1
|
Arena D, Nguyen C, Ali LMA, Verde-Sesto E, Iturrospe A, Arbe A, İşci U, Şahin Z, Dumoulin F, Gary-Bobo M, Pomposo JA. Amphiphilic Single-Chain Polymer Nanoparticles as Imaging and Far-Red Photokilling Agents for Photodynamic Therapy in Zebrafish Embryo Xenografts. Adv Healthc Mater 2024; 13:e2401683. [PMID: 38973211 DOI: 10.1002/adhm.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Indexed: 07/09/2024]
Abstract
This work introduces rationally designed, improved amphiphilic single-chain polymer nanoparticles (SCNPs) for imaging and photodynamic therapy (PDT) in zebrafish embryo xenografts. SCNPs are ultrasmall polymeric nanoparticles with sizes similar to proteins, making them ideal for biomedical applications. Amphiphilic SCNPs result from the self-assembly in water of isolated synthetic polymeric chains through intrachain hydrophobic interactions, mimicking natural biomacromolecules and, specially, proteins (in size and when loaded with drugs, metal ions or fluorophores also in function). These ultrasmall, soft nanoparticles have various applications, including catalysis, sensing, and nanomedicine. Initial in vitro experiments with nonfunctionalized, amphiphilic SCNPs loaded with a photosensitizing Zn phthalocyanine with four nonperipheral isobutylthio substituents, ZnPc, showed promise for PDT. Herein, the preparation of improved, amphiphilic SCNPs containing ZnPc as highly efficient photosensitizer encapsulated within the nanoparticle and surrounded by anthracene units is disclosed. The amount of anthracene groups and ZnPc molecules within each single-chain nanoparticle controls the imaging and PDT properties of these nanocarriers. Critically, this work opens the way to improved PDT applications based on amphiphilic SCNPs as a first step toward ideal, long-term artificial photo-oxidases (APO).
Collapse
Affiliation(s)
- Davide Arena
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21561, Egypt
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| | - Amaia Iturrospe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
| | - Umit İşci
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Zeynel Şahin
- Marmara University, Faculty of Technology, Department of Metallurgical and Materials Engineering, Istanbul, Turkey
| | - Fabienne Dumoulin
- Acıbadem Mehmet Ali Aydınlar University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, Turkey
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, Montpellier, 34293, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel Lardizabal 5, Donostia, 20018, Spain
- IKERBASQUE - Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Donostia, 20800, Spain
| |
Collapse
|
2
|
Fang S, Swamy KMK, Zan WY, Yoon J, Liu S. An excimer process induced a turn-on fluorescent probe for detection of ultra-low concentration of mercury ions. J Mater Chem B 2024; 12:8376-8382. [PMID: 39109420 DOI: 10.1039/d4tb00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The accumulation of mercury pollution in plants can induce severe injury to human beings. It is a great challenge to monitor ultra-low concentrations of mercury in complicated matrixes. In this study, we successfully developed a strategy via Hg2+-triggered naphthalene-based fluorescent probe 1, which formed excimer that subsequently emitted fluorescence for the successful detection of ultra-low concentrations of Hg2+. The coordination of N and S atoms with Hg2+ facilitated the formation of excimer from the naphthalene-conjugated planes that were in sufficiently close proximity. Suppression of CN bond rotation also induced the chelation-enhanced fluorescence (CHEF) effect, and the cumulative result of these effects was obvious fluorescent enhancement. Compared with probe 2, the other key factor for detection of Hg2+ is that the electrons of the hydroxyl group can easily transfer to a naphthalene moiety, resulting in an augmented π-electron density that enhanced the π-π stacking of the naphthalene-conjugated excimer. After detailed spectral studies and mechanism discussions, it was realized that probe 1 was able to detect ultra-low concentrations of Hg2+ in PBS buffer solution. The detection limit was calculated to be 1.98 nM. On account of the excellent performances, the probe was successfully applied in monitoring Hg2+ in water and pea sprouts with the potential for application as an advanced warning of contamination.
Collapse
Affiliation(s)
- Shujing Fang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| | - K M K Swamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Wen-Yan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China.
| |
Collapse
|
3
|
Zhao J, Xu J, Huang H, Wang K, Wu D, Jasti R, Xia J. Appending Coronene Diimide with Carbon Nanohoops Allows for Rapid Intersystem Crossing in Neat Film. Angew Chem Int Ed Engl 2024; 63:e202400941. [PMID: 38458974 DOI: 10.1002/anie.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The development of innovative triplet materials plays a significant role in various applications. Although effective tuning of triplet formation by intersystem crossing (ISC) has been well established in solution, the modulation of ISC processes in the solid state remains a challenge due to the presence of other exciton decay channels through intermolecular interactions. The cyclic structure of cycloparaphenylenes (CPPs) offers a unique platform to tune the intermolecular packing, which leads to controllable exciton dynamics in the solid state. Herein, by integrating an electron deficient coronene diimide (CDI) unit into the CPP framework, a donor-acceptor type of conjugated macrocycle (CDI-CPP) featuring intramolecular charge-transfer (CT) interaction was designed and synthesized. Effective intermolecular CT interaction resulting from a slipped herringbone packing was confirmed by X-ray crystallography. Transient spectroscopy studies showed that CDI-CPP undergoes ISC in both solution and the film state, with triplet generation time constants of 4.5 ns and 238 ps, respectively. The rapid triplet formation through ISC in the film state can be ascribed to the cooperation between intra- and intermolecular charge-transfer interactions. Our results highlight that intermolecular CT interaction has a pronounced effect on the ISC process in the solid state, and shed light on the use of the characteristic structure of CPPs to manipulate intermolecular CT interactions.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Huaxi Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon, 97403, Eugene, Oregon, USA
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, 430070, Wuhan, China
- International School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
4
|
Yuhara K, Tanaka K. The Photosalient Effect and Thermochromic Luminescence Based on o-Carborane-Assisted π-Stacking in the Crystalline State. Angew Chem Int Ed Engl 2024; 63:e202319712. [PMID: 38339862 DOI: 10.1002/anie.202319712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Herein, we report the unique multiple-stimuli responsiveness of anthracene-tethered o-carborane derivatives. We designed and synthesized anthracene derivatives with different substitution positions and numbers of the o-carborane units. Two compounds had characteristic crystal structures involving the columnar π-stacking structures of the anthracene units. From the analysis of crystalline-state structure-property relationships, it was revealed that the crystals exhibited the photosalient effect accompanied by photochemical [4+4] cycloaddition reactions and temperature-dependent photophysical dual-emission properties including excimer emission of anthracene. Those properties were considered as non-radiative and radiative deactivation pathways through the excimer formation in the excited state and the formation of excimer species was facilitated by the π-stacking structure of anthracene units. Moreover, we found unusual temperature dependency on the occurrence of the photosalient effect. According to the data from variable temperature X-ray crystallography, a strong correlation between lattice shrinkage and strain accumulation is suggested.
Collapse
Affiliation(s)
- Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
5
|
Zheng Y, Chen P, Niu Z, Wang E. Excimer emission from polycyclic arenes bearing triphenylmethyl group: Solid-state fluorescence, mechanofluorochromism, aggregation-induced emission and cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124035. [PMID: 38422929 DOI: 10.1016/j.saa.2024.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/24/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
The excimer emission based on discrete π-stacked dimers of polycyclic π-systems has generated significant interest in the structure-luminescence relationship of excimers owing to their ultra-large Stokes shift. Herein, a series of excimer emissive luminogens were obtained by conjugating different polycyclic aromatic aldehydes (anthraldehyde, pyrenealdehyde and perylenealdehyde) with triphenylmethylamine. In crystalline states, all the molecules were arranged in the form of π-stacked arene dimers which were spatially isolated from each other by the bulky triphenylmethyl groups, and thus emitted bright excimer emission. The anthracene and pyrene derivatives showed fluorescence enhancement responses to grinding and the enhanced fluorescence could recover to the original state upon heating. The aggregation-induced emission (AIE) properties of them were dependent on the shapes and sizes of the polycyclic aromatic groups. The pyrene derivative showed the most excellent excimer-based AIE behavior among them. All of them were more apt to exhibit the excimer emission when formed nanoparticles with pluronic F-127 than that without pluronic F-127. Furthermore, PETP was utilized for bioimaging of living Hela cells and the high-resolution image was observed.
