1
|
Ni S, Meng TT, Huang GQ, Tang YZ, Bai FY, Zhao Z. Roles of Amides on the Formation of Atmospheric HONO and the Nucleation of Nitric Acid Hydrates. J Phys Chem A 2023. [PMID: 37311006 DOI: 10.1021/acs.jpca.3c01518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrous acid (HONO) is hazardous to the human respiratory system, and the hydrolysis of NO2 is the source of HONO. Hence, the investigation on the removal and transformation of HONO is urgently established. The effects of amide on the mechanism and kinetics of the formation of HONO with acetamide, formamide, methylformamide, urea, and its clusters of the catalyst were studied theoretically. The results show that amide and its small clusters reduce the energy barrier, the substituent improves the catalytic efficiency, and the catalytic effect order is dimer > monohydrate > monomer. Meanwhile, the clusters composed of nitric acid (HNO3), amides, and 1-6 water molecules were investigated in the amide-assisted nitrogen dioxide (NO2) hydrolysis reaction after HONO decomposes by combining the system sampling technique and density functional theory. The study on thermodynamics, intermolecular forces, optics properties of the clusters, as well as the influence of humidity, temperature, atmospheric pressure, and altitude shows that amide molecules promote the clustering and enhance the optical properties. The substituent facilitates the clustering of amide and nitric acid hydrate and lowers the humidity sensitivity of the clusters. The findings will help to control the atmospheric aerosol particle and then reduce the harm of poisonous organic chemicals on human health.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Ting-Ting Meng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Guo-Qing Huang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Yi-Zhen Tang
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
| | - Feng-Yang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Chang Ping, Beijing 102249, China
| |
Collapse
|
2
|
Zhang X, Tan S, Chen X, Yin S. Computational chemistry of cluster: Understanding the mechanism of atmospheric new particle formation at the molecular level. CHEMOSPHERE 2022; 308:136109. [PMID: 36007737 DOI: 10.1016/j.chemosphere.2022.136109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
New particle formation (NPF), which exerts significant influence over human health and global climate, has been a hot topic and rapidly expands field of research in the environmental and atmospheric chemistry recent years. Generally, NPF contains two processes: formation of critical nucleus and further growth of the nucleus. However, due to the complexity of the atmospheric nucleation, which is a multicomponent process, formation of critical clusters as well as their growth is still connected to large uncertainties. Detection limits of instruments in measuring specific gaseous aerosol precursors and chemical compositions at the molecular level call for computational studies. Computational chemistry could effectively compensate the deficiency of laboratory experiments as well as observations and predict the nucleation mechanisms. We review the present theoretical literatures that discuss nucleation mechanism of atmospheric clusters. Focus of this review is on different nucleation systems involving sulfur-containing species, nitrogen-containing species and iodine-containing species. We hope this review will provide a deep insight for the molecular interaction of nucleation precursors and reveal nucleation mechanism at the molecular level.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Shendong Tan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
3
|
Liu J, Ni S, Pan X. Interaction of Glutamic Acid/Protonated Glutamic Acid with Amide and Water Molecules: A Theoretical Study. J Phys Chem A 2022; 126:7750-7762. [PMID: 36253764 DOI: 10.1021/acs.jpca.2c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Amino acids are important nitrogen-containing compounds and organic carbon components that exist widely in the atmosphere. The formation of atmospheric aerosols is affected by their interactions with amides. The dimers formed by glutamic acid (Glu) or protonated glutamic acid (Glu+) with three kinds of amide molecules (formamide FA, acetamide AA, urea U) and the hydrated clusters formed by Glu or Glu+, U molecules along with one to six water molecules were systematically studied at the M06-2X/6-311++G(3df,3pd) level. U is predicted to form a more stable structure with Glu/Glu+ than FA and AA by thermodynamics. If the concentration ratio of FA to U is less than 104, U will play a critical role in NPF. The degree of hydration in Glu+-mU-nW is higher than that of Glu-mU-nW (m = 0, 1; n = 0-6) clusters. Notably, Glu contributes more to the Rayleigh scattering properties than glutaric acid and sulfuric acid, and thus may lead to the destruction of atmospheric visibility. This study is helpful to better understand the properties of organic aerosols containing amino acids or amides.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| | - Shuang Ni
