1
|
Camposano AC, Nordhagen EM, Sveinsson HA, Malthe-So̷renssen A. Genetic Algorithm Workflow for Parameterization of a Water Model Using the Vashishta Force Field. J Phys Chem B 2025; 129:1331-1342. [PMID: 39834242 PMCID: PMC11789154 DOI: 10.1021/acs.jpcb.4c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Water participates in countless processes on Earth, and the properties of mineral surfaces can be drastically changed in the presence of water. For example, the fracture toughness of silica glass is reduced by 25% for water-filled cracks than for dry cracks [Geophys. Res.: Solid Earth 2018, 123, 9341-9354]. An accurate description of water is therefore essential for modeling the behavior of minerals in aqueous environments and, in particular, for modeling dynamic processes such as fracture, where the mechanical response of water may play an important role. On the molecular scale, molecular dynamics simulations with empirical force field methods provide a way to study large molecular systems at a relatively low computational cost. Many water models have been developed previously; however, a computationally cheap water model capable of describing reactions with minerals is lacking. Here, we present a parametrization of the water potential using the Vashishta potential form [Phys. Rev. B 1990, 41, 12197-12209]. For this 3-point water model, we obtain good agreement with experimental transport and liquid-vapor properties. Importantly, the Vashishta form opens up compatibility with existing silica glass models, thus enabling the simulation of mineral-water interactions.
Collapse
Affiliation(s)
- Anthony
Val C. Camposano
- The Njord Centre, Department
of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway
| | - Even Marius Nordhagen
- The Njord Centre, Department
of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway
| | - Henrik Andersen Sveinsson
- The Njord Centre, Department
of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway
| | - Anders Malthe-So̷renssen
- The Njord Centre, Department
of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway
| |
Collapse
|
2
|
Gallmetzer JM, Gamper J, Purtscher FRS, Hofer TS. Modelling bulk and surface characteristics of cubic CeO 2, Gd 2O 3, and gadolinium-doped ceria using a partial charge framework. Phys Chem Chem Phys 2024; 26:13814-13825. [PMID: 38655773 DOI: 10.1039/d3cp05053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The development and characterization of materials for solid oxide fuel cells (SOFC) is an important step towards sustainable energy technologies. This present study models cubic CeO2, Gd2O3, and gadolinium-doped ceria (GDC) using newly constructed interaction potentials based on a partial atom charge framework. The interaction model was validated by comparing the structural properties with experimental reference data, which were found to be in good agreement. Validation of the potential model was conducted considering the surface stability of CeO2 and Gd2O3. Additionally, the accuracy of the novel potential model was assessed by comparing the oxygen diffusion coefficient in GDCn (n = 4-15) and the associated activation energy. The results demonstrate that the novel potential model is capable of describing the oxygen diffusion in GDC. In addition, this study compares the vibrational properties of the bulk with density functional theory (DFT) calculations, using a harmonic frequency analysis that avoids the need for computationally expensive quantum mechanical molecular dynamics (QM MD) simulations. The potential is compatible with a reactive water model, thus providing a framework for the simulation of solid-liquid interfaces.