Collapse
Affiliation(s)
- Yongling Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Panpan Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Zhigang Niu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Enju Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
6
|
Zhao W, Ding Z, Yang Z, Lu T, Yang B, Jiang S. Remarkable Off-On Tunable Solid-State Luminescence by the Regulation of Pyrene Dimer. Chemistry 2024; 30:e202303202. [PMID: 38030581 DOI: 10.1002/chem.202303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
It is always a challenge to achieve "off-on" luminescent switch by regulating non-covalent interactions. Herein, we report a unique strategy for constructing high performance "off-on" tunable luminescent materials utilizing a novel molecule (TFPA) consist of pyrene and cyanostilbene. The pristine crystal of TFPA is almost non-emissive. Upon grinding/UV irradiation, an obvious luminescence enhancement is observed. Theoretical and experimental results revealed the underlying mechanism of this intriguing "off-on" switching behavior. The non-emissive crystal consists of ordered H-aggregates, with adjacent two molecules stacked in an anti-parallel manner and no overlapped area in pyrene moieties. When external force is applied by grinding or internal force is introduced through the photoisomerization, the dimer structures are facilitated with shorter intermolecular distances and better overlapping of pyrene moieties. In addition, the "on" state can recover to "off" state under thermal annealing, showing good reversibility and applicability in intelligence material. The present results promote an in-depth insight between packing structure and photophysical property, and offer an effective strategy for the construction of luminescence "off-on" switching materials, toward the development of stimuli-responsive luminescent materials for anti-counterfeiting.
Collapse
Affiliation(s)
- Wenyang Zhao
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Zeyang Ding
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| | - Shimei Jiang
- Engineering Research Center of Organic/Polymer Optoelectronic Materials, Ministry of Education, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, P. R. China
| |
Collapse
|
7
|
Hancock AC, Goerigk L. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Adv 2023; 13:35964-35984. [PMID: 38090083 PMCID: PMC10712016 DOI: 10.1039/d3ra07381e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 05/12/2024] Open
Abstract
Excimers are supramolecular systems whose binding strength is influenced by many factors that are ongoing challenges for computational methods, such as charge transfer, exciton coupling, and London dispersion interactions. Treating the various intricacies of excimer binding at an adequate level is expected to be particularly challenging for time-dependent Density Functional Theory (TD-DFT) methods. In addition to well-known limitations for some TD-DFT methods in the description of charge transfer or exciton coupling, the inherent London dispersion problem from ground-state DFT translates to TD-DFT. While techniques to appropriately treat dispersion in DFT are well-developed for electronic ground states, these dispersion corrections remain largely untested for excited states. Herein, we aim to shed light on current TD-DFT methods, including some of the newest developments. The binding of four model excimers is studied across nine density functionals with and without the application of additive dispersion corrections against a wave function reference of SCS-CC2/CBS(3,4) quality, which approximates select CCSDR(3)/CBS data adequately. To our knowledge, this is the first study that presents single-reference wave function dissociation curves at the complete basis set level for the assessed model systems. It is also the first time range-separated double-hybrid density functionals are applied to excimers. In fact, those functionals turn out to be the most promising for the description of excimer binding followed by global double hybrids. Range-separated and global hybrids-particularly with large fractions of Fock exchange-are outperformed by double hybrids and yield worse dissociation energies and inter-molecular equilibrium distances. The deviation between each assessed functional and reference increases with system size, most likely due to missing dispersion interactions. Additive dispersion corrections of the DFT-D3(BJ) and DFT-D4 types reduce the average errors for TD-DFT methods but do so inconsistently and therefore do not offer a black-box solution in their ground-state parametrised form. The lack of appropriate description of dispersion effects for TD-DFT methods is likely hindering the practical application of the herein identified more efficient methods. Dispersion corrections parametrised for excited states appear to be an important next step to improve the applicability of TD-DFT methods and we hope that our work assists with the future development of such corrections.
Collapse
Affiliation(s)
- Amy C Hancock
- School of Chemistry, The University of Melbourne Parkville Australia +61-(0)3-8344 6784
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne Parkville Australia +61-(0)3-8344 6784
| |
Collapse
|
8
|
Baildya N, Mazumdar S, Mridha NK, Chattopadhyay AP, Khan AA, Dutta T, Mandal M, Chowdhury SK, Reza R, Ghosh NN. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Comput Biol Med 2023; 154:106593. [PMID: 36746115 DOI: 10.1016/j.compbiomed.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Herein we have made a comparative study of the efficiency of three different nanotubes viz. Carbon nanotube (CNT), boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT) to deliver the cancerous drug, Azacitidine (AZD). The atomistic description of the encapsulation process of AZD in these nanotubes has been analyzed by evaluating parameters like adsorption energy, electrostatic potential map, reduced density gradient (RDG). Higher adsorption energy of AZD with BNNT (-0.66eV), SiCNT (-0.92eV) compared to CNT (-0.56eV) confirms stronger binding affinity of the drug for the former than the later. Charge density and electrostatic potential map suggest that charge separation involving BNNT and CNT is more prominent than SiCNT. Evaluation of different thermodynamic parameters like Gibbs free energy, enthalpy change revealed that the overall encapsulation process is spontaneous and exothermic in nature and much favorable with BNNT and SiCNT. Stabilizing interactions of the drug with BNNT and SiCNT has been confirmed from RDG analysis. ADMP molecular dynamics simulation supports that the encapsulation process of the drug within the NT at room temperature. These results open up unlimited opportunities for the applications of these NTs as a drug delivery system in the field of nanomedicine.
Collapse
Affiliation(s)
- Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda, West Bengal, 732209, India
| | - Sourav Mazumdar
- Department of Physics, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Asoke P Chattopadhyay
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Abdul Ashik Khan
- Department of Chemistry, Darjeeling Government College, West Bengal, 734101, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Manab Mandal
- Department of Botany, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Rahimasoom Reza
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | | |
Collapse
|
9
|
Gao PF, Li T, Fu HR. Crystal structure of bis(μ 2-1-pyrenecarboxylato-κ 3
O,O′: O′)-bis(1-pyrenecarboxylato-κ 2
O,O′)-(benzimidazole-κ 1
N)dicadmium(II), C 82H 48Cd 2N 4O 8. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2022-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
C82H48Cd2N4O8, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 7.6031(3) Å, b = 10.6963(3) Å, c = 19.0717(7) Å, α = 98.967(3)°, β = 99.207(3)°, γ = 95.921(3)°, V = 1499.21(9) Å3, Z = 1, R
gt
(F) = 0.0396, wR
ref
(F
2) = 0.0802, T = 293(2) K.
Collapse
Affiliation(s)
- Peng-Fu Gao
- College of Chemistry and Chemical Engineering , Henan Polytechnic University , Jiaozuo , Henan 454000 , P. R. China
| | - Ting Li
- College of Chemistry and Chemical Engineering , LuoYang Normal University , Luoyang , Henan 471934 , P. R. China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering , LuoYang Normal University , Luoyang , Henan 471934 , P. R. China
| |
Collapse
|
10
|
Ochi J, Tanaka K, Chujo Y. Alternately π-Stacked Systems Assisted by o-Carborane: Dual Excimer Emission and Color Modulation by B cage -Methylation. Angew Chem Int Ed Engl 2023; 62:e202214397. [PMID: 36328979 DOI: 10.1002/anie.202214397] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report the unique solid-state excimer emission of three types of acridine-tethered o-carboranes with variable degrees of methylation at the o-carborane unit. They all showed columnar packing structures based on dimer formation, and two types of π-overlapping motifs were alternately stacked. From the photoluminescence (PL) measurements on the crystalline samples, it was found that three types of luminescence bands can simultaneously appear: monomer emission, excimer emission from the moderately π-stacked intra-dimer unit, and excimer emission from the widely π-stacked inter-dimer unit. Consequently, the PL colors were drastically changed by the steric effect of the methyl groups, with a strong correlation found between the π-overlapping and excimer character. In addition, variable-temperature PL measurements revealed that these PL species should be in thermal equilibrium at room temperature, with the intensity ratios sensitive toward temperature changes.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
11
|
Kakimoto Y, Ikemura R, Imai Y, Tohnai N, Yamazaki S, Nakata E, Takashima H. Circularly polarised luminescence from excimer emission of anthracene derivatives complexed with γ-cyclodextrin in the solid state. RSC Adv 2023; 13:1914-1922. [PMID: 36712637 PMCID: PMC9832359 DOI: 10.1039/d2ra07971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, we report circularly polarised luminescence (CPL)-active molecules that exhibit high fluorescence quantum yields in the solid state. We developed anthracene derivatives with substituents at the 9 and 10 positions, such as ethyl(anthracene-9-carbonyl)glycinate (9AnGlyEt), N-butylanthracene-9-carboxamide (9AnB), N-benzylanthracene-9-carboxamide (9AnPh), and N 9,N 10-dibutylanthracene-9,10-dicarboxamide (9,10AnB). These compounds were complexed with γ-cyclodextrin (γ-CD) in the solid state by grinding, and the fluorescence properties of the resulting γ-CD complexes were investigated. The fluorescence quantum yields were enhanced after γ-CD complexation. Among the prepared γ-CD complexes, 9AnGlyEt/γ-CD had the highest fluorescence quantum yield (Φ f = 0.35), which was enhanced up to 5.8 times after γ-CD complexation. This was probably due to the interaction between the two anthracene molecules in the γ-CD cavity, which prevented fluorescence quenching caused by aggregation of the compounds. Positive CPL of g CPL = 1.3 × 10-3 was observed for 9AnGlyEt/γ-CD based on its excimer emission.
Collapse
Affiliation(s)
- Yuna Kakimoto
- Department of Chemistry, Biology and Environmental Science, Faculty of Science, Nara Women's UniversityNara 630-8506Japan
| | - Ryoya Ikemura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai UniversityOsaka 577-8502Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai UniversityOsaka 577-8502Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka UniversityOsaka 565-0871Japan
| | - Shoko Yamazaki
- Department of Chemistry, Nara University of EducationNara 630-8528Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto UniversityKyoto 611-0011Japan
| | - Hiroshi Takashima
- Department of Chemistry, Biology and Environmental Science, Faculty of Science, Nara Women's UniversityNara 630-8506Japan
| |
Collapse
|
12
|
Bansal D, Kundu A, Singh VP, Pal AK, Datta A, Dasgupta J, Mukhopadhyay P. A highly contorted push-pull naphthalenediimide dimer and evidence of intramolecular singlet exciton fission. Chem Sci 2022; 13:11506-11512. [PMID: 36320404 PMCID: PMC9555572 DOI: 10.1039/d2sc04187a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 08/05/2023] Open
Abstract
Singlet fission is a process by which two molecular triplet excitons are generated subsequent to the absorption of one photon. Molecules that enable singlet fission have triplet state energy at least half of the bright singlet state energy. This stringent energy criteria have challenged chemists to device new molecular and supramolecular design principles to modulate the singlet-triplet energy gap and build singlet fission systems from a wide range of organic chromophores. Herein, we report for the first time intramolecular singlet fission in the seminal naphthalenediimide (NDI) scaffold constrained in a push-pull cyclophane architecture, while individually the NDI chromophore does not satisfy the energy criterion. The challenging synthesis of this highly contorted push-pull cyclophane is possible from the preorganized pincer-like precursor. The special architecture establishes the shortest co-facial NDI⋯NDI contacts (3.084 Å) realized to date. Using broadband femtosecond transient absorption, we find that the correlated T-T pair forms rapidly within 380 fs of photoexcitation. Electronic structure calculations at the level of state-averaged CASSCF (ne,mo)/XMCQDPT2 support the existence of the multi-excitonic T-T pair state, thereby confirming the first example of singlet exciton fission in a NDI scaffold.
Collapse
Affiliation(s)
- Deepak Bansal
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Vijay Pal Singh
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata 700032 West Bengal India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research Mumbai 400005 India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
13
|
Umabharathi PS, Karpagam S. Real scenario of metal ion sensor: is conjugated polymer helpful to detect hazardous metal ion. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Metal ions from natural and anthropogenic sources cause pollution to society and the environment is major concern in the present scenario. The deposition and contamination of metal ions in soil and water affect the biogeochemical cycles. Thus, it threatens the everyday life of living and non-living organisms. Reviews on the detection of metal ions through several techniques (Analytical methods, electrochemical techniques, and sensors) and materials (Nanoparticles, carbon dots (quantum dots), polymers, chiral molecules, metal-organic framework, carbon nanotubes, etc.) are addressed separately in the present literature. This review reveals the advantages and disadvantages of the techniques and materials for metal ion sensing with crucial factors. Furthermore, it focus on the capability of conjugated polymers (CPs) as metal ion sensors able to detect/sense hazardous metal ions from environmental samples. Six different routes can synthesize this type of CPs to get specific properties and better metal ion detecting capability in vast research areas. The metal ion detection by CP is time-independent, simple, and low cost compared to other materials/techniques. This review outlines recent literature on the conjugated polymer for cation, anion, and dual ion sensors. Over the last half decades published articles on the conjugated polymer are discussed and compared.
Collapse
Affiliation(s)
| | - Subramanian Karpagam
- Department of Chemistry , School of Advanced Sciences, Vellore Institute of Technology , Vellore - 14 , Tamil Nadu , India
| |
Collapse
|
14
|
Hino Y, Matsuo T, Hayashi S. Structural Phase Transitions in Anthracene Crystals. Chempluschem 2022; 87:e202200157. [PMID: 35762685 DOI: 10.1002/cplu.202200157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Indexed: 01/03/2023]
Abstract
Anthracene (C14 H10 ) and its derivatives, π-conjugated molecules in acenes, have been widely researched in terms of their reactions, physical properties, and self-assembly (or crystal engineering). These molecules can be functionalized to tune reactivities, optoelectronic properties, and self-assembling abilities. Structural changes in the molecular assemblies, solid states, and crystals have recently been discovered. Therefore, a systematic discussion of anthracene's molecular structure, packing, and optical properties based on its intermolecular structure and phase transitions is important for future chemical and structural design. In the present review, we discuss anthracene's molecular design, dimer packing, and crystal structure, focusing on the structural phase transitions of its crystals. We also provide examples of the phase transitions of anthracene crystals. Changes to edge-to-face of CH-π interaction and face-to-face packing of π-π interaction affect the thermodynamic stabilities of various crystal structures. These structures can inform the prediction of structural and physical properties.
Collapse
Affiliation(s)
- Yuto Hino
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Takumi Matsuo
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| | - Shotaro Hayashi
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, 185 Tosayamada Miyanokuchi, Kami, Kochi, 782-8502, Japan
| |
Collapse
|
15
|
Mondal M, Basak S, Rajbanshi B, Choudhury S, Ghosh NN, Roy MN. Subsistence of diverse interactions of some biologically important molecules in aqueous ionic liquid solutions at various temperatures by experimental and theoretical investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Briesenick M, Gallei M, Kickelbick G. High-Refractive-Index Polysiloxanes Containing Naphthyl and Phenanthrenyl Groups and Their Thermally Cross-Linked Resins. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Max Briesenick
- Inorganic Solid-State Chemistry, Saarland University, Campus, Building C4 1, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, Campus, Building C4 2, 66123 Saarbrücken, Germany
| | - Guido Kickelbick
- Inorganic Solid-State Chemistry, Saarland University, Campus, Building C4 1, 66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Akai R, Oka K, Nishida R, Tohnai N. Controlling the Movability and Excimer Formation of Functional Organic Molecules. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ryota Akai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
| | - Kouki Oka
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
| | - Ryunosuke Nishida
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
| |
Collapse
|
18
|
Karmakar P, Das D, Rajbanshi B, Roy D, Ray S, Nath Ghosh N, Roy A, Ghosh S, Ekka D, Sharma A, Nath Roy M. Physicochemical and computational investigations of some food chemicals prevalent in aqueous 1-butyl-1-methyl-pyrrolidinium chloride solutions with the manifestation of solvation consequences. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Hancock AC, Goerigk L. Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Adv 2022; 12:13014-13034. [PMID: 35520129 PMCID: PMC9062889 DOI: 10.1039/d2ra01703b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
Excimers are supramolecular systems whose binding strength is influenced by many factors that are ongoing challenges for computational methods, such as charge transfer, exciton coupling, and London dispersion interactions. Treating the various intricacies of excimer binding at an adequate level is expected to be particularly challenging for Time-Dependent Density Functional Theory (TD-DFT) methods. In addition to well-known limitations for some TD-DFT methods in the description of charge transfer or exciton coupling, the inherent London dispersion problem from ground-state DFT translates to TD-DFT. While techniques to appropriately treat dispersion in DFT are well-developed for electronic ground states, these dispersion corrections remain largely untested for excited states. Herein, we aim to shed light on current TD-DFT methods, including some of the newest developments. The binding of four model excimers is studied across nine density functionals with and without the application of additive dispersion corrections against a wave function reference of SCS-CC2/CBS(3,4) quality, which approximates select CCSDR(3)/CBS data adequately. To our knowledge, this is the first study that presents single-reference wave function dissociation curves at the complete basis set level for the assessed model systems. It is also the first time range-separated double-hybrid density functionals are applied to excimers. In fact, those functionals turn out to be the most promising for the description of excimer binding followed by global double hybrids. Range-separated and global hybrids-particularly with large fractions of Fock exchange-are outperformed by double hybrids and yield worse dissociation energies and inter-molecular equilibrium distances. The deviation between each assessed functional and reference increases with system size, most likely due to missing dispersion interactions. Additive dispersion corrections of the DFT-D3(BJ) and DFT-D4 types reduce the average errors for TD-DFT methods but do so inconsistently and therefore do not offer a black-box solution in their ground-state parametrised form. The lack of appropriate description of dispersion effects for TD-DFT methods is likely hindering the practical application of the herein identified more efficient methods. Dispersion corrections parametrised for excited states appear to be an important next step to improve the applicability of TD-DFT methods and we hope that our work assists with the future development of such corrections.
Collapse
Affiliation(s)
- Amy C Hancock
- School of Chemistry, The University of Melbourne Parkville Australia +61-3-8344-6784
| | - Lars Goerigk
- School of Chemistry, The University of Melbourne Parkville Australia +61-3-8344-6784
| |
Collapse
|
20
|
Pramanik S, Mahato P, Pramanik U, Nandy A, Khamari L, Shrivastava S, Rai S, Mukherjee S. DNA-Templated Modulation in the Photophysical Properties of a Fluorescent Molecular Rotor Auramine O by Varying the DNA Composition. J Phys Chem B 2022; 126:2658-2668. [PMID: 35357836 DOI: 10.1021/acs.jpcb.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work delineates an integrative approach combining spectroscopic and computational studies to decipher the association-induced fluorescence properties of a fluorescent molecular rotor, viz., auramine O (AuO), after interacting with 20-mer duplex DNA having diverse well-matched base pairs. While exploring the scarcely explored sequence-dependent interaction mechanism of AuO and DNA, we observed that DNA could act as a conducive scaffold to the formation of AuO dimer through noncovalent interactions at lower molecular density. The photophysical properties of AuO depend on the nucleotide compositions as described from sequence-dependent shifting in the emission and absorption maxima. Furthermore, we explored such DNA base pair-dependent fluorescence spectral characteristics of AuO toward discriminating the thermodynamically most stable single nucleotide mismatch in a 20-mer sequence. Our results are interesting and could be useful in developing analogues with further enhanced emission properties toward mismatched DNA sequences.
Collapse
Affiliation(s)
- Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Atanu Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Shivam Shrivastava
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
21
|
Hu S, Yao Z, Ma X, Yue L, Chen L, Liu R, Wang P, Li H, Zhang ST, Yao D, Cui T, Zou B, Zou G. Pressure-Induced Local Excitation Promotion: New Route toward High-Efficiency Aggregate Emission Based on Multimer Excited State Modulation. J Phys Chem Lett 2022; 13:1290-1299. [PMID: 35099978 DOI: 10.1021/acs.jpclett.1c04214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Achieving high-efficiency solid state emission is essential for practical applications of organic luminescent materials. However, intermolecular interactions generally induce formation of multimeric aggregate excited states with deficient emissive ability, making it extremely challenging to enhance emission in aggregated states. Here we demonstrate a novel strategy of continuously regulating multimeric excitation constituents with a high-pressure technique successfully enhancing the emission in a representative organic charge-transfer material, Laurdan (6-lauroyl-N,N-dimethyl-2-naphthylamine). The Laurdan crystal exhibits distinct emission enhancement up to 4.1 GPa accompanied by a shift in the emission color from blue to cyan. Under compression, the π-π interplanar distance in Laurdan multimers is reduced, and intermolecular wave function diffusion is demonstrated to be improved simultaneously, which results in local excitation promotion and thus enhanced emission. Our findings not only provide new insights into multimeric excited state emission modulation but also pave the way for the further design of high-performance aggregated luminophores.
Collapse
Affiliation(s)
- Shuhe Hu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zhen Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xuan Ma
- South China Sea Institute of Oceanology, Chinese Academy of Science, 164 West Xingang Road, Guangzhou 510301, China
| | - Lei Yue
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Luyao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Peng Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Haiyan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
22
|
Duan Y, Liu Y, Han H, Geng H, Liao Y, Han T. A dual-channel indicator of fish spoilage based on a D-π-A luminogen serving as a smart label for intelligent food packaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120433. [PMID: 34601370 DOI: 10.1016/j.saa.2021.120433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Advances in food monitoring benefit tremendously from the naked-eye observation and device-miniaturization of colorimetric and fluorometric methods. Intelligent food packaging, containing a built-in sensor inside food bags, is capable of real-time monitoring of food quality by visibly discernible out-put signals, which effectively ensures food safety. We synthesized a donor-π-acceptor (D-π-A) compound DPABA, and disclosed its fluorescence response to amines. According to quantum chemical calculations, DPABA is apt to D-A coupling in aggregated state, causing the formation of exciplex/excimer together with intermolecular charge/energy transfer to the disadvantage of light emission; while the evasion of amine vapors would decouple the intermolecular D-A interactions to induce stronger emission with shorter wavelength. Utilizing the amine vapor generated by fish, DPABA can serve as an indicator for freshness monitoring. To create an intelligent food package, the compound was made into cellulose film, which was further cut into smart labels to be encapsulated into food bags. The as-prepared smart label exhibits red color under ambient light and glows weak red emission under UV light, while it turns into faint yellow color in response to putrid fish, and its emission changes to bright cyan. The output signals can be accurately recorded by instrument, and detected by naked eye, suggesting high signal contrast. In addition, the smart label exhibits different changing scope in response to different degree of freshness, showing high potential for in-field detection.
Collapse
Affiliation(s)
- Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yang Liu
- Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing, 100015, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hua Geng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Yi Liao
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
23
|
Mondal M, Basak S, Roy D, Saha S, Ghosh B, Ali S, Ghosh NN, Dutta A, Kumar A, Roy MN. Cyclic oligosaccharides as controlled release complexes with food additives (TZ) for reducing hazardous effects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Girase JD, Kajjam AB, Dubey DK, Kishore Kesavan K, Jou JH, Vaidyanathan S. Unipolar 1-phenylimidazo[1,5-a]pyridine: A new class of ultra-bright sky blue emitters for solution-processed organic light emitting diodes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01938h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three fluorophores based on Imidazo[1,5-a]pyridine (ImPy) decorated with aromatic π-system (C3 position of ImPy is decorated with naphthalene, methoxy-naphthalene and pyrene) were designed and synthesized by one-pot synthesis method. The...
Collapse
|
25
|
Mondal M, Basak S, Choudhury S, Ghosh NN, Roy MN. Investigation of molecular interactions insight into some biologically active amino acids and aqueous solutions of an anti-malarial drug by physicochemical and theoretical approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ghosh T, Mondal M, Vijayaraghavan RK. Multifarious Impact of Rhodanine Acceptor Group on the Optical Properties of Some Semiconductor Probes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tapan Ghosh
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Madalasa Mondal
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Ratheesh K. Vijayaraghavan
- Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
27
|
Kotowicz S, Korzec M, Malarz K, Krystkowska A, Mrozek-Wilczkiewicz A, Golba S, Siwy M, Maćkowski S, Schab-Balcerzak E. Luminescence and Electrochemical Activity of New Unsymmetrical 3-Imino-1,8-naphthalimide Derivatives. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5504. [PMID: 34639899 PMCID: PMC8509721 DOI: 10.3390/ma14195504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.
Collapse
Affiliation(s)
- Sonia Kotowicz
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Mateusz Korzec
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Aleksandra Krystkowska
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.K.); (A.M.-W.)
| | - Sylwia Golba
- Institute of Materials Science, University of Silesia, 1A 75 Pulku Piechoty Str., 41-500 Chorzow, Poland;
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 5 Grudziadzka Str., 87-100 Torun, Poland;
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-006 Katowice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str., 41-819 Zabrze, Poland;
| |
Collapse
|
28
|
Zhao R, Hettich CP, Chen X, Gao J. Minimal-active-space multistate density functional theory for excitation energy involving local and charge transfer states. NPJ COMPUTATIONAL MATERIALS 2021; 7:148. [PMID: 36713117 PMCID: PMC9881008 DOI: 10.1038/s41524-021-00624-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 06/15/2023]
Abstract
Multistate density functional theory (MSDFT) employing a minimum active space (MAS) is presented to determine charge transfer (CT) and local excited states of bimolecular complexes. MSDFT is a hybrid wave function theory (WFT) and density functional theory, in which dynamic correlation is first incorporated in individual determinant configurations using a Kohn-Sham exchange-correlation functional. Then, nonorthogonal configuration-state interaction is performed to treat static correlation. Because molecular orbitals are optimized separately for each determinant by including Kohn-Sham dynamic correlation, a minimal number of configurations in the active space, essential to representing low-lying excited and CT states of interest, is sufficient to yield the adiabatic states. We found that the present MAS-MSDFT method provides a good description of covalent and CT excited states in comparison with experiments and high-level computational results. Because of the simplicity and interpretive capability through diabatic configuration weights, the method may be useful in dynamic simulations of CT and nonadiabatic processes.
Collapse
Affiliation(s)
- Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin Province 130023, China
| | - Christian P. Hettich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Xin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Beijing University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
29
|
Nature of the N‐Substituted Alkyl Chain Influencing Emission Properties of Naphthalene Diimide (NDI) Via Excimer, and Exciplex Formation. ChemistrySelect 2021. [DOI: 10.1002/slct.202100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Hendi Z, Jamali S, Chabok SMJ, Jamjah A, Samouei H, Jamshidi Z. Bis-N-Heterocyclic Carbene Complexes of Coinage Metals Containing Four Naphthalimide Units: A Structure-Emission Properties Relationship Study. Inorg Chem 2021; 60:12924-12933. [PMID: 34403580 DOI: 10.1021/acs.inorgchem.1c01302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Naphthalimide derivatives provide highly versatile self-assembled systems and aggregated forms with fascinating emission properties that make them potential candidates for many applications such as bioimaging and sensing. Although various aggregated species of naphthalimide derivatives have been well documented, little is known about the correlation between their structure and photophysical properties. Here the preparation of a series of tetrameric naphthalimide molecules in which naphthalimide units are linked by bis-N-heterocyclic carbene complexes of coinage metals is described. An in-depth structural investigation into these tetramers has been carried out in solution and the solid state using spectroscopic methods, X-ray crystallography, and computational methods. The experimental and calculated data indicate that the magnitude of the intramolecular interchromophoric π-interactions increases either by an increase in the metal ionic radius or on going from the solid to the solution state. These tetrameric naphthalimide compounds show intramolecular excimeric emissions in the solid and solution phases. However, the quantum yield efficiencies of these excimeric emissions show a trend similar to that for the intramolecular π-interactions either by going from the solution to the solid state or with an increase in the metal ionic radius. Surprisingly, the amine derivative analogues of the silver(I) compound showed an unusual increase in the emission quantum yield efficiency to 92% in solution due to intramolecular hydrogen bonds between amine substituents on adjacent naphthalimde units.
Collapse
Affiliation(s)
- Zohreh Hendi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Sirous Jamali
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Seyed Mohamad J Chabok
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Ali Jamjah
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Hamidreza Samouei
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Zahra Jamshidi
- Department of Chemistry, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| |
Collapse
|
31
|
Photophysical studies of organostannoxane supported hexafluorophore assemblies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Pedersen SK, Pedersen VBR, Kamounah FS, Broløs LM, Baryshnikov GV, Valiev RR, Ivaniuk K, Stakhira P, Minaev B, Karaush-Karmazin N, Ågren H, Pittelkow M. Dianthracenylazatrioxa[8]circulene: Synthesis, Characterization and Application in OLEDs. Chemistry 2021; 27:11609-11617. [PMID: 33899273 DOI: 10.1002/chem.202100090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 11/11/2022]
Abstract
A soluble, green-blue fluorescent, π-extended azatrioxa[8]circulene was synthesized by oxidative condensation of a 3,6-dihydroxycarbazole and 1,4-anthraquinone by using benzofuran scaffolding. This is the first circulene to incorporate anthracene within its carbon framework. Solvent-dependent fluorescence and bright green electroluminescence accompanied by excimer emission are the key optical properties of this material. The presence of sliding π-stacked columns in the single crystal of dianthracenylazatrioxa[8]circulene is found to cause a very high electron-hopping rate, thus making this material a promising n-type organic semiconductor with an electron mobility predicted to be around 2.26 cm2 V-1 s-1 . The best organic light-emitting diode (OLED) device based on the dianthracenylazatrioxa[8]circulene fluorescent emitter has a brightness of around 16 000 Cd m-2 and an external quantum efficiency of 3.3 %. Quantum dot-based OLEDs were fabricated by using dianthracenylazatrioxa[8]circulene as a host matrix material.
Collapse
Affiliation(s)
- Stephan K Pedersen
- Department of Chemistry, University of Copenhagen Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Viktor B R Pedersen
- Department of Chemistry, University of Copenhagen Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Line M Broløs
- Department of Chemistry, University of Copenhagen Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Glib V Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology, 10691, Stockholm, Sweden.,Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia
| | - Rashid R Valiev
- Tomsk State University, 36 Lenin Avenue, Tomsk, 634050, Russia.,Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), 00014, Helsinki, Finland
| | - Khrystyna Ivaniuk
- Lviv Polytechnic National University S. Bandera 12, 79013, Lviv, Ukraine
| | - Pavlo Stakhira
- Lviv Polytechnic National University S. Bandera 12, 79013, Lviv, Ukraine
| | - Boris Minaev
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine
| | - Nataliya Karaush-Karmazin
- Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine
| | - Hans Ågren
- College of Chemistry and Chemical Engineering, Henan University Kaifeng, Henan, 475004, P.R. China.,Department of Physics and Astronomy, Uppsala University, 752 36, Uppsala, Sweden
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
33
|
Ochi J, Tanaka K, Chujo Y. Dimerization-Induced Solid-State Excimer Emission Showing Consecutive Thermochromic Luminescence Based on Acridine-Modified o-Carboranes. Inorg Chem 2021; 60:8990-8997. [PMID: 34110800 DOI: 10.1021/acs.inorgchem.1c00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although excimer emission is a useful luminescent phenomenon for fabricating optical sensors and probes, it is difficult to apply excimer emission for film sensors due to critical concentration quenching in the solid state. Therefore, robust molecular designs for solid-state excimer emission are still being explored. One of the key examples is the previously reported acridine-ethynyl-o-carborane AcE1, which showed a bright solid-state excimer emission assisted by characteristic CcageH···N interactions. In this paper, we report the newly synthesized acridine-diehynyl-o-carborane AcE2 and comprehensively compare it to AcE1. Both compounds had the same crystalline packing mode based on dimer formation, resulting in an efficient π-overlapping area and solid-state excimer emission. Variable-temperature photoluminescence (VT-PL) measurements revealed the consecutive thermochromic luminescence of these compounds. Finally, on the basis of the easily accessible spray-coating method, we constructed the thermochromic luminescent sensors on quartz substrates. According to the mechanistic studies, it is demonstrated that the design strategy based on a dimer-induced solid-state excimer should have great potential for applications as a molecular thermometer.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
34
|
Witte F, Rietsch P, Sinha S, Krappe A, Joswig JO, Götze JP, Nirmalananthan-Budau N, Resch-Genger U, Eigler S, Paulus B. Fluorescence Quenching in J-Aggregates through the Formation of Unusual Metastable Dimers. J Phys Chem B 2021; 125:4438-4446. [PMID: 33881311 DOI: 10.1021/acs.jpcb.1c01600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, J-aggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have broad implications for the photophysics of dye aggregates.
Collapse
Affiliation(s)
- Felix Witte
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Philipp Rietsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Shreya Sinha
- Division Biophotonics, Federal Institute for Material Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Alexander Krappe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jan-O Joswig
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jan P Götze
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Nithiya Nirmalananthan-Budau
- Division Biophotonics, Federal Institute for Material Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Material Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
35
|
Das A, Danao A, Banerjee S, Raj AM, Sharma G, Prabhakar R, Srinivasan V, Ramamurthy V, Sen P. Dynamics of Anthracene Excimer Formation within a Water-Soluble Nanocavity at Room Temperature. J Am Chem Soc 2021; 143:2025-2036. [PMID: 33471537 DOI: 10.1021/jacs.0c12169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Excited anthracene is well-known to photodimerize and not to exhibit excimer emission in isotropic organic solvents. Anthracene (AN) forms two types of supramolecular host-guest complexes (2:1 and 2:2, H:G) with the synthetic host octa acid in aqueous medium. Excitation of the 2:2 complex results in intense excimer emission, as reported previously, while the 2:1 complex, as expected, yields only monomer emission. This study includes confirming of host-guest complexation by NMR, probing the host-guest structure by molecular dynamics simulation, following the dynamics AN molecules in the excited state by ultrafast time-resolved experiments, and mapping of the excited surface through quantum chemical calculations (QM/MM-TDDFT method). Importantly, time-resolved emission experiments revealed the excimer emission maximum to be time dependent. This observation is unique and is not in line with the textbook examples of time-independent monomer-excimer emission maxima of aromatics in solution. The presence of at least one intermediate between the monomer and the excimer is inferred from time-resolved area normalized emission spectra. Potential energy curves calculated for the ground and excited states of two adjacent anthracene molecules via the QM/MM-TDDFT method support the model proposed on the basis of time-resolved experiments. The results presented here on the excited-state behavior of a well-investigated aromatic molecule, namely the parent anthracene, establish that the behavior of a molecule drastically changes under confinement. The results presented here have implications on the behavior of molecules in biological systems.
Collapse
Affiliation(s)
- Aritra Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| | - Ashwini Danao
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Shubhojit Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - A Mohan Raj
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Varadharajan Srinivasan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462 066, India
| | - V Ramamurthy
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
36
|
Zhang D, Yokomori S, Kameyama R, Zhao C, Ueda A, Zhang L, Kumai R, Murakami Y, Meng H, Mori H. Effect of Alkyl Chain Length on Charge Transport Property of Anthracene-Based Organic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:989-998. [PMID: 33332081 DOI: 10.1021/acsami.0c16144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracene, a simple planar building block for organic semiconductors, shows strong intermolecular interactions and exhibits strong blue fluorescence. Thus, its derivatives have a great potential to integrate considerable charge carrier mobility and strong emission within a molecule. Here, we systematically studied the influence of alkyl chain length on the crystal structures, thermal properties, photophysical characteristics, electrochemical behaviors, and mobilities for a series of 2,6-di(4-alkyl-phenyl)anthracenes (Cn-Ph-Ants, where n represents the alkyl chain length). Among them, Cn-Ph-Ants (n = 0, 1, 2, and 3) display similar layered herringbone (LHB) packing motifs, which facilitate two-dimensional charge transport and thereby enables high-performance organic field-effect transistors (OFETs). All Cn-Ph-Ants exhibit similar work functions and show strong blue fluorescence with photoluminescence quantum yields (PLQY) of approximately 40% in toluene. In addition, the absolute powder PLQYs of C0-, C2-, C3-, C4-, and C6-Ph-Ants are 24.6, 8.2, 5.7, 10.9, and 8.6%, respectively. Note that the alkyl chain length shows a significant effect on the charge mobilities of Cn-Ph-Ants. Our newly synthesized C1-, C3-, and C4-Ph-Ants show hole mobilities of up to 2.40, 1.34, and 1.00 cm2 V-1 s-1, respectively, with mobilities of 3.40, 1.57, and 0.82 cm2 V-1 s-1 for C0-, C2-, and C6-Ph-Ants, indicating an increasing tendency of mobility with shorter alkyl chain length. This feature is related to the microstructures of the thin films, which reveal the enhanced film order, crystallinity, and grain size with a decrease in the alkyl chain length. Moreover, we theoretically analyze the intermolecular transfer integrals of HOMOs, which increase at T-shaped contacts as the alkyl chain length decreases, which improves the intermolecular charge transport properties, leading to the increases in mobility. Interestingly, the anisotropy of the transfer integral tends to decrease upon substitution with longer alkyl chains, suggesting that alkyl chain adjustments may facilitate isotropic charge transport property in 2,6-alkylated anthracenes.
Collapse
Affiliation(s)
- Dongwei Zhang
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - So Yokomori
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ryohei Kameyama
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Changbin Zhao
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Akira Ueda
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Lei Zhang
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Reiji Kumai
- Condensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 3050801, Japan
| | - Youichi Murakami
- Condensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 3050801, Japan
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hatsumi Mori
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
37
|
Shen Y, Wang S, Zhang X, Li N, Liu H, Yang B. Supramolecular complex strategy for pure organic multi-color luminescent materials and stimuli-responsive luminescence switching. CrystEngComm 2021. [DOI: 10.1039/d1ce00449b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pure organic multi-color luminescent materials were finely tuned from blue through green to red using a supramolecular complex strategy, exhibiting force- and solvent-sensitive luminescence switching in the stimuli-responsive field.
Collapse
Affiliation(s)
- Yue Shen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Shiyin Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Nan Li
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
38
|
Coleman CN, Tapping PC, Huxley MT, Kee TW, Huang DM, Doonan CJ, Sumby CJ. Structural modulation of the photophysical and electronic properties of pyrene-based 3D metal–organic frameworks derived from s-block metals. CrystEngComm 2021. [DOI: 10.1039/d0ce01505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Materials in which charge delocalization and migration can be tuned are critical for electronic applications.
Collapse
Affiliation(s)
- Christopher N. Coleman
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Patrick C. Tapping
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Michael T. Huxley
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Tak W. Kee
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - David M. Huang
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
39
|
Pal AK, Bhattacharyya K, Datta A. Polymorphism Dependent 9-Phosphoanthracene Derivative Exhibiting Thermally Activated Delayed Fluorescence: A Computational Investigation. J Phys Chem A 2020; 124:11025-11037. [PMID: 33332131 DOI: 10.1021/acs.jpca.0c10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymorphs of anthracene derivatives exhibit diverse photophysical properties that can help to develop efficient organic-based photovoltaic devices. 10-Anthryl-9-phosphoanthracene (10-APA) shows different photophysical behaviors for the solid state due to its variety in crystalline arrangement. Herein, we investigate the ground and excited-state properties of the monomer and two different polymorphs of 10-APA from first-principles. Calculations reveal that strong spin-orbit coupling (SOC) between first excited singlet state (S1) and triplet manifolds at their S1-optimized geometries enabling the reverse intersystem crossing (RISC). The electron-vibration coupling (Huang-Rhys factor) in the excited state is the most relevant factor here. For both ISC and RISC, a similarity in Huang-Rhys factors for the molecular vibration along the π···π stacking at low-frequency region makes the rates effective. On the other side, the nonvanishing vibronic relaxation modes provide a relatively slower RISC rate in the red crystal. However, for the red crystal, small reorganization energy (λ) and large Huang-Rhys factor toward S1 → S0 conversion reduce nonradiative decay, leading to a prompt fluorescence. As the feasibility of S1 ↔ T1 conversion increases in the yellow dimer, it allows a delay in fluorescence emission, leading to thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| |
Collapse
|
40
|
Traeger H, Kiebala DJ, Weder C, Schrettl S. From Molecules to Polymers-Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials. Macromol Rapid Commun 2020; 42:e2000573. [PMID: 33191595 DOI: 10.1002/marc.202000573] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Indexed: 12/30/2022]
Abstract
The development of mechanophores as building blocks that serve as predefined weak linkages has enabled the creation of mechanoresponsive and mechanochromic polymer materials, which are interesting for a range of applications including the study of biological specimens or advanced security features. In typical mechanophores, covalent bonds are broken when polymers that contain these chemical motifs are exposed to mechanical forces, and changes of the optical properties upon bond scission can be harnessed as a signal that enables the detection of applied mechanical stresses and strains. Similar chromic effects upon mechanical deformation of polymers can also be achieved without relying on the scission of covalent bonds. The dissociation of motifs that feature directional noncovalent interactions, the disruption of aggregated molecules, and conformational changes in molecules or polymers constitute an attractive element for the design of mechanoresponsive and mechanochromic materials. In this article, it is reviewed how such alterations of molecules and polymers can be exploited for the development of mechanochromic materials that signal deformation without breaking covalent bonds. Recent illustrative examples are highlighted that showcase how the use of such mechanoresponsive motifs enables the visual mapping of stresses and damage in a reversible and highly sensitive manner.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Derek J Kiebala
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
41
|
Ghora M, Majumdar P, Anas M, Varghese S. Enabling Control over Mechanical Conformity and Luminescence in Molecular Crystals: Interaction Engineering in Action. Chemistry 2020; 26:14488-14495. [PMID: 32761653 DOI: 10.1002/chem.202003311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 11/11/2022]
Abstract
Molecular crystals of π-conjugated molecules are of great interest as the highly ordered dense packing offers superior charge and exciton transport compared with its amorphous counterparts. However, integration into optoelectronic devices remains a major challenge owing to its inherently brittle nature. Herein, control over the mechanical conformity in single crystals of pyridine-appended thiazolothiazole derivatives is reported by modulating the molecular packing through interaction engineering. Two polymorphs were prepared by achieving control over the thermodynamic/kinetic factors of crystallization; one of the polymorphs exhibits elastic bending whereas the other is brittle. The control over the bending ability was achieved by forming co-crystals with hydrogen/halogen bond donors. A seamless extended crisscross pattern with respect to the bend plane through a ditopic hydrogen-bonding motif showed the highest compliance towards mechanical bending, whereas the co-crystals with a layered crisscross arrangement with segregated layers of co-formers exhibit slightly lower bending conformity. These results update the rationale behind the plastic/elastic bending in molecular crystals. The co-crystals of ditopic halogen bond co-assemblies are particularly appealing for waveguiding applications as the co-crystals blend high mechanical flexibility and luminescence properties. The hydrogen bonded co-crystals are non-emissive in nature owing to excited state proton transfer dynamics. The rationale behind the fluorescence properties of these materials was also established from DFT calculations in a quantum mechanics/molecular mechanics (QM/MM) framework.
Collapse
Affiliation(s)
- Madhubrata Ghora
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Prabhat Majumdar
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Mohammed Anas
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| | - Shinto Varghese
- Technical Research Centre and School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of, Science, Kolkata, 700032, India
| |
Collapse
|
42
|
Dhanwant K, Chivers T, Bhanuchandra M, Thirumoorthi R. X-ray structures and photophysical properties of Tris(1-naphthyl)silicon(IV) derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Ghosh T, Mondal S, Maiti R, Nawaz SM, Ghosh NN, Dinda E, Biswas A, Maity SK, Mallik A, Maiti DK. Complementary amide-based donor-acceptor with unique nano-scale aggregation, fluorescence, and band gap-lowering properties: a WORM memory device. NANOTECHNOLOGY 2020; 32:025208. [PMID: 33089825 DOI: 10.1088/1361-6528/abba5a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic fluorescent semiconducting nanomaterials have gained widespread research interest owing to their potential applications in the arena of high-tech devices. We designed two pyrazaacene-based compounds, their stacked system, and the role of gluing interactions to fabricate nanomaterials, and determined the prospective band gaps utilizing the density functional theory calculation. The two pyrazaacene derivatives containing complementary amide linkages (-CONH and -NHCO) were efficiently synthesized. The synthesized compounds are highly soluble in common organic solvents as well as highly fluorescent and photostable. The heterocycles and their mixture displayed efficient solvent dependent fluorescence in the visible region of the solar spectrum. Notably, the compounds were associated through complementary NH•••O = C type hydrogen bonding, π-π stacking, and hydrophobic interactions, and thereby afforded nanomaterials with a low band gap. Fascinatingly, the fabricated stacked nanomaterial system exhibited resistive switching behavior, leading to the fabrication of an efficient write-once-read-many-times memory device of crossbar structure.
Collapse
Affiliation(s)
- Tanmoy Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ghosh T, Birudula S, Kalita KJ, Vijayaraghavan RK. Control over Kinetic and Thermodynamically Driven Pathways of Crystallization to Yield Cofacial and Slipped-Stack Dimers in Single Crystals. Chemistry 2020; 26:10501-10509. [PMID: 32314832 DOI: 10.1002/chem.202000061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Control over the molecular packing in the solid state is of utmost importance in regulating the bulk optical properties of organic semiconductors. The electronic coupling between the molecules makes it possible to improve the properties of the bulk materials. This work reports an example of control over the selective formation of polymorphic single crystals of donor-acceptor-type small-molecule compound 25TR by 1) kinetic or 2) thermodynamic course of crystallisation to yield slipped stack (S) and cofacial (C) dimers in the single crystals. The distinct optical characteristics of the C-dimer and S-dimer are summarised. Both forms show significant excitonic interactions in the solid state, and the S-dimeric form has strong yellowish orange fluorescence, whereas the C-dimeric form is non-fluorescent in the crystalline state. DFT calculations and differential scanning calorimetric experiments revealed that the C-dimer polymorph is the thermodynamically stable form with a free energy offset of 0.43 eV in comparison with the S-dimer. Interestingly, the thermodynamically driven non-fluorescent single crystal was found to be convertible to its fluorescent form irreversibly by thermal trigger. The charge-carrier-transport characteristics of these two polymorphs were computed by using the Marcus-Hush formalism. The computations of the charge-carrier-transport behaviour revealed that the S-dimer (25TR(R) ) is ambipolar, whereas the C-dimer (25TR(Y) ) is predominantly n-type.
Collapse
Affiliation(s)
- Tapan Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Srikanth Birudula
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Kalyan Jyoti Kalita
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
45
|
Luo Q, Li L, Ma H, Lv C, Jiang X, Gu X, An Z, Zou B, Zhang C, Zhang Y. Deep-red fluorescence from isolated dimers: a highly bright excimer and imaging in vivo. Chem Sci 2020; 11:6020-6025. [PMID: 34094093 PMCID: PMC8159302 DOI: 10.1039/d0sc01873b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022] Open
Abstract
Restricted by the energy-gap law, the development of bright near-infrared (near-IR) fluorescent luminophors in the solid state remains a challenge. Herein, we report a new design strategy for realizing high brightness and deep-red/near-IR-emissive organic molecules based on the incorporation of a hybridized local and charge-transfer (HLCT) state and separated dimeric stacks into one aggregate. Experimental and theoretical analyses show that this combination not only contributes to high photoluminescent quantum yields (PLQYs) but also significantly lessens the energy gap. The fluorophore BTA-TPA exhibits excellent fluorescence performance, achieving a PLQY of 54.8% for the fluorescence peak at 690 nm, which is among the highest reported for near-IR fluorescent excimers. In addition, because of its bioimaging performance, the designed luminophor has potential for use as a deep-red fluorescent probe for biomedical applications. This research opens the door for developing deep-red/near-IR emissive materials with high PLQYs.
Collapse
Affiliation(s)
- Qing Luo
- School of Engineering, HuZhou University, Huzhou Cent Hosp 759 Erhuan Rd Huzhou Zhejiang P. R. China
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Lin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Chunyan Lv
- School of Engineering, HuZhou University, Huzhou Cent Hosp 759 Erhuan Rd Huzhou Zhejiang P. R. China
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yujian Zhang
- School of Engineering, HuZhou University, Huzhou Cent Hosp 759 Erhuan Rd Huzhou Zhejiang P. R. China
| |
Collapse
|
46
|
Garci A, Beldjoudi Y, Kodaimati MS, Hornick JE, Nguyen MT, Cetin MM, Stern CL, Roy I, Weiss EA, Stoddart JF. Mechanical-Bond-Induced Exciplex Fluorescence in an Anthracene-Based Homo[2]catenane. J Am Chem Soc 2020; 142:7956-7967. [PMID: 32233402 DOI: 10.1021/jacs.0c02128] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collisional intermolecular interactions between excited states form short-lived dimers and complexes that lead to the emergence of excimer/exciplex emission of lower energy, a phenomenon which must be differentiated from the photoluminescence (PL) arising from the monomeric molecules. Although the utilization of noncovalent bonding interactions, leading to the generation of excimer/exciplex PL, has been investigated extensively, precise control of the aggregates and their persistence at very low concentrations remains a rare phenomenon. In the search for a fresh approach, we sought to obtain exciplex PL from permanent structures by incorporating anthracene moieties into pyridinium-containing mechanically interlocked molecules. Beyond the optical properties of the anthracene moieties, their π-extended nature enforces [π···π] stacking that can overcome the Coulombic repulsion between the pyridinium units, affording an efficient synthesis of an octacationic homo[2]catenane. Notably, upon increasing the ionic strength by adding tetrabutylammonium hexafluorophosphate, the catenane yield increases significantly as a result of the decrease in Coulombic repulsions between the pyridinium units. Although the ground-state photophysical properties of the free cyclophane and the catenane are similar and show a charge-transfer band at ∼455 nm, their PL characters are distinct, denoting different excited states. The cyclophane emits at ∼562 nm (quantum yield ϕF = 3.6%, emission lifetime τs = 3 ns in MeCN), which is characteristic of a disubstituted anthracene-pyridinium linker. By contrast, the catenane displays an exciplex PL at low concentration (10-8 M) with an emission band centered on 650 nm (ϕF = 0.5%, τs = 14 ns) in MeCN and at 675 nm in aqueous solution. Live-cell imaging performed in MIAPaCa-2 prostate cancer cells confirmed that the catenane exciplex emission can be detected at micromolar concentrations.
Collapse
Affiliation(s)
- Amine Garci
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohamad S Kodaimati
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jessica E Hornick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Minh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Institute for Molecular Design and Synthesis, Tianjin University, Tianjin 300072, P. R. China.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
47
|
Pacheco-Liñán PJ, Martín C, Alonso-Moreno C, Juan A, Hermida-Merino D, Garzón-Ruíz A, Albaladejo J, Van der Auweraer M, Cohen B, Bravo I. The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative. Chem Commun (Camb) 2020; 56:4102-4105. [PMID: 32163081 DOI: 10.1039/d0cc00990c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a luminescent anthracene-guanidine derivative that forms rare T-shape dimers, resulting in an excimer with a quantum yield approaching one. Water plays a fundamental role through H-bonding guiding the self-assembly. These results establish a new framework for environmentally friendly aggregation-induced emission luminogens.
Collapse
Affiliation(s)
- Pedro J Pacheco-Liñán
- Departamento de Química Física, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete-02071, Spain.
| | - Cristina Martín
- Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium and Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| | - Carlos Alonso-Moreno
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Albacete, Spain and Departamento de Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia de Albacete, UCLM, Albacete-02071, Spain
| | - Alberto Juan
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands and Department of Molecular NanoFabrication, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Daniel Hermida-Merino
- Netherlands Organization for Scientific Research, DUBBLE at the ESRF, 71 Avenue des Martyrs, CS40220, 38043 Greno-ble, France
| | - Andrés Garzón-Ruíz
- Departamento de Química Física, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete-02071, Spain.
| | - José Albaladejo
- Instituto de Investigación en Combustión y Contaminación Atmosférica, Universidad de Castilla-La Mancha, Camino de Moledores s/n, Ciudad Real, 13071, Spain
| | - Mark Van der Auweraer
- Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Casti-lla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete-02071, Spain. and Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Albacete, Spain
| |
Collapse
|
48
|
Wang X, Zhao S, Chen Y, Wang J. Synthesis and photophysical properties of multilayer emitting π-p-π fluorophores. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117680. [PMID: 31669936 DOI: 10.1016/j.saa.2019.117680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/04/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Fluorescence is widely used in biology, medicine, and analytical chemistry. The anthracene framework has received considerable attention for the luminescent molecular design as an attractive building unit. Herein, Luminescent "π-p-π" anthracene crystals with different multilayer stacking modes were conducted by experimental methods and theoretical calculations. It was found that "these anthracene derivatives showed strong fluorescence and stability in both solution and solid-state; A face-to-face π-π stacking arrangement dominated in N9,N10-diphenyl-2,6-bis((trimethylsilyl)ethynyl)anthracene-9,10-diamine (4), while C/N-H … π interactions were observed in the crystal lattice of 2,6-diethynyl-N9,N10-diphenylanthracene-9,10-diamine (5); The excitation processes of S0→S1 of 4 and 5 belonged to Localized Excitation; The number of photons emitted could be nearly equal to the number of photons absorbed below 120K". This study is expected to assist in the design of photonic materials in the field of optical chemistry.
Collapse
Affiliation(s)
- Xiaorong Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Sanxiao Zhao
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, PR China
| | - Jingang Wang
- Computational Center for Property and Modification on Nanomaterials, College of Science, Liaoning Shihua University, Fushun, 113001, PR China.
| |
Collapse
|
49
|
Majumdar P, Tharammal F, Gierschner J, Varghese S. Tuning Solid‐State Luminescence in Conjugated Organic Materials: Control of Excitonic and Excimeric Contributions through π Stacking and Halogen Bond Driven Self‐Assembly. Chemphyschem 2020; 21:616-624. [DOI: 10.1002/cphc.201901223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Prabhat Majumdar
- Technical Research Centre School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| | - Fazil Tharammal
- Technical Research Centre School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA NanoscienceC/Faraday 9, Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Shinto Varghese
- Technical Research Centre School of Applied and Interdisciplinary SciencesIndian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
50
|
Hei X, Liu W, Zhu K, Teat SJ, Jensen S, Li M, O’Carroll DM, Wei K, Tan K, Cotlet M, Thonhauser T, Li J. Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. J Am Chem Soc 2020; 142:4242-4253. [DOI: 10.1021/jacs.9b13772] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiuze Hei
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Wei Liu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen 518055, China
| | - Kun Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Simon J. Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Stephanie Jensen
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Mingxing Li
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 98 Rochester Street, Upton, New York 11973, United States
| | - Deirdre M. O’Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kevin Wei
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mircea Cotlet
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 98 Rochester Street, Upton, New York 11973, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd., Nanshan District, Shenzhen 518055, China
| |
Collapse
|