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun130024, People's Republic of China
| |
Collapse
|
4
|
Chen J. Theoretical analysis of sulfuric acid–dimethylamine–oxalic acid–water clusters and implications for atmospheric cluster formation. RSC Adv 2022; 12:22425-22434. [PMID: 36106005 PMCID: PMC9364903 DOI: 10.1039/d2ra03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, organic compounds potentially involved in atmospheric particle formation have received increased attention. However, the contributions of organic acids as precursors in nucleation remain ambiguous. In this study, the low-lying structures and thermodynamics of the sulfuric acid–dimethylamine–oxalic acid–water system are obtained at the M06-2X/6-311+G(2d,p) level, and the single point energy of the clusters has been calculated at the DF-LMP2-F12/VDZ-F12 level. The formations of the multicomponent clusters are predicted based on thermodynamics, involving proton transfer and hydrogen bonding interactions. Oxalic acid can synergistically promote the formation of the sulfuric acid–dimethylamine–oxalic acid–water system while inhibiting this with the addition of more sulfuric acid molecules. The results of hydrate distribution show that un-hydrate clusters play a dominant role during formation. Moreover, dimethylamine and oxalic acid have similar effects on Rayleigh scattering properties, and the clusters involving complex mixtures of compounds can have high optical activities. The structure of SA2.DMA.OA.W4 cluster.![]()
Collapse
Affiliation(s)
- Jiao Chen
- Anhui Meteorological Observatory, Hefei, Anhui 230031, China
| |
Collapse
|
5
|
Ni S, Bai F, Pan X. Synergistic effect of glutaric acid and ammonia/amine/amide on their hydrates in the clustering: A theoretical study. CHEMOSPHERE 2021; 275:130063. [PMID: 33984898 DOI: 10.1016/j.chemosphere.2021.130063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The formation of molecular clusters makes influence on the atmosphere. The clusters of glutaric acid (GA) and common ammonia (A), amine (methylamine MA, dimethylamine DMA) and representative amide (urea U) along with water molecule were systematically studied theoretically. GA-A-nW (n = 1, 2), GA-MA-nW (n = 1, 2), GA-DMA-1W and GA-U-nW (n = 1-6) are predicted to be feasible thermodynamically with the hydrogen bonds as interaction force. GA and urea promote the clustering synergistically, and ammonia, methylamine, dimethylamine promote the clustering of small GA hydrates (n = 1-2), while inhibit that of large GA hydrates (n = 3-6). The results of humidity show that un-hydrate or mono-hydrate is the main form of GA-mbase-nW (m = 0, 1; n = 1-6) under relative humidity of 20%, 50% and 80%. The global minima remain dominant over the temperature range of 220-320 K. GA contributes more to the Rayleigh scattering properties than sulfuric acid. More importantly, the local minima can undergo isomerization to form the global minima crossing a free energy barrier ranging from 6.66 to 11.78 kcal mol-1. This study indicates that GA and base molecules play a synergistic role to promote the formation of clusters. We hope it can provide more insights on interesting clustering in theory.
Collapse
Affiliation(s)
- Shuang Ni
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fengyang Bai
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, People's Republic of China
| | - Xiumei Pan
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
6
|
Köse Yaman P, Erer H, Arıcı M, Yeşilel OZ. Effect of ligand flexibility on dimensionality in cadmium(II)-2,2-dimethylglutarate complexes. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1732944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pelin Köse Yaman
- Department of Chemistry, Faculty of Sciences and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
- Department of Chemistry, Faculty of Sciences, Dokuz Eylül University, İzmir, Turkey
| | - Hakan Erer
- Department of Chemistry, Faculty of Sciences and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Mürsel Arıcı
- Department of Chemistry, Faculty of Sciences and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Okan Zafer Yeşilel
- Department of Chemistry, Faculty of Sciences and Letters, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|