Collapse
Affiliation(s)
- Josef M Gallmetzer
- Theoretical Chemistry Division Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Jakob Gamper
- Theoretical Chemistry Division Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Felix R S Purtscher
- Theoretical Chemistry Division Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Thomas S Hofer
- Theoretical Chemistry Division Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Wang Y, Liu J, Liu T, An X, Huang L, Li J, Zhang Y, Xiang Y, Xiao L, Yi W, Qin J, Liu L, Wang C, Yu J. Pyruvate kinase deficiency and PKLR gene mutations: Insights from molecular dynamics simulation analysis. Heliyon 2024; 10:e26368. [PMID: 38434380 PMCID: PMC10904247 DOI: 10.1016/j.heliyon.2024.e26368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Pyruvate kinase deficiency is a rare hereditary erythrocyte enzyme disease caused by mutations in the pyruvate kinase liver and red blood cell gene. The clinical presentations of pyruvate kinase deficiency are significantly heterogeneous, ranging from just mild anemia to hemolytic crisis or even death. The proband in our study was a 2-year-old girl for severe skin and scleral icterus with progressive aggravation. We collected the family's data for further analysis. Whole exome genome sequencing of the pedigree revealed a novel compound heterozygous mutation, c.1097del (p.P366Lfs*12) and c.1493G > A (p.R498H), in the pyruvate kinase liver and red blood cell gene. Furthermore, molecular dynamics simulations were employed to uncover differences between the wild type and mutant pyruvate kinase liver and red blood cell proteins, focusing on structural stability, protein flexibility, secondary structure, and overall conformation. The combined bioinformatic tools were also utilised to assess the effects of the missense mutation on protein function. Thereafter, wild type and mutant plasmids were constructed and transfected into 293T cells, and Western blot assay was conducted to validate the impact of the mutations on the expression of pyruvate kinase liver and red blood cell protein. The data presented in our study enriches the genotype database and provides evidence for genetic counseling and molecular diagnosis of pyruvate kinase deficiency.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiaqi Liu
- Shanghai Cinopath Medical Testing Co Ltd, Shanghai 200000, China
| | - Tao Liu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiacheng Li
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yongjie Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yan Xiang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Weijia Yi
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiebin Qin
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lili Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Cuilan Wang
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| |
Collapse
|
4
|
Chen F, Chai YH, Zhang F, Liu YQ, Zhang Y, Shi YJ, Zhang JM, Leng YF. Network pharmacology analysis combined with experimental validation to explore the therapeutic mechanism of salidroside on intestine ischemia reperfusion. Biosci Rep 2023; 43:BSR20230539. [PMID: 37530723 PMCID: PMC10462912 DOI: 10.1042/bsr20230539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salidroside (SAL), a phenolic natural product present in Rhodiola rosea, are commonly used in the treatment of various ischemic-hypoxic diseases, including intestinal ischemia-reperfusion (IR) injury. However, their efficacy and potential mechanisms in the treatment of intestinal IR injury have not been investigated. OBJECTIVE The objective of the present study is to investigate the pharmacological mechanism of action of SAL on intestinal IR injury using a network pharmacology approach combined with experimental validation. METHODS In the present study, we used the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database and analysis platform and Comparative Toxicogenomics Database (CTD) to predict possible target genes of SAL, collected relevant target genes of intestinal IR injury from GeneCards and DisGenet websites, and collected summary data to screen common target genes. Then, the protein-protein interaction (PPI) target network was constructed and analyzed by STRING database and Cytoscape 3.8.2 with the above intersecting genes. Then, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed and the component-target-pathway network was constructed, followed by the use of molecular docking and molecular dynamic simulation to verify the possible binding conformation between SAL and candidate targets to further explore the potential targets of SAL in the treatment of intestinal IR injury. Finally, an in vivo model of mouse superior mesenteric artery ligation was established to assess the anti-intestinal IR injury effect of SAL by assessing histopathological changes in mouse small intestine by HE staining, detecting inflammatory factor expression by ELISA kit, and detecting the expression of key protein targets by Western blotting. RESULTS A total of 166 SAL target genes and 1740 disease-related targets were retrieved, and 88 overlapping proteins were obtained as potential therapeutic targets. The pathway enrichment analysis revealed that the pharmacological effects of SAL on intestinal IR injury were anti-hypoxic, anti-inflammatory and metabolic pathway related, and the molecular docking and molecular dynamic simulation results showed that the core bioactive components had good binding affinity for TXNIP and AMPK, and the immunoblotting results indicated that the expression levels of TXNIP and AMPK in the small intestinal tissues of mice in the drug-treated group compared with the model group were significantly changed. CONCLUSION SAL may target AMPK and TXNIP domains to act as a therapeutic agent for intestinal IR. These findings comprehensively reveal the potential therapeutic targets for SAL against intestinal IR and provide theoretical basis for the clinical application of SAL in the treatment of intestinal IR.
