D and 3D) and their composite materials are also been conferred. Finally, the future prospects of MOFs, remaining challenges, research gaps and possible solutions that need to be addressed by advanced experimental design, computational models, simulation techniques and theoretical concepts have been deliberated.
Collapse
Affiliation(s)
- Jayshree Annamalai
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Preethika Murugan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Deepak Nallaswamy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sandeep Arya
- Department of Physics, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ajit Khosla
- Department of Mechanical System Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
| | - Seetharaman Barathi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
3
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Liu H, Fan Y, Li X, Gao K, Li H, Yang Y, Meng X, Wu J, Hou H. Photochromism of metal-organic frameworks based on carbazole-dicarboxylic acid and bipyridine: sensing adjustment by controlling strut-to-strut energy transfer. Dalton Trans 2020; 49:7952-7958. [PMID: 32496494 DOI: 10.1039/d0dt00122h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, two energy-transfer photochromic metal-organic frameworks (MOFs) {[Zn(L)0.5(bpy)]·H2O·DMF}n (1) and {[Zn(L)0.5(bpe)]·2H2O·DMF}n (2) (H4L = 9,9'-(1,4-phenylenebis(methylene))bis(9H-carbazole-3,6-dicarboxylic acid), bpy = 4,4'-bipyridine, bpe = 4,4'-vinylenedipyridine) were designed and synthesized. Both 1 and 2 showed similar pillared-paddle wheel type frameworks with bpy and bpe as the chromophore, respectively, and L4- as the antenna-type light harvester, yielding strut-to-strut energy transfer (antenna behavior) within the well-ordered structures. Among them, 1 displayed excellent energy-transfer photochromic behavior under UV light accompanied by color transformation from colorless to purple. In addition, the photochromic behavior of 1 has obvious, fast, controllable and reversible characteristics. On the other hand, 2 showed a different energy-transfer photochromic behavior in the aspects of color changing, gamut, and sensitivity. The variation has been ascribed to the substitution of chromophore bpy in 1 with bpe in 2, which influences the efficiency of energy transfer within the MOFs. Therefore, with the structural diversity and tunability of MOFs, the sensitivity, color, and gamut of energy-transfer of the photochromic MOFs can be tuned by the appropriate choice of the constitutions of MOFs. This work will provide useful guidance for developing novel energy-transfer photochromic MOF materials.
Collapse
Affiliation(s)
- Han Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang C, Zhu K, Lu G, Zhang Y, Wang D, Zhang D, Mi L, Hou H. Oriented assembly of copper metal–organic framework membranes as tandem catalysts to enhance C–H hydroxyalkynylation reactions with regiocontrol. CrystEngComm 2020. [DOI: 10.1039/c9ce01719d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The continuous and uniform MOF-based membrane (1a) as a highly efficient heterogeneous catalyst was fabricated on porous Cu foam to significantly outperform bulk crystals 1 to execute C–H hydroxyalkynylation reactions with regiocontrol.
Collapse
Affiliation(s)
- Chao Huang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Kaifang Zhu
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Guizhen Lu
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Yingying Zhang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Dandan Wang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Dianbo Zhang
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Liwei Mi
- Center for Advanced Materials Research
- Zhongyuan University of Technology
- Zhengzhou 450007
- P. R. China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
6
|
Gu J, Wen M, Cai Y, Shi Z, Nesterov DS, Kirillova MV, Kirillov AM. Cobalt(II) Coordination Polymers Assembled from Unexplored Pyridine-Carboxylic Acids: Structural Diversity and Catalytic Oxidation of Alcohols. Inorg Chem 2019; 58:5875-5885. [DOI: 10.1021/acs.inorgchem.9b00242] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinzhong Gu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Min Wen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yan Cai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Zifa Shi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marina V. Kirillova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| |
Collapse
|