Collapse
Affiliation(s)
- Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yi-hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Fa Zhang
- Department of Urology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yong-qiang Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yan Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Ya-jing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Jian-ming Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| | - Yu-fang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, GanSu Province, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou, 730000, GanSu Province, China
| |
Collapse
|
5
|
Pouvreau M, Guo Q, Wang HW, Schenter GK, Pearce CI, Clark AE, Rosso KM. An Efficient Reactive Force Field without Explicit Coordination Dependence for Studying Caustic Aluminum Chemistry. J Phys Chem Lett 2023:6743-6748. [PMID: 37470756 DOI: 10.1021/acs.jpclett.3c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Reactive force fields (RFFs) are an expedient approach to sample chemical reaction paths in complex systems, relative to density functional theory. However, there is continued need to improve efficiencies, specifically in systems that have slow transverse degrees of freedom, as in highly viscous and superconcentrated solutions. Here, we present an RFF that is differentiated from current models (e.g., ReaxFF) by omitting explicit dependence on the atom coordination and employing a small parameter set based on Lennard-Jones, Gaussian, and Stillinger-Weber potentials. The model was parametrized from AIMD simulation data and is used to model aluminate reactivity in sodium hydroxide solutions with extensive validation against experimental radial distribution functions, computed free energy profiles for oligomerization, and formation energies. The model enables simulation of early stage Al(OH)3 nucleation which has significant relevance to industrial processing of aluminum and has a computational cost that is reduced by 1 order of magnitude relative to ReaxFF.
Collapse
Affiliation(s)
- Maxime Pouvreau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Qing Guo
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hsiu-Wen Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gregory K Schenter
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Aurora E Clark
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Balancing the structural, vibrational and dielectric properties of an advanced flexible water model. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Albuquerque JV, Shirsat RN. Prelude to Molecular Dynamics‐II: Investigation of Potential Energy Surfaces Using Gaussian Charge Models. ChemistrySelect 2020. [DOI: 10.1002/slct.202002418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Rajendra N. Shirsat
- School of Chemical Sciences Goa University, Taleigao Plateau Taleigao Goa. 403 206 India
| |
Collapse
|
8
|
Tian F, Li G, Zheng B, Liu Y, Shi S, Deng Y, Zheng P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chem Commun (Camb) 2020; 56:3943-3946. [DOI: 10.1039/d0cc00714e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SMFS and MD simulations revealed a closed conformation and a decreased stability of sortase-mediated polyprotein I27 when a linker with a high content of glycine is used.
Collapse
Affiliation(s)
- Fang Tian
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Guoqiang Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
9
|
Hofer TS, Kilchert FM, Tanjung BA. An effective partial charge model for bulk and surface properties of cubic ZrO 2, Y 2O 3 and yttrium-stabilised zirconia. Phys Chem Chem Phys 2019; 21:25635-25648. [PMID: 31720638 DOI: 10.1039/c9cp04307a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work a newly parametrised Coulomb plus Buckingham potential formulation for cubic ZrO2, Y2O3 and yttrium-stabilised zirconia (YSZ) is presented. The density and pair distributions obtained for neat ZrO2 and Y2O3 under ambient conditions are in excellent agreement with experimental data, while the vibrational power spectra are highly similar compared to those obtained via ab initio molecular dynamics simulations at the PBEsol level. In addition, it is shown that the use of effective partial charges has several advantages compared to interaction potentials employing the oxidation states in the evaluation of the coulombic interactions: (i) the diffusion coefficient and the associated activation energy of oxygen ions evaluated for YSZn (n = 4 to 12) display the best agreement with experimental data; (ii) no unphysical reorganisation of the interface and the bulk are observed in simulations of the (110) and (111) surfaces of cubic ZrO2 and Y2O3, while due to the strong coulombic contributions in the case of the tested full-charge models a pronounced restructuring of the interface and the bulk is observed in the ZrO2 case, and (iii) the use of effective partial charges ensures compatibility with existing solvent models and force-fields for the treatment of molecular compounds.
Collapse
Affiliation(s)
- Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Franziska M Kilchert
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - Bagas A Tanjung